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Low output locality is a property of functions, in which every output bit depends on a small number of input bits. In IoTdevices
with only a fragile CPU, it is important for many IoTdevices to cooperate to execute a single function. In such IoT’s collaborative
work, a feature of low output locality is very useful. +is is why it is desirable to reconstruct cryptographic primitives with low
output locality. However, until now, commitment with a constant low output locality has been constructed by using strong
randomness extractors from a nonconstant-output-locality collision-resistant hash function. In this paper, we construct a
commitment scheme with output locality-3 from a constant-output-locality collision-resistant hash function for the first time.We
prove the computational hiding property of our commitment by the decisional (M, δ)-bSVP assumption and prove the
computational binding property by the (M, δ)-bSVP assumption, respectively. Furthermore, we prove that the (M, δ)-bSVP
assumption can be reduced to the decisional (M, δ)-bSVP assumption. We also give a parameter suggestion for our commitment
scheme with the 128 bit security.

1. Introduction

+e computational complexity of cryptographic primitives is
a fundamental problem in the construction of highly effi-
cient and secure protocols [1, 2]. In ITCS 2017, Applebaum
et al. achieved pioneering results for low-complexity cryp-
tographic constructions of fundamental primitives [3]. +eir
technique provides a general framework for converting
relatively high-complexity cryptographic functions to low-
complexity ones, including one-way and pseudorandom
functions of low output localities. Furthermore, Applebaum
et al. proposed constructions for collision-resistant hash
functions of a constant output locality from computationally
hard problems of lattices and multivariate polynomials [4].
Interestingly, one of their collision-resistant hash functions
with low output locality relies on the hardness assumption of
the lattice problem called (M, δ)-bSVP assumption.

+e output locality is a natural complexity measure of
computational efficiency for Boolean functions. It is known

that a Boolean function has output locality k if each output
bit depends on a maximum of k input bits. It is obvious that
low-output locality functions are implementable by low-
depth circuits, implying high parallelizability. In extreme
cases, if a function has a constant output locality, it can be
decomposed into smaller functions computed using con-
stant-depth circuits in parallel. In IoT devices with only a
fragile CPU, it is difficult to execute a single rather large
function. For this reason, it is important for many IoT
devices to cooperate to execute a single function. In such
IoT’s collaborative work, the decomposition property into
smaller functions is very useful. Low-depth cryptographic
functions play crucial roles in certain protocols as well as IoT
devices. For example, the bootstrapping method requires a
low-depth decryption function as in lattice-based fully ho-
momorphic public-key encryption [5].

+ere are several quantum-resistant cryptosystems, such
as homogeneous cryptosystems and lattice cryptosystems.
Output locality is a technology that encourages collaborative
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work on cryptography. In particular, the construction of
cryptographic primitives that are secure against quantum
cryptography and satisfy output locality is significant for the
widespread use of IoT devices. +is paper aims to construct
cryptographic primitives that have output locality and are
secure against quantum cryptography.

On the contrary, a commitment scheme is a fundamental
protocol and a key building block of basic cryptographic
tasks such as zero-knowledge identification [6]. +e scheme
is conducted between two parties (i.e., a sender and a re-
ceiver) through commitment and decommitment phases. In
the commitment phase, the sender converts a message into a
commitment string and sends it to the receiver. +en, in the
decommitment phase, the sender sends the decommitment
string where the message is embedded, which allows the
receiver to verify if the commitment string was indeed
generated from the message or not. A commitment scheme’s
security is formalized based on two properties: the hiding
property and the binding property. +e hiding property
guarantees that no receiver can receive partial information of
messages before the decommitment phase. Simultaneously,
the binding property ensures that no sender can choose one
of more than two candidate messages by switching the
decommitment strings in the decommitment phase.

+e related work is as follows. Note that neither standard
commitment schemes such as Pedersen [7] nor Halevi-
Micali [8] have low output localities. To achieve a com-
mitment scheme with low output locality, two approaches
have been investigated until now. One is proposed in [3],
where a transformation from collision-resistant hash
functions to commitment schemes that preserve low output
locality by using strong randomness extractors in order to
obtain the hiding property is provided. +eir commitment
schemes using this general transformation satisfy the output
locality of four.

Another one is to avoid using such strong randomness
extractors and to construct a commitment scheme directly
from a hash function [9, 10], which are our preliminary works.
Remark that, in [9], it only proves that the output locality is
smaller than the input length, and in [10], it is only claimed that
the hiding property is based on the decisional (M, δ)-bSVP
assumption, whereas no concrete proof was given nor the
relation between the decisional (M, δ)-bSVP assumption and
(M, δ)-bSVP assumption was shown. In other words, no
secure commitment with output locality-3 has been proposed
so far without using strong randomness extractors.

Our contributions are as follows. In this paper, we
propose a commitment scheme with an output locality of
three for the first time. Our construction does not use strong
randomness extractors.We construct a commitment scheme
directly from a collision-resistant hash function in NC0

without using a strong randomness extractor. We prove its
computational hiding property and its computational
binding property by using the decisional (M, δ)-bSVP as-
sumption and (M, δ)-bSVP assumption, respectively. Fur-
thermore, we prove that the (M, δ)-bSVP assumption can be
reduced to the decisional (M, δ)-bSVP assumption.

To construct such a commitment scheme, we focus on
two primitives. +e first is a commitment scheme from the

short integer solution (SIS) problem [11]. +is scheme
makes use of a lattice-based collision-resistant hash function
of a “matrix-vector multiplication” form, i.e., y � M · x for a
matrix M ∈ Zm×n

q , and a vector x ∈ Zn
2. Our commitment

also follows such a simple construction. As for the lattice-
based collision-resistant hash function of low output locality,
we use the next primitive of a function f(x) � M · ex(x),
where ex is an expanding function that dilutes the Hamming
weight on the input x to achieve collision-resistant prop-
erties from the intractability of bSVP [3]. +en, a ran-
domized encoding technique [4] is applied to the function
f(x) to achieve low output locality. Here, a randomized
encoding of f(x) is a randomized mapping f(x, r) that
generates an output distribution dependent only on f(x).

Compared to previous works [10] in CANDAR 2020,
this paper is the full version of the paper presented at
CANDAR 2020. In our preliminary work [10], we have
constructed a commitment scheme with output locality-3.
However, it does not include any security consideration. In
this article, we reconstruct a commitment scheme with
output locality-3 based on the (M, δ)-bSVP assumption and
decisional (M, δ)-bSVP assumption. We describe what we
have achieved in this paper in the following:

(i) Prove that the (M, δ)-bSVP assumption can be
reduced to the decisional (M, δ)-bSVP assumption

(ii) Prove that our commitment scheme satisfies the
computational binding property based on the
(M, δ)-bSVP assumption and satisfies the compu-
tational hiding property based on the decisional
(M, δ)-bSVP assumption

(iii) Compare our commitment scheme with other
previous studies

Roadmap: the remainder of this paper is organized as
follows. Section 2 summarizes the commitment scheme, the
hash function, and the output locality. Section 3 describes
the building blocks of our construction. +en, we present
our commitment scheme in Section 4. In Section 5, we
suggest the parameter of our commitment scheme. Finally,
we conclude our work in Section 6.

2. Preliminaries

First, we summarize the notations used in this paper.

(1) 1k: security parameter
(2) a: message string
(3) r: random string
(4) com: commitment string
(5) dec: decommitment string
(6) ε(k): negligible function in k

(7) ex: expand function
(8) pp: public parameters
(9) S(1k, pp): probabilistic polynomial-time party
(10) R(com, dec): probabilistic polynomial-time party

which executes in the decommitment phase
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(11) Rcom(pp, com): probabilistic polynomial-time party
which executes in the commitment phase

(12) c, d: output locality in the ex function
(13) ⊥: rejection symbol output by R for invalid inputs
(14) Hw(x): Hamming weight of x

(15) Δ(x): the ratio of “1”s in x

(16) HMex: the hash function we used in this paper
(17) CommMex(S, R): our proposed commitment

scheme
(18) N: set of natural numbers
(19) m< n ∈ N
(20) M(1n): matrix sampler that generates a uniformly

random m × n matrix.
(21) H2(p) � − p log2(p) − (1 − p)log2(1 − p) denotes

the binary entropy function, where p ∈ [0, 1]

(22) ε: a negligible function throughout this paper

Next, we define the commitment scheme, which is as
follows [12].

Definition 1 (commitment scheme). A commitment
scheme, Comm(S, R), is a two-phase protocol between two
probabilistic polynomial-time parties S and R, which are
called the sender and receiver, respectively.

During the first phase (commitment phase), S commits
string a to a pair of keys (com, dec) by executing
(com, dec)←S(1k, pp). +en, S sends com (commitment
string) to R.

During the second phase (decommitment phase), S

sends the keys dec (decommitment string) with a to R.
+en, R verifies whether the decommitment string is
valid by executing R(com, dec). If invalid, R(com, dec)
outputs a special string, ⊥, meaning that R rejects
the decommitment of S. Otherwise, R(com, dec)
can efficiently compute the string a revealed by S and
verifies whether a was indeed chosen by S during the first
phase.

In the following discussion, we provide the security
notions of the commitment scheme Comm(S, R).

Definition 2 (computational binding property; see [8]). We
state that Comm(S, R) is computationally binding if it is
computationally infeasible to generate a commitment string
com and two decommitment strings, dec, dec′(dec≠ dec′),
such that R will compute a message a from (com, dec) and a
different message a′ from (com, dec). In detail, for every
probabilistic polynomial-time adversary S′(1k, pp), the fol-
lowing occurs:

Pr

R(com, dec)≠⊥

com, dec, dec′( ←S′ 1k
, pp : R com, dec′( ≠⊥

R(com, dec)

≠R com, dec′( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< ε(k),

(1)

where ε(k) is a negligible function of k. We then say that the
commitment scheme Comm(S, R) is computationally
binding.

Definition 3 (computational hiding property). A commit-
ment scheme Comm(S, R) is computationally hiding if for
every probabilistic polynomial-time party Rcom, it satisfies

Pry1
Rcom pp, y1(  � 1  − Pry2

Rcom pp, y2(  � 1 


< ε(k),

(2)

where pp is a public parameter generated randomly
according to the commitment scheme and yi is a com-
mitment string generated from pp and xi by S for random xi

sampled from an unknown distribution to Rcom(i � 1, 2).
+e computational security of a commitment scheme in

this study uses the following assumption.

Definition 4 ((M, δ)-bSVP assumption; see [3]). For a
weight parameter, δ(n), δ: N⟶ (0, 1/2), and an efficient
sampler M(1n) that samples m × n binary matrices, the
(M, δ)-bSVP assumption asserts that, for every efficient
algorithm Adv, the probability is given by

Pr
M←R M 1n( )

[Adv(M) � x s.t.Mx � 0 andΔ(x)≤ δ]< ε(n).

(3)

We introduce a feature of the output locality. We start
from the definition of a hash function. A hash function
converts input bits of arbitrary length into compressed
output bits of shorter lengths. We define the collision re-
sistance of a hash function in Definition 5.

Definition 5 (collision resistance). We have an arbitrary
probabilistic polynomial algorithm, Adv, given a description
of the hash function and length parameter as inputs. If the
probability of Adv that outputs x, x′ ∈ 0, 1{ }k satisfying
x≠x′ andf(x) � f(x′) is negligible, the function is a
collision-resistant hash function.

Pr Adv f, 1k
 ⟶ x, x′( s.t.x ≠x′, f(x) � f x′(  < ε(k).

(4)

Next, we define the output locality.

Definition 6 (output locality). We say that the function h has
output locality d if each of the output bits depends on at
most d input bits.

Finally, we define perfect randomized encoding (PRE).
PRE is a technique that can make the output locality a
constant.

Definition 7 (perfect randomized encoding; see [3]). Let
f: 0, 1{ }n⟶ 0, 1{ }l be a function. We say that a function
f: 0, 1{ }n × 0, 1{ }m⟶ 0, 1{ }s is a PRE of f if there exist an
efficient decoding algorithm C and a randomized simulator
S that satisfy the following:

(i) Perfect correctness: for every input x ∈ 0, 1{ }n and
r ∈ 0, 1{ }m, C(f(x; r)) � f(x) holds
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(ii) Perfect privacy: for every x ∈ 0, 1{ }n, the distribu-
tion f(x; r) induced by a uniform choice of
r←R 0, 1{ }m is identical to the distribution of S(f(x))

(iii) Balanced simulation: the distribution S(y) induced
by choosing y←R 0, 1{ }l is identical to the uniform
distribution over 0, 1{ }s

(iv) Length preserving: the difference between the
output length and the total input length of the
encoding s − (n + m) is equal to the difference l − n

between the output length and the input length of f

3. Building Blocks

In this section, we first define an expanding function ex [3]
in Section 3.1. +e expanding function is created for the
function to apply the (M, δ)-bSVP assumption. We then
show an example of PRE and how to make the output lo-
cality constant by using PRE in Section 3.2. We also show
how to gain f(x) from encoded function f(x), which is
called perfect correctness in PRE.

3.1. ExpandFunction ex. We give one expanding function ex
used in +eorem 4, where ex is a function of
0, 1{ }k⟶ 0, 1{ }n that dilutes the relative Hamming weight
of the input bits. In order to satisfy the (M, δ)-bSVP as-
sumption, the relative Hamming weight β of the outputs of
ex(x) has to satisfy β≤ δ/2(δ ∈ (0, 1/2)).

Next, we will explain how the function ex expands the
input bits. First, we divide k bit blocks to k/d bit blocks, in
which each bit block has d bits, as shown in Figure 1. We
execute a function ex0 to each of the d bit blocks, where ex0
expands d bit blocks to c bit blocks, shown in Algorithm 1.
+en, every block of the output of ex0 is concatenated as an
output of ex (c · (k/d) � n). +e whole algorithm of ex is
given in Algorithm 2. +e feature of ex is given in Lemma 1.

Lemma 1 (expand function with low output locality; see
[3]). For δ ∈ (0, 1/2), let β≤ δ/2 be the relative Hamming
weight of ex. Set n/k≥ 1/H2(β) and c≥ 1/H2(β)d for the
natural numbers n, k. 5en, there exists an efficiently com-
putable function ex: 0, 1{ }k⟶ 0, 1{ }n such that (1) ex is
injective, (2) Δ(ex(x))≤ β for every x, and (3) ex has output
locality d.

In this study, the hash function HMex uses an expanding
function defined in Lemma 1.

3.2. Construction of PRE. We give one construction of PRE
for a given function f: Fn

2⟶ F2 in 1.

Construction 1 (see [1]). Let f be a function f: Fn
2⟶ F2.

+en, we separate f(x) to v functions T1, . . . , Tv: Fn
2⟶ F2

as follows:

f(x) � T1(x) + · · · + Tv(x), (5)

where Tj(x) can be written by monomial (j � 1, . . . , v). For
r1, . . . , rv, r1′, . . . , rv− 1′ ∈ F2, we define a function
f: Fn

2 × F2v− 1
2 ⟶ F2v

2 by

f x, r1, . . . , rv, r1′, . . . , rv− 1′( ( 

� T1(x) − r1, T2(x) − r2, . . . , Tv(x) − rv, r1(

− r1′, r1′ + r2 − rv− 2′ + rv− 1 − rv− 1′ + rv.

(6)

1 satisfies PRE in Definition 7. Let f(x) � x1x2 + x2x3 +

x4 where v � 3 and n � 4. +en, f can be encoded as the
following equation:
f x, r1, r2, r3, r1′, r2′( ( 

� x1x2 − r1, x2x3 − r2, x4 − r3r1 − r′, r1′ + r2 − r2′, r2′ + r3( .

(7)

Equation (7) is an example of 1. Denote by C(z) adding
all bits in z over F2. +en, we can gain f(x) from f(x) by
using C as follows:

C(f(x)) � x1x2 − r1 + x2x3 − r2 + x4 − r3 + +r1

− r1′ + r1′ + r2 − r2′ + r2′ + r3

� x1x2 + x2x3 + x4.

(8)

It satisfies “perfect correctness” since C(f(x)) � f(x).
From the example of equation (7), the output locality of
function f(x) can be reduced to a constant by using PRE. A
quantitative evaluation of the output locality is given in
Lemma 2.

Lemma 2 (see [1]). Let f: Fn
2⟶ F2 be a function. 5en, let

f be given as in 1. In particular, if f is a degree-d polynomial
written as a sum of monomials, then f is a PRE of f with
degree d and output locality max d + 1, 3{ } 1.

4. Proposed Commitment Scheme

In this section, we propose a commitment scheme
CommMex(S, R) which is constructed by using ex and HMex.
+e hash function HMex is PRE of HMex. We define the
decisional (M, δ)-bSVP assumption and show that the
(M, δ)-bSVP assumption can be reduced to the decisional
(M, δ)-bSVP assumption. Furthermore, we show that our
proposed commitment scheme satisfies the binding property
and hiding property.

4.1. Difference between CommMex(S, R) and the Commitment
in [3]. In [3], Applebaum et al. showed how to construct a

Input
Output

k bits

d bits
ex0 (x1)

ex0 (x2)

ex0 (xk/d)

k
d

blocks

d bits
c bits
c bits

c bits

d bits

n bits

d bits

d bits

d bits

ex

Figure 1: ex function.
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statistically hiding commitment scheme with output local-
ity-4 from their collision-resistant hash function under the
(M, δ)-bSVP assumption. +eir commitment scheme exe-
cutes a hash function based on a randomness extractor and
an ordinary hash function with output locality-4. As a result,
two hash functions are required. Furthermore, the ran-
domness extractor is the universal hash function family, so it
requires additional random bits to choose a function from
the function family. Here, additional bits correspond to the
input of the hash function.

On the contrary, our commitment scheme has to only
execute an ordinary hash function once. Compared with
their commitment scheme, our scheme is more efficient.
Furthermore, our commitment scheme achieves output

locality-3 by introducing the new notion of decisional
(M, δ)-bSVP assumption.

4.2. Decisional (M, δ)-bSVP Assumption. We introduce a
new notion of decisional (M, δ)-bSVP assumption, which is
a decisional version of the (M, δ)-bSVP assumption defined
in Definition 4.

Definition 8 (decisional (M, δ)-bSVP assumption). For a
weight parameter δ(n): N⟶ (0, 1/2), a uniform distri-
bution U ∈ Zm

2 , and an efficient samplerM(1n) that samples
m × n binary matrices, the decisional (M, δ)-bSVP as-
sumption asserts that, for any polynomial algorithm Adv
and for every x ∈ 0, 1{ }n where δ ≤Δ(x)≤ 1 − δ,

Pr
M←R M 1n( ),y1←M·x

Adv M, y1(  � 1  − Pr
M←R U,y2←U

A dv M, y2(  � 1 




< ε(n). (9)

We show that the (M, δ)-bSVP assumption can be re-
duced to the decisional (M, δ)-bSVP assumption by refer-
ring to the methodology presented in Lemma 4.2 of [13],
where Decision LWE is reduced to Search LWE.

Theorem 1. Let y: 0, 1{ }n⟶ 0, 1{ }m be a function, and
define (M, δ)-bSVP distribution on m-bit strings obtained by
choosing x ∈ 0, 1{ }n and outputting y � M · x. Assume that
we have an access to a procedure D which distinguishes the
input y sampled from the distribution of (M, δ)-bSVP or
sampled from a uniform distribution U with nonnegligible
probability. 5en, there exists a polynomial-time algorithm
D′ such that given samples from (M, δ)-bSVP distribution,
D′ can output x with nonnegligible probability.

Proof. Let D be a distinguisher which distinguishes an el-
ement sampled from the (M, δ)-bSVP distribution or

sampled from a uniform distribution U. +en, we construct
D′ which finds x ∈ Zn

2 of Mx. We first show how D′ finds
x1 ∈ Z2 which denotes the first coordinate of x. +e
remaining coordinates can be recovered by the same way.

Given an input of D′, A � (M, y), where y is selected
from an (M, δ)-bSVP distribution. +e input of D can be
defined as follows. Let x be denoted as x � [x1, . . . , xn] and
M be denoted by the following equation:

M �

c11 · · · c1j · · · c1n

⋮ ⋱ ⋮

ci1 cij cin

⋮ ⋱ ⋮

cm1 · · · cmj · · · cmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

+en, y � Mx ∈ Fm
2 can be written as

Input: x ∈ 0, 1{ }d

Output: ex0(x) ∈ 0, 1{ }c

(1) Identify x ∈ 0, 1{ }d as a binary representation of natural numbers in 0, . . . , 2d − 1 

(2) Set y ∈ 0, 1{ }c to the (x + 1)-th string of a relative Hamming weight of maximum value β in the lexicographic order
(3) Return y ∈ 0, 1{ }c

ALGORITHM 1: ex0 function.

Input: x ∈ 0, 1{ }k

Output: ex(x) ∈ 0, 1{ }n

(1) Partition k-bit inputs into k/d input blocks of d bits each
(2) Apply ex0 to each input block, and generate k/d output blocks of c bits
(3) Return ex0(x1)ex0(x2) . . . ex0(xk/d) � ex(x)

ALGORITHM 2: ex function.

Security and Communication Networks 5



y �

c11 · x1 ⊕ c12 · x2 ⊕ · · · ⊕ c1n · xn

⋮

cm1 · x1 ⊕ cm2 · x2 ⊕ · · · ⊕ cmn · xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (11)

For randomly chosen k ∈ Z2 and li1 ∈ Z2 (i � 1, . . . , m),
compute a pair

A′ � M⊕

l11 0 · · · 0

⋮ ⋮ ⋱ ⋮

lm1 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, y⊕

l11 · k

⋮

lm1 · k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (12)

Denote the value obtained in equation (12) as
A′ � (M′, y′). Now, D′ sends A′ � (M′, y′) to D. If k � x1,
then y′ can be written as the following equation:

y′ �

c11 ⊕ l11(  · x1 ⊕ · · · ⊕ c1n · xn

⋮

cm1 ⊕ lm1(  · x1 ⊕ · · · ⊕ cmn · xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (13)

Since equation (13) can be expressed in the form
y′ � M′x, D can distinguish that equation (13) is contained
in the (M, δ)-bSVP distribution. +en, D can distinguish
that A′ is in the (M, δ)-bSVP distribution. In contrast, if
k≠ x1, then y′ will be expressed as

y′ � Mx⊕

l1k

⋮

lmk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (14)

which is clearly not a sample from the (M, δ)-bSVP dis-
tribution. +en, D can distinguish that A′ is in the uniform
distribution.

Finally, D′ outputs k � x1 if D outputs (M, δ)-bSVP
distribution. On the contrary, D′ outputs k � x1 if D outputs
uniform distribution.

All other remaining coordinates in x can be recovered in
the same way. +erefore, D′ can output x by using D with
nonnegligible probability.

From the contraposition of +eorem 1, we can get
Corollary 1. □

Corollary 1. 5ere is no polynomial algorithm that can
break the decisional (M, δ)-bSVP assumption under the
hardness of the (M, δ)-bSVP assumption.

4.3. Proposed Commitment Scheme CommMex(S, R). We
analyze the hash function HMex in Section 4.3.1 and show
our commitment scheme CommMex(S, R) in Section 4.3.2.

4.3.1. A Hash Function HMex for the Commitment Scheme.
We first explain a hash function HMex [3], containing a
matrix MM and an expand function ex, as shown in
Algorithm 3.

+en, we show the hash function HMex which is PRE of
HMex.

HMex: 0, 1{ }
k

× 0, 1{ }
nm⟶ 0, 1{ }

(1+n)m
. (15)

We consider the matrix M as follows:

M �

c11 · · · c1j · · · c1n

⋮ ⋱ ⋮

ci1 cij cin

⋮ ⋱ ⋮

cm1 · · · cmj · · · cmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

M[1]

⋮

M[i]

⋮

M[m]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

for ci,j ∈ Z2 and M[i] ∈ 0,1{ }n (i � 1, . . . ,m{ }, j � 1, . . . ,n{ }).
Also, we define the random number t ∈ 0,1{ }nm as
t � [T[1], . . . ,T[m]] where T[i] is taken over uniform
T[i] ∈ 0,1{ }n in any i ∈ 1, . . . ,m{ }. Furthermore, define ex(x)

as ex(x) � [ex(x)[1], . . . ,ex(x)[n]] where ex(x)[i] is taken
over ex(x)[i] in any i ∈ 1, . . . ,n{ }. Note that we write the first
coordinate of T[1] as t[1][1]. An algorithm of HMex is
shown in Algorithm 4. Note that a matrix M ∈M(1n) is
treated as a part of the description of the algorithm.

+e hash function HMex is PRE of HMex since the
construction of HMex is as same as 1. Here, we only give a
theorem about PRE of HMex and HMex.

Theorem 2. HMex satisfies perfect correctness, perfect pri-
vacy, balanced simulation, and length preserving for HMex.

We show the output locality of HMex in 5eorem 3.

Theorem 3. HMex has 3 output localities.

Proof. Let us investigate the output locality of HMex. From
the structure of Algorithm 4, the maximum number of input
bits on which the output bits depend is 3. +erefore, the
output locality of HMex is 3.

Next, let us discuss the collision resistance of HMex. If a
function satisfies the collision resistance, then its PRE also
satisfies the collision resistance [1]. Applebaum et al. proved
the collision resistance of HMex. +erefore, the collision
resistance of HMex follows from [1]. +e collision resistance
of HMex is described in Lemma 3. □

Lemma 3 (collision resistance of HMex; see [3]). Let the hash
function HMex be a perfectly randomized encoding of HMex.
5en, HMex has a collision resistance under the (M, δ)-bSVP
assumption.

4.3.2. Commitment Scheme CommMex(S, R). We show the
commitment scheme CommMex(S, R) based on HMex, which
consists of initialization, a commitment phase, and a
decommitment phase. In this construction, we use the same
matrix M, but we can also refresh a matrix M in a certain
period, and the computational binding property and com-
putational hiding property also hold using refreshed matrix
M. CommMex(S, R):

Initialization:
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Before the commitment phase, both S and R share the
following information:

(i) Algorithm of ex: 0, 1{ }k⟶ 0, 1{ }n

(ii) Matrix M ∈M(1n)

(iii) 1k: security parameter

Commitment phase by S:

(1) Choose a random number r ∈ 0, 1{ }k/2 as the key of
the hash functions

(2) Choose a message string a ∈ 0, 1{ }k/2, and concat-
enate a and r as x � a‖r

(3) Choose a random number t ∈ 0, 1{ }nm which is used
for PRE

(4) Compute ex(x) ∈ 0, 1{ }n

(5) Compute HMex(a, r, t) ∈ 0, 1{ }(n+1)m

(6) Send com(a, r, t) � HMex(a, r, t′) as a commitment
string com

Decommitment phase from S to R:
S executes the following:

(1) S sends (a, r) ∈ 0, 1{ }k/2 × 0, 1{ }k/2 and t ∈ 0, 1{ }nm

to R as a decommitment string dec

R executes the following:

(1) Compute x � a‖r from dec.

(2) Compute ex(x).
(3) Compute the commitment string HMex(a, r, t) and

check whether HMex(a, r, t) � com. If this is sat-
isfied, R outputs a. Otherwise, R outputs ⊥.

Next, we prove the computational binding property and
computational hiding property of CommMex(S, R). We first
show the computational binding property.

Theorem 4. CommMex(S, R) satisfies the computational
binding property under the (M, δ)-bSVP assumption.

Proof. We assume that there exists a probabilistic polyno-
mial-time (PPT) adversary Adv that breaks the computa-
tional binding property of the commitment scheme
CommMex(S, R). +en, Adv can derive the following
equation, with nonnegligible function ε′(k) from
Definition 2.

Pr Adv 1k
, M ⟶ com, dec, dec′∧dec≠ dec′( > ε′(k)

(17)
From equation (17), com � HMex(dec), and another PPT

adversary Adv’, we can lead the following equation:

Pr Adv′ 1k
, M ⟶ dec, dec′( ∧ HMex(dec)

� HMex dec′∧dec≠ de c′( > ε′(k)
(18)

Input: x ∈ 0, 1{ }k

Output: M · ex(x) ∈ 0, 1{ }m

(1) Partition k-bit inputs into k/d input blocks of d bits each
(2) Apply ex0 to each input block, and generate k/d output blocks of c bits
(3) Set ex(x) as ex(x) � ex0(x1) ex0(x2) . . . ex0(xk/d)

(4) Compute M · ex(x)

(5) Return M · ex(x)

ALGORITHM 3: Hash function: HMex(x).

Input: x ∈ 0, 1{ }k, t ∈ 0, 1{ }nm

Output: y ∈ 0, 1{ }(1+n)m

(1) Compute ex(x) from x

(2) for 1≤ i≤m do
(3) for 1≤ j≤ n + 1 do
(4) v←(n + 1)∗ (i − 1) + j

(5) if v � (n + 1)∗ (i − 1) + 1 then
(6) y[v]←(M[i][1]∧ex(x)[1]) ⊕ t[i][1]

(7) else if v � (n + 1)∗ (i − 1) + n + 1 then
(8) y[v]←t[i][n]

(9) else
(10) y[v]←(M[i][j]∧ex(x)[j])⊕ t[i][j]⊕ t[i][j − 1]

(11) end if
(12) end for
(13) end for
(14) return y

ALGORITHM 4: Algorithm of HMex.

Security and Communication Networks 7



+is shows that if PPT Adv can break the computational
binding property, it can also break the collision resistance of
HMex from equation (18). However, we showed that HMex
has a collision resistance under the (M, δ)-bSVP assumption
in Lemma 3. +erefore, the commitment scheme
CommMex(S, R) satisfies the computational binding prop-
erty under the (M, δ)-bSVP assumption based on the
contradiction.

Next, we will prove the computational hiding property of
CommMex(S, R). □

Theorem 5. CommMex(S, R) satisfies the computational
hiding property under the decisional (M, d/4c)-bSVP as-
sumption for a constant c/d � n/k.

Proof. We assume that there exists a probabilistic polyno-
mial-time adversary Adv that breaks the computational
hiding property of CommMex(S, R). For some distinct
a, a′ ∈ 0, 1{ }k/2, r, r′ ∈ 0, 1{ }k/2, t, t′ ∈ 0, 1{ }nm, and some
nonnegligible function ε′, we can derive the following
equation:

Pr Adv M, HMex(a‖r, t)  � 1 


− Pr Adv M, HMex a′‖r′, t′(   � 1 
> ε′(k).

(19)

Since the decoding procedure C of PRE is a polynomial-
time algorithm, there exists a polynomial-time adversary
Adv′, which is a composition of the decoding procedure and
Adv such that

Pr Adv′(M, M · ex(a‖r)) � 1 


− Pr Adv′ M, M · ex a′‖r′( (  � 1 
> ε′(k).

(20)

By the hybrid argument, for some a,

Pr Adv′(M, M · ex(a‖r)) � 1 


− Pr Adv′(M, U) � 1 
>

ε′(k)

2
.

(21)

Since r is uniformly random over 0, 1{ }k/2, for every
a ∈ 0, 1{ }k/2, we have Δ(a‖r) ∈ (1/8, 7/8), and hence,
Δ(ex(a‖r)) ∈ (d/(8c), 7 d/(8c)) for a constant c/d � n/k
with probability 1 − exp(− Ω(k)) from the Chernoff bounds.
+is contradicts the decisional (M, δ)-bSVP
assumption. □

4.4. Comparison. We compare our proposed commitment
scheme with related works of [BDLOP18] and [KTX08] in
Table 1. Both [BDLOP18] and [KTX08] are also based on
lattice-based functions and consist of “matrix-vector mul-
tiplication” in the same way as us.

A commitment scheme [KTX08] can prove its hiding
property statistically and its binding property by the SIS
problem. However, it did not achieve constant output lo-
cality. A commitment scheme [BDLOP18] can prove its
hiding property and binding property by DKS and SKS
problems, respectively. Nevertheless, it also did not achieve
constant output locality.

On the contrary, the commitment scheme [AHIKV17]
has achieved output locality-4 with its statistically hiding
property and its binding property based on the (M, δ)-bSVP
assumption (bSVP). However, their commitment scheme
was to execute hash functions twice with a randomness
extractor. It was also difficult to construct a commitment
scheme with output locality-3 by using a randomness
extractor.

Our commitment scheme CommMex(S, R) satisfies
output locality-3 by proving its hiding property and binding
property by the decisional (M, δ)-bSVP assumption (D-
bSVP) and (M, δ)-bSVP assumption (bSVP), respectively.
Our commitment scheme only executes the hash function
HMex once and does not use a randomness extractor.

5. Parameter Suggestion for CommMex(S, R)

+is section suggests some parameter settings of
CommMex(S, R) under evaluation based on the short integer
solution (SIS) problem in Definition 9.

Definition 9 (SISq,m,b; see [11]). Given a prime q, a positive
number b, and a matrix MA ∈ Zn×m

q , the short integer so-
lution (SISq,m,b) problem is to find a nonzero vector z ∈ Zm

such that Az ≡ 0(modq) and ‖z‖≤ b.
Let M be a matrix in Fm×n

2 . Under the condition of
Δ(x)≤ δ, the (M, δ)-bSVP can be reduced to a SISq,m,b

problem in the lattice spanned by vectors in Ker(M), where
q � 2 and b �

����
n · δ

√
, namely, to solve our scheme is reduced

to find a short vector v(‖v‖ ≤ ‖x‖) in a lattice
L � v ∈ Zn: Mv � 0(mod2){ }. Denote the norm of the
shortest nonzero vector b1 in ML and the second shortest
vector independent with b1 by λ1 and λ2, respectively. We
estimate parameters as follows:

(1) Estimation of δ:

(a) λ1(L) � ‖x‖ �
����
n · δ

√
.

(b) λ2(L) ≈
�����
n/2πe

√
· 2m/n by Gaussian heuristic,

where the volume of lattice ML is vol(L) � 2m

and e is the mathematical constant.
(c) Denote by α � m/n and δ < α/2 because of the

algebraic attack due to [3]. α shows the ratio
between input length and output length.

+erefore, we can get a bound of δ ≤ 0.07 and
0.14≤ α by λ1/λ2 < 1.0 according to the definition of
λ1 and λ2 above.

(2) Evaluate the asymptotic complexity to solve a SVP by
using Alkim et al.’s estimate proposed in [15], and it
had been experimentally verified in [16]. We heu-
ristically set n � m/α, α � 5 · δ, and δ ≤ 0.07.+en, we

Table 1: Comparison of our proposed commitment scheme.

Hiding Binding Output locality
[KTX08] [11] Statistical SIS —
[BDLOP18] [14] DKS SKS —
[AHIKV17] [3] Statistical bSVP 4
+is paper D-bSVP bSVP 3
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input the parameters of (m, n, δ, q � 2); Alkim et al.’s
estimate can evaluate the minimal βBKZ which means
the target block size used in the lattice reduction
algorithm BKZ [17].

Please refer to [18] for a lucid explanation of Alkim
et al.’s estimate. We consider the scenario that one hashes
128 bit information, namely, we fix m � 128 in the estimate.

Table 2 shows parameter suggestions of our scheme
Comm(S, Rcom) with respect to security levels of NIST AES-
128, AES-192, and AES-256, where βBKZ is the required
block size when using the BKZ algorithm to solve
(M, δ)-bSVP. +e security levels of “AES-128,” “AES-192,”
and “AES-256” refer to three categories in the NIST PQC
standardization project [19] in that the brute force attack on
AES key search requires at least 2143, 2207, and 2272 classical
computing gates, respectively.

6. Concluding Remarks

In this paper, we achieved the following:

(i) We proposed a new output locality-3 commitment
scheme

(ii) We proved that the (M, δ)-bSVP assumption is
reduced to the decisional (M, δ)-bSVP assumption

(iii) We proved that its computational binding property
and computational hiding property are reduced to
the (M, δ)-bSVP assumption and decisional
(M, δ)-bSVP assumption, respectively

(iv) We evaluated a secure parameter set against the
short integer solution (SIS) problem

Generally, it is easy to build protocols based on the
decisional (M, δ)-bSVP assumption compared with the
(M, δ)-bSVP assumption. +erefore, our proof would shed
light on the new construction of protocols whose security is
based on the decisional (M, δ)-bSVP assumption. Also, our
method can be used with IoTdevices with small CPUs since
our method satisfies constant output locality and can be
achieved in smaller CPUs. However, it is expected to achieve
an output locality-3 commitment scheme with statistical
hiding, which is considered an open problem in this work.
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