Research Article

A Lightweight Three-Factor Authentication and Key Agreement Scheme for Multigateway WSNs in IoT

Lingyan Xue,1 Qinglong Huang,1 Shuaqing Zhang,1 Haiping Huang1,2 and Wenming Wang1,3

1School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu, China
2Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, Jiangsu, China
3School of Computer and Information, Anqing Normal University, Anqing 246011, Anhui, China

Correspondence should be addressed to Haiping Huang; hhp@njupt.edu.cn

Received 10 April 2021; Revised 23 May 2021; Accepted 5 June 2021; Published 22 June 2021

Copyright © 2021 Lingyan Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Internet of Things (IoT) has built an information bridge between people and the objective world, wherein wireless sensor networks (WSNs) are an important driving force. For applications based on WSN, such as environment monitoring, smart healthcare, user legitimacy authentication, and data security, are always worth exploring. In recent years, many multifactor user authentication schemes for WSNs have been proposed using smart cards, passwords, as well as biometric features. Unfortunately, these schemes are revealed to various vulnerabilities (e.g., password guessing attack, impersonation attack, and replay attack) due to nonuniform security evaluation criteria. Wang et al. put forward 12 pieces of widely accepted evaluation criteria by investigating quantities of relevant literature. In this paper, we first propose a lightweight multifactor authentication protocol for multigateway WSNs using hash functions and XOR operations. Further, BAN logic and BPR model are employed to formally prove the correctness and security of the proposed scheme, and the informal analysis with Wang et al.’s criteria also indicates that it can resist well-known attacks. Finally, performance analysis of the compared schemes is given, and the evaluation results show that only the proposed scheme can satisfy all 12 evaluation criteria and keep efficient among these schemes.

1. Introduction

As the third revolution of the information technology industry, Internet of Things (IoT) has been developing for over 20 years. During this period, more and more physical objects embedded with sensors and terminal devices are constantly connected to IoT to exchange information. For an instance, in wireless sensor networks (WSNs), tens of thousands of different sensors are deployed everywhere (e.g., architectures, bridges, and intelligent terminals). These devices collect the real-time data from surrounding environment or target objects and, at fixed periods, forward the collected data directly to nearby gateway nodes for further analysis. Then, application systems access the data through the network, to further provide various personalized services. In heterogeneous WSNs, any insecure terminal nodes possibly threaten the whole network’s security as the flexible access mode; potential vulnerabilities continually come forth due to the complexity of heterogeneous networks [1]. Thus, it is necessary to design an authentication protocol to ensure that only legitimate users have access to the network [2]. Generally, as far as sensor nodes are resource-constrained in some aspects such as low energy, insufficient computing capabilities, and lack of memory space, many expensive cryptographic primitives are not suitable. As a whole, the designed proposal for WSNs should be balanced well in both security and efficiency.

authentication protocols for WSNs. However, it was revealed to many weaknesses, i.e., destitution of mutual authentication, and vulnerabilities to password guessing attack, sensor node capture attack, and denial-of-service attack (DoS) [6–8]. Later, many multifactor authentication schemes that asserted high security and efficiency were proposed yet they were prone to various attacks [9, 10]. Xue et al. [11] presented a temporal-credential-based mutual authentication and key agreement scheme for WSNs. Soon afterwards, loopholes were pointed out in their scheme, i.e., vulnerabilities to offline password guessing attack, user tracing, impersonation attack, and stolen-verifier attack, as well as the lack of user anonymity [12–14]. In recent years, biological information of human bodies, such as fingerprint and iris, has been excavated for authentication. With its unforgeability, uniqueness, and stability, biometric authentication technology is inherently convenient, reliable, and promising [15]. Yuan [16] took human's fingerprint as a third factor to achieve user authentication for WSNs, which was lightweight. Nevertheless, their scheme was pointed out that it did not withstand offline password guessing attack, privileged insider attack, and gateway impersonation attack. Then, Li et al. [17] introduced a three-factor authentication scheme for WSNs using biometric features. Subsequently, their scheme was illustrated that it could not resist to stolen smart card attack and support forward secrecy [18]. Additionally, in the practical applications of WSNs, multiple gateways are usually deployed to jointly manage multiple areas. As such, the user can access any sensor node for the real-time data in any area. Research on multigateway-based authentication protocols is also a deserving discussion. Amin et al. [19] proposed a two-factor multiple gateways’ authentication protocol using hash functions. Later, Wu et al. [20] believed that their scheme did not realize mutual authentication and resist impersonation attack; then, they put forward a new scheme. And, Srinivas et al. [21] also found many flaws in [19], i.e., stolen smart card attack and sensor node spoofing attack, and then, they presented a three-factor authentication scheme using hash functions. However, their scheme was also revealed to vulnerability to sensor node capture attack and nonsupport for user anonymity. In 2019, Guo et al. [22] found that the scheme designed by Wu et al. [20] could not resist to stolen smart card attack and session key reveal attack. In order to address these drawbacks, Guo et al. [22] presented a new scheme based on biometric features. Recently, Vinoth et al. [23] proposed a secure multifactor authentication key agreement scheme for industrial IoT, which was insecure as they claimed. It actually could not deal with such attacks such as sensor node capture attack, DoS attack, and replay attack.

As all mentioned above, these schemes are exposed to various vulnerabilities constantly, which in fact are trapped into a "break-propose-break" cycle. Security properties of one scheme is determined by an evaluation standard system, thereby researchers always find new flaws under different systems. In 2018, on the basis of the previous research studies, Wang and Wang [24] summarized and put forward security criteria for two-factor authentication protocols, which are recognized by the industry at present. In these criteria, 12 pieces of independent and fundamental rules are contained that multifactor authentication protocols shall satisfy. Specific content of the criteria can be referred to [24]; we call it “12-Criteria” here for the sake of convenience.

In terms of 12-Criteria, most existing multifactor authentication protocols cannot satisfy all. This paper will put forward a new lightweight three-factor authentication and key agreement scheme for multigateway WSNs, and main contributions are summed up as below:

1. We first reanalyse Guo et al.’s protocol [22]. And, in accordance with 12-Criteria, we further point out some vulnerabilities and drawbacks that still exist in their scheme, including no repairability, improper treatment of biological factors, offline password guessing attack, and lack of forward secrecy.

2. In the light of the 12-Criteria, we put forward a new lightweight three-factor authentication and key agreement scheme for the multigateway environment. In our scheme, biometric features, as an important factor, are extracted and validated by fuzzy extractor [25]. And, honey_list [24] is introduced to assist the effective smart card logout.

3. Formal and informal security analyses are given amply to prove the correctness and security of the proposed scheme, and comparisons with similar research studies show that this new scheme achieves a superior balance between security and efficiency.

The reminder of this paper is organized as follows. The relevant background is introduced in Section 2. In Section 3, discussions of some security flaws in Guo et al.’s work [22] are given. The proposed protocol and the corresponding security analysis are presented in Sections 4 and 5, respectively. The performance of the proposed protocol is evaluated in Section 6, and finally, the whole paper is concluded in Section 7.

2. Preliminaries

This section briefly introduces some necessary notations, system model, and adversary model, as well as preknowledge about formal proofs.

2.1. Notations. The related notations used in this paper are described in Table 1.

2.2. System Model. A multigateway system model is illustrated in Figure 1, wherein three roles, i.e., users, gateway nodes (GWNs), and sensor nodes, are included. Considering the distance measure, the relatively close node is referred to the home gateway node (HGWN), while the opposite is the foreign gateway node (FGWN). The communication processes are summarized as follows.

While a legitimate user attempts to communicate with the sensor node, first he needs to login successfully and send a message to inform HGWN. After the reception of the message, HGWN first checks its database with the key
information of the target sensor node as an index. Here, two cases would be taken into account. Case 1 is presented in steps A–④, wherein if the target sensor node exists in the database, HGWN authenticates the user and sends a message to the sensor node. Then, the sensor node authenticates HGWN and returns a message. After the complete verification of the returned message, HGWN returns a message to the user. Similarly, once the message is verified correctly by the user, the three parties can derive a common session key for further communication. While Case 2 is shown in steps 1–8, that is, the target sensor node does not exist in the database, HGWN broadcasts the request message to other nodes. When FGWN receives that and finds that the wanted sensor node exists in its database, it sends a message to HGWN. Then, HGWN returns a message to the user. After a complete authentication process, the user, FGWN, and the sensor node can negotiate the very session key.

2.3. Notations and Formulas of Ban Logic. The Burrows-Abadi-Needham logic [26], BAN logic for short, plays a positive and effective role when proving that one scheme can support authentication and key agreement among communicating participants. Formally, it needs three steps including idealization of interaction messages in the protocol, initial assumptions according to specific situations, and achievements of expected goals by inference rules. We first present the basic notations of BAN logic in Table 2.
The basic formulas of BAN logic are described as follows.

(i) (R1) Message-meaning rule: if P concludes that the secret K or Y is shared with Q and sees $\langle X \rangle_Y$ or $(X)_K$, then P believes Q once said X:

$$P \equiv P \Rightarrow Q, P \equiv Q \Rightarrow X$$

(ii) (R2) Freshness rule: if P believes X is fresh, then P believes (X, Y) is also fresh:

$$P \equiv \# (X) \Rightarrow P \equiv \# (X, Y)$$

(iii) (R3) Belief rule: if P believes X and Y, then P believes the combination of X and Y:

$$P \equiv X, P \equiv Y \Rightarrow P \equiv (X, Y)$$

(iv) (R4) Nonce-verification rule: if P believes that X is fresh and Q once said X, then P believes that Q believes X:

$$P \equiv \# (X), P \equiv Q \Rightarrow X \Rightarrow P \equiv Q \Rightarrow X$$

(v) (R5) Jurisdiction rule: if P believes Q has jurisdiction over X and Q believes X, then P believes X:

$$P \equiv Q \Rightarrow X, P \equiv Q \Rightarrow X \Rightarrow P \equiv X$$

(vi) (R6) Seeing rule: if P once received a formula and knew the associated key, then P once saw the components of the formula:

$$P \equiv (X, Y) \Rightarrow P \equiv X$$

$$P \equiv (X)_Y \Rightarrow P \equiv X$$

(vii) (R7) Session key rule: if P believes X is fresh and Q believes X, then P believes he shares the key K with Q:

$$P \equiv \# (X), P \equiv Q \Rightarrow X \Rightarrow P \equiv Q \Rightarrow X$$

Table 2: Notations of BAN logic.

<table>
<thead>
<tr>
<th>Notations</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \equiv X$</td>
<td>P believes X is true</td>
</tr>
<tr>
<td>$P \equiv Q$</td>
<td>P sees X and is capable of reading and repeating it</td>
</tr>
<tr>
<td>$P \equiv \sim X$</td>
<td>P once said X; at some time, P has sent the message containing X</td>
</tr>
<tr>
<td>$P \equiv X$</td>
<td>P has control or jurisdiction over X</td>
</tr>
<tr>
<td>$# (X)$</td>
<td>X is fresh which means it was never sent before the current execution of the protocol</td>
</tr>
<tr>
<td>$P \equiv Q$</td>
<td>Both P and Q can use the shared key K to communicate with each other, and K is an intact key</td>
</tr>
<tr>
<td>$\langle X \rangle_Y$</td>
<td>X is a secret only known to P and Q and possibly to principals trusted by them</td>
</tr>
<tr>
<td>X combined with Y</td>
<td>X combined with Y</td>
</tr>
</tbody>
</table>

2.4. Adversary Model. Combing with the 12-Criteria, we list pieces of widely accepted valid assumptions to show the capabilities of an adversary \mathcal{A}, accordingly to analyse the security of the authentication and key agreement protocols.

(i) When entities in WSN communicate with each other over an insecure wireless channel, \mathcal{A} can eavesdrop and intercept all messages transmitted over a public channel and is capable of tempering with and deleting the intercepted messages. In addition, \mathcal{A} can participate in running the protocol as a legitimate entity.

(ii) In reality, users’ devices and sensors are usually equipped with the hardware to prevent reading and tempering with data illegally [27], but to adhere to the extreme-adversary principle [28], it is reasonable to assume that when the user’s device or the sensor is captured by \mathcal{A}, \mathcal{A} has the ability to obtain the data stored in the memory of the captured sensors through side channel attack [24].

(iii) \mathcal{A} is capable of enumerating the Cartesian products of the user’s identity and password. Besides, in the n-factor authentication protocol, \mathcal{A} can obtain $(n-1)$ factors at most.

(iv) Only when evaluating the forward secrecy of the protocol, \mathcal{A} can obtain the long-term private key of a gateway node or a sensor node.

2.5. Security Model. To formalize our proposed proposal later, the BPR model [29] can be introduced in this section, i.e., depictions of the random oracle model and definition of authentication and key-exchange (AKE) security.

Participants. The authentication protocol \mathcal{P} involves three communication participants, i.e., the user, HGWN/FGWN, and sensor node. Each participant has many diverse instances which are called oracles. For a specific session, the three entities are instanced into $\Pi_{U}, \Pi_{HGWN}/\Pi_{FGWN}$, and Π_{S}, respectively. Here, let Π_{I} denote any instance.

Queries. \mathcal{A} can only interact with honest participants through oracle queries and attempt to collect the returned messages to break the protocol. Thus, the following queries simulate \mathcal{A}’s abilities in practice.

(i) Execute $(\Pi_{U}, \Pi_{HGWN}, \Pi_{S})$: it simulates the passive attack, through which \mathcal{A} can obtain all messages
among the three communicators during a normal interaction.

(ii) Send(Π^*_t, m): it represents the active attack, which allows \mathcal{A} intercepts, forges the message, further sends it to Π^*_t, and obtains the corresponding response.

(iii) Reveal(Π^*_t): it models abuse of the session key. Once Π^*_t accepts the current session and generates a session key SK, it will return SK to \mathcal{A} otherwise, return \bot.

(iv) Corrupt(Π^*_t, a): it simulates that \mathcal{A} can corrupt any two of the three factors of a legal user U_j, but not at the same time. (1) If $a = 1$, \mathcal{A} can obtain PW_i and all parameters stored in SC_i; (2) if $a = 2$, \mathcal{A} can receive BIO_i and all parameters stored in SC_i; (3) if $a = 3$, \mathcal{A} can get PW_i and BIO_i.

(v) Test(Π^*_t): it represents the semantic security of the session key. Flip a coin b at random; if $b = 1$, it returns \mathcal{A} the session key of Π^*_t; if $b = 0$, returns a random number equal in length to the session key to \mathcal{A}.

If the session key of Π^*_t does not exist, it returns \bot. It is noted that it can only be invoked once at any time for fresh sessions.

Partners. Let sid denote the session identifier; pid is the session identifier of partners. Π^*_i and Π^*_j are partners if and only if (1) they are both authenticated successfully; (2) they both have the same sid; (3) pid of Π^*_i is Π^*_j, while pid of Π^*_j is Π^*_i.

Freshness. A fresh Π^*_i satisfies that (1) Π^*_i is accepted and owns its session key; (2) \mathcal{A} does not query $\text{Reveal}(\star)$ to Π^*_i or its partner; (3) since \mathcal{P} runs, \mathcal{A} queries $\text{Corrupt}(\star)$ to Π^*_i or its partner once at most.

Definition 1. (AKE security) Given Succ(\mathcal{A}) denotes an event, that is, \mathcal{A} makes Test(\star) queries to several accepted instances and can guess the right b' satisfying $b = b'$. Then, the advantage of \mathcal{A} breaking the AKE security of \mathcal{P} can be defined as $\text{Adv}^\text{AKE}_{\mathcal{P}}(\mathcal{A}) = 2\Pr[\text{Succ}(\mathcal{A})] - 1 = 2\Pr[b = 1] - 1$. For any adversary capable of breaking \mathcal{P} in probability polynomial time (PPT), $\text{Adv}^\text{AKE}_{\mathcal{P}}(\mathcal{A})$ is negligible; then, we say \mathcal{P} achieves AKE security.

3. Cryptanalysis of Guo et al.'s Scheme

The scheme designed by Guo et al. [22] is composed of five parts, including system setup, registration, login, authentication, and password change. Here, we have to leave out the review of their scheme due to space constraints, and readers can refer to [22]. Thus, on the basis of the aforementioned assumptions, security flaws in their scheme are analysed in this section later.

No Sound Repairability. As a usual case, those discarded smart cards are not in the safe keeping of users. If unfortunate, his smart card is captured by an attacker \mathcal{A}, \mathcal{A} possibly launches the offline password guessing attack. Therefore, it is essential to provide a method to cancel the smart card of the user in multifactor authentication protocols.

Improper Treatment of Biometric Factors. As described in this protocol, after the user enters his biometric factor BIO_i, SC calculates $O_i = H(BIO_i)$ which is a key parameter to verify the true identity of the user. In practice, however, a certain error bit always occurs in the extraction of biometric features (e.g., fingerprint and iris) by reading devices, that is, biometric features extracted each time are not always identical. Therefore, O_i calculated by SC may not equate to that obtained during the user’s registration phase, which may result in the failed authentication even if the user has input the right password.

Offline Password Guessing Attack. In the login phase, \mathcal{A} is assumed to have the ability to obtain two of the three authentication factors. Given that \mathcal{A} has accessed the user’s identity ID_i, and biometric factor BIO_i, then he can launch offline password guessing attack as the following process.

\mathcal{A} guesses a possible password PW_i^*, calculates $O_i = H(BIO_i)$, $r_i^* = B_i \oplus h(ID_i || PW_i^*)$, and $MP_i^* = h(r_i^* || PW_i^*)$, and checks whether the equation $B_i = h(MP_i^* || ID_i || O_i || r_i^*)$ holds. \mathcal{A} can repeat these operations until the calculated B_i equals to $h(MP_i^* || ID_i || O_i || r_i^*)$. Finally, \mathcal{A} can succeed in obtaining the user’s correct PW_i.

Lack of Forward Secrecy. Given that the long-term secret key of the GWN is revealed, \mathcal{A} can grab the private key of the sensor and further restore previous session keys.

(i) Case 1:

(1) \mathcal{A} obtains x_{hg} of HGWN and eavesdrops the message M_1 to gain the identity SID_j of the user-pointed communication object S_j. Then, \mathcal{A} computes $f_j = h(SID_j || x_{hg})$.

(2) \mathcal{A} eavesdrops messages M_2 and M_3, and then calculates $Y_j = h(f_j || T_2)$, $r_{hg} = D_{ht} @ Y_j$, $r_u = D_{ht} @ h(r_{hg} || f_j || T_2)$, and $r_r = D_{ht} @ h(r_{hg} || f_j || T_3)$. In this way, the session key can be derived by \mathcal{A} as $SK = h(r_u || r_{hg} || r_r)$.

(ii) Case 2:

(1) \mathcal{A} obtains x_{fg} of FGWN and computes $f_j = h(SID_j || x_{fg})$ after eavesdropping the message M_1.

(2) \mathcal{A} eavesdrops messages M_4 and M_5, and then calculates $Y_j = h(f_j || T_2)$, $r_{fg} = D_{ht} @ Y_j$, $r_{uw} = D_{ht} @ h(r_{fg} || f_j || T_2)$, and $r_r = D_{ht} @ h(r_{fg} || f_j || T_3)$. Thus, \mathcal{A} can figure out SK = $h(r_u || r_{fg} || r_r)$ with ease.

4. The Proposed Scheme

In this section, we present a lightweight three-factor authentication and key agreement scheme for multigateway
WSNs in IoT, which involves users, sensor nodes, HGWNs, and FGWNs. Our scheme includes 6 phases: system initialization, registration, login, authentication and key agreement, password update, and smart card logout.

4.2.2. User Registration

4.2.1. Sensor Registration

4. Registration. As shown in Figure 2, this phase involves two parts, sensor registration and user registration. Both sensor nodes and users need to register their essential information with the closest gateway, namely, HGWN.

4.2.2.1. Sensor Registration

Step 1:

Step 2: HGWN \(\Rightarrow \) Sj: \(x_j = h(\text{SID} || x_{hg}) \oplus R_h \). HGWN calculates \(x_j = h(\text{SID} || x_{hg}) \oplus R_h \) and sends \(x_j \) to \(S_j \) through a private channel. After the reception of \(x_j \), \(S_j \) saves it secretly.

4.2.2.2. User Registration

Step 1: Uj \(\Rightarrow \) HGWN: \{ID, HPW, \(\beta \}_j \}. Uj inputs his username ID, the password PW, and his biometric information BIO. Next, he chooses a number \(r_j \in Z_p^* \) at random and then computes \((\alpha, \beta) = \text{Gen}(\text{BIO}) \) and HPW, \(= h(\text{PW} || \alpha_j || r_j) \).

Step 2: HGWN \(\Rightarrow \) Uj: SC[TID, \(\beta_j, e_j, \text{ID} || \text{hg} \}]. HGWN selects a pseudoidentity TID, for Uj, and calculates \(x_i = h(\text{TID} || x_{hg}) \oplus R_h \). \(K_i = h(\text{ID} || \beta_i) \), and \(e_i = \text{HPW} \oplus K \oplus x_i \). Then, HGWN stores \{ID, K, honey_list = 0\} into its database and \{TID, \(\beta_j, e_j, \text{ID} || \text{hg} \} \) to SC, where honey_lists record the number of the user login failures.

Step 3: Uj computes \(B_1 = h(\alpha_i || \text{ID} || \text{PW}) \oplus r_i \) and \(B_2 = h(\text{HPW} || \alpha_i || \text{ID} || r_i) \mod n_0 \), where \(n_0 \in [2^4, 2^8] \). Next, Uj stores \{B1, B2\} into his SC.

4.3. Login

Step 1: Uj first inputs ID, PW, and BIO; then, SC computes \(\alpha_i = \text{Rep}(\text{BIO}, \beta_i) \), \(r_i = B_1 \oplus h(\alpha_i || \text{ID} || \text{PW}) \), and HPW, \(= h(\text{PW} || \alpha_i || r_i) \) and checks whether \(B_2 = h(\text{HPW} || \alpha_i || \text{ID} || r_i) \mod n_0 \) holds. If so, turn to the next step; otherwise, return a logon failure message and terminate this session.

Step 2: \(U_i \rightarrow \) HGWN: \(M_1 = \{\text{TID}_i, \text{ID} || \text{hg} || \text{SID} || \alpha_i, D_0, D_1, D_2, D_3, T_1 \} \). SC chooses a timestamp \(T_1 \) and a random number \(r_w \in Z_p^* \) and then calculates \(K_i = h(\text{ID} || \beta_i) \), \(x_i = e_i \oplus K_i \oplus h(x_i) \oplus r_w \), \(D_1 = r_u || x_i \), \(D_2 = \text{ID} \oplus h(r_u || x_i) \), and \(D_3 = h(\text{TID} || \text{ID} || \text{SID} || r_u || x_i || K || T_1) \).

4.4. Authentication and Key Agreement. After the reception of \(U_j \)'s request to communicate with SID, HGWN first confirms whether the specified sensor \(S_j \) is located within its communication range. Specifically, if HGWN can query its local database for \(\text{SID} \), then the authentication can be conducted as described in Case 1 (see Figure 3); otherwise, run as shown in Case 2 (see Figure 4).

(i) Case 1:

Step 1: after receiving \(M_1 \), HGWN records the current timestamp \(T_2 \). If \(|T_2 - T_1| \leq \Delta T \) is true, then \(M_1 \) is valid; otherwise, this session would be closed up. Next, HGWN computes \(x_i = h(\text{TID} || x_{hg}) \oplus R_h, r_w = D_1 \oplus x_i, D_2 = D_0 \oplus h(r_u || x_i) \), \(D_1 = r_u \oplus x_i \), \(D_2 = \text{ID} \oplus h(r_u || x_i) \), and \(K_i = h(\text{ID} || \beta_i) \) and verifies whether the equation \(D_3 = h(\text{TID} || \text{ID} || \text{SID} || r_u || x_i || K || T_1) \) is true; if so, it turns into the next step; otherwise, it sets honey_list = honey_list + 1 and returns a logon failure message to \(U_j \). Note that once honey_list \(\geq 10 \), \(U_j \)'s account would be frozen, and the session is also terminated.

Step 2: HGWN \(\rightarrow \) Sj: \(M_2 = \{D_4, D_5, D_6, T_2 \} \). HGWN selects \(r_h \in Z_p^* \) randomly and then computes \(x_j = h(\text{TID} || x_{hg}) \oplus R_h, D_4 = r_h \oplus h(x_j) \), \(T_2 \), \(D_5 = r_u \oplus h(r_h || x_j) \), and \(D_6 = h(\text{SID} || \text{ID} || r_h || r_u || x_j) \). Then, HGWN sends \{TID, \(\beta_j, e_j, \text{ID} || \text{hg} \} \) to SC, where honey_lists record the number of the user login failures.

Step 3: After the reception of \(M_2 \), \(S_j \) records the timestamp \(T_3 \) and checks the freshness of \(T_2 \). Next, \(S_j \) calculates \(r_h = D_5 \oplus h(r_h || x_j) \) and \(r_u = D_6 \oplus h(r_h || x_j) \), and checks whether the equation \(D_6 = h(\text{SID} || \text{ID} || r_h || r_u || x_j) \), and \(T_2 \) if so, it turns to the next step; otherwise, it terminates the current session.

Step 4: \(S_j \rightarrow \) HGWN: \(M_3 = \{D_4, D_5, T_3 \} \). SC chooses a random number \(r_h \in Z_p^* \) and computes \(SK = h(r_u || r_h || \text{ID} || \text{hg}) \), \(D_7 = r_u \oplus h(x_j) \), and \(D_8 = h(\text{ID} || \text{SID} || D_3 \oplus SK || r_h || r_u || T_3) \). Then, SC computes \(SK = h(r_u || r_h || \text{ID} || \text{hg}) \) and checks whether \(D_8 = h(\text{ID} || \text{SID} || D_3 \oplus SK || r_h || r_u || T_3) \) holds; if so, it turns to the next step; otherwise, it aborts this session.
Figure 2: Registration phase.

U_i to HGWN

- **Input**
 - $ID_i, PW_i, B1O_i$
 - Select $r_i \in Z_p^*$
 - $(\alpha_i, \beta_i) = \text{Gen}(B1O_i)$
 - $HPW_i = h(PW_i || \alpha_i || r_i)$

HGWN to S_j

- Store SID_j
- $x_j = h(SID_j || x_{rg}) \oplus R_h$
- $\{x_j\} \rightarrow$ Store x_j

S_j to HGWN

- Select TID_i
- $x_i = h(TID_i || x_{rg}) \oplus R_h$
- $K_i = h(ID_i || \beta_i)$
- $e_l = HPW_i \oplus K_i \oplus x_i$
- Store $\{ID_i, K_i, \text{honeylist} = 0\}$

- $B_2 = h(\alpha_i || ID_i || PW_i) \oplus r_i$
- $B_2 = h(HPW_i || \alpha_i || ID_i || r_i) \mod n_0$
- Store $\{B_1, B_2\}$ into SC

Figure 3: Case 1 of the authentication and key agreement phase.

U_i to HGWN

- $M_1 = \{TID_i, ID_{ag}, SID_j, D_{2b}, D_{3b}, D_{7b}, T_1\}$

HGWN to S_j

- Select T_2, $r_{ag} \in Z_p$
- Verify $|T_2 - T_1| < \Delta T$
- $x_2 = h(TID_i || x_{ag}) \oplus R_h$
- $r_2 = D_{2b} \oplus h(x_2 || x_{rg})$
- $\beta_2 = D_{3b} \oplus h(x_2 || r_2)$
- $ID_2 = D_{2b} \oplus h(r_2 || x_2)$
- $K_2 = h(ID_2 || B_2)$

S_j to HGWN

- Verify $D_3 = h(TID_i || ID_i || SID_j || x_2 || K_2 || T_2)$
- Update honey_list
- $x_j = h(SID_j || x_{ag}) \oplus R_h$
- $D_1 = r_{ag} \oplus h(x_j || T_2)$
- $D_2 = r_2 \oplus h(r_{ag} \oplus x_j || T_2)$
- $D_6 = h(SID_j || ID_{ag} || r_{ag} || x_j || T_2)$

HGWN to U_i

- $M_2 = \{D_3, D_{2a}, D_{7a}, T_2\}$

U_i to HGWN

- Select T_4, T_2^f
- Verify $|T_4 - T_2| < \Delta T$
- $r_{ag} = D_{2b} \oplus h(x_2 || x_{ag})$
- $SK_{ag} = h(r_2 || r_{ag} || T_2 || ID_{ag})$

HGWN to S_j

- Verify $D_8 = h(ID_{ag} || SID_j || x_j || SK_{ag} || r_2 || T_4)$
- $D_9 = r_2 \oplus h(x_2 || r_{ag})$
- $D_{10} = r_2 \oplus h(B_2 || T_2)$
- $x_j' = h(TID_i || x_{ag}) \oplus R_h$
- $D_{11} = TID_i \oplus h(x_j' || ID_i || x_{ag})$
- $D_{12} = x_j' \oplus h(TID_i' || x_j)$
- $D_{13} = h(SK_{ag} || x_j' || TID_i' || K_i || T_4)$

U_i to HGWN

- $M_3 = \{D_3, D_{10}, D_{11}, D_{12}, D_{13}, T_4\}$

HGWN to U_i

- Select T_5
- Verify $|T_5 - T_4| < \Delta T$
- $r_5 = D_{3a} \oplus h(x_2 || r_{ag})$
- $SK_{ag} = h(r_2 || r_{ag} || T_5 || ID_{ag})$
- $TID_i' = D_{3a} \oplus h(x_2 || ID_i || r_5)$
- $x_j' = D_{7a} \oplus h(TID_i' || x_j)$
- Verify $D_{13} = h(SK_{ag} || x_j' || TID_i' || K_i || T_4)$
- $e_i' = HPW_i \oplus K_i \oplus e_l$
- Replace TID_i, e_l with TID_i', e_i'
Step 6: HGWN \rightarrow U_i; M_4 = \{D_9, D_{10}, D_{11}, D_{12}, D_{13}, T_4\}. HGWN chooses a new pseudonym TID_i for U_i and continues to compute D_9 = r_{9g} \oplus h(r_u, x_i), D_{10} = TID_i^4 \oplus h(x_{i4}^4, r_{u4}), D_{11} = TID_i^4 \oplus h(x_{i5}^4, r_{u5}), D_{12} = x_i^4 \oplus h(TID_i^4, x_i), and D_{13} = h(SK_{h4}^4 \oplus x_i^4, TID_i \parallel K^4 \parallel T_4)\).

Step 7: after the reception of M_4, U_i takes down the current timestamp T_5 and checks the validity of T_4. Next, U_i computes r_{5g} = D_{10} \oplus h(r_u, x_i) and verifies whether the equation D_{13} = h(SK_{h4}^4 \oplus x_i^4, TID_i \parallel K^4 \parallel T_4) matches; if so, then it turns to the next step; otherwise, it discontinues the session.

Step 8: SC calculates e_i' = HPW_{i4}^4 \oplus K^4 \oplus x_i' and substitutes [TID_i', e_i'] for [TID_i, e_i].

(ii) Case 2:

Step 1: similarly, after the reception of M_1, HGWN takes down the current timestamp T_2. If |T_2 - T_1| \leq \Delta T, then M_1 is valid; otherwise, the session is discontinued. Next, HGWN computes x_i = h(TID_i \parallel x_{i4} \parallel x_{i4}^4 \parallel r_{u4}) and verifies D_{13} = h(SK_{h4}^4 \parallel x_i^4 \parallel TID_i \parallel K^4 \parallel T_4). If the equation holds, HGWN runs the next step; otherwise, it sets honey_list = honey_list + 1, returns a logon failure message to U_i, and aborts the session.

Step 2: HGWN broadcasts M_2 = \{SID_j, TID_\delta, ID_{h_\delta}, T_3\} to other gateway nodes.

Step 3: FGWN \rightarrow HGWN: M_3 = \{D_4, ID_{j4}, T_3\}. FGWN finds SID_j in its database, then records the present timestamp T_3, and computes x_g = h(TID_i \parallel x_{fg} \parallel r_{fg} \parallel r_{u4}, x_{j4} \parallel r_{j4} \parallel T_2) and substitutes [TID_i', e_i'] for [TID_i, e_i].

Figure 4: Case 2 of the authentication and key agreement phase.
equation holds, U_i continues the next step; otherwise, it terminates the session.

Step 6: $U_i \rightarrow$ FGWN: $M_4 = \{TID_i, D_9, D_{10}, T_5\}$. U_i selects a random number $r'_9 \in Z_p^*$ and computes $D_{10} = h(TID_i||SID_i||ID_{fg}||r'_9||x'_9||T_5)$.

Step 7: after the reception of M_4, FGWN records T_6 and verifies the freshness of T_5. Next, FGWN computes $r_9 = D_9 \oplus x'_9$, and further checks whether $D_{10} = h(TID_i||SID_i||ID_{fg}||r'_9||x'_9||T_5)$ matches. If so, FGWN continues the next step; otherwise, it discontinues the session.

Step 8: FGWN \rightarrow S_j: $M_5 = \{D_{11}, D_{12}, D_{13}, T_6\}$. FGWN selects r_{fg} at random and computes $x_j = h(SID_i||x_{fg}||R_h)$. $D_{11} = r_{fg} \oplus h(x_j||T_6)$, $D_{12} = r'_u \oplus h(r_{fg}||x_j||T_6)$, and $D_{13} = h(SID_i||ID_{fg}||r'_u||r_{fg}||x_j||T_6)$. If the equation holds, S_j turns to the next step; otherwise, it terminates the session.

Step 10: $S_j \rightarrow$ FGWN: $M_7 = \{D_{14}, D_{15}, T_7\}$. S_j selects r_s at random and computes $SK_h = h(r_s^u||r_{fg}||ID_{fg})$, $D_{14} = r_s \oplus h(x_j||r_{fg}||T_7)$, and $D_{15} = h(ID_{fg}||SID_i||x_j||SK_h||r_s||T_7)$.

Step 11: once receiving M_7, FGWN takes down T_6 and verifies the freshness of T_7. Further, FGWN computes $r_s = D_{14} \oplus h(x_j||r_{fg}||T_7)$ and checks whether the equation $D_{15} = h(ID_{fg}||SID_i||x_j||SK_h||r_s||T_7)$ is true; if so, it continues the next step; otherwise, it terminates the session.

Step 12: FGWN \rightarrow U_i: $M_8 = \{D_{16}, D_{17}, D_{18}, T_8\}$. FGWN computes $D_{16} = r_{fg} \oplus h(r'_9||x_j)$, and $D_{17} = r_{fg} \oplus h(r'_9||x'_9||T_8)$. $D_{18} = h(ID_{fg}||SID_i||x_j||SK_h||r_{fg}||x'_9||T_8)$.

Step 13: after receiving M_8, U_i thereupon records the timestamp T_9 and checks the validity of T_8. Further, U_i computes $r_s = D_{16} \oplus h(x_j||r'_9)$, $r_{fg} = D_{17} \oplus h(x'_9)$, and $SK_h = h(r'_9||r_{fg}||r_s||ID_{fg})$ and checks whether the equation $D_{18} = h(ID_{fg}||SID_i||x_j||SK_h||r_{fg}||x'_9||T_8)$ holds; if so, it continues the next step; otherwise, it discontinues the session.

Step 14: SC computes $e'_i = HPW_i \oplus K_h \oplus x'_i$, and replaces $\{TID_i, e_i\}$ with $\{TID'_i, e'_i\}$.

4.5. Password Update

Step 1: U_i first inputs his ID$_i$, PW$_i$, and BIO$_i$. SC computes $\alpha_i = \text{Rep}(\text{BIO}_i||\beta_i)$, $r_i = B_i \oplus h(\alpha_i||ID_i||PW_i)$, and checks whether $B_i = h(\text{HPW}_i||\alpha_i||ID_i||r_i)$ matches. If the equation holds, the next step can be run; otherwise, a logon failure message would be returned and the login request also would be terminated.

Step 2: U_i inputs a new password PW'_i, and SC computes $K_i = h(ID_i||\beta_i)$, $\text{HPW}'_i = h(PW'_i||\alpha_i||r_i)$, and checks whether $B'_i = h(\text{HPW}'_i||\alpha_i||ID_i||r_i)$ matches; if so, it turns to Step 2; otherwise, it returns a logon failure message and terminates this session.

4.6. Smart Card Logout

Step 1: U_i inserts his smart card SC and inputs ID$_i$, PW as well as BIO$_i$. Further, SC computes $\alpha_i = \text{Rep}(\text{BIO}_i||\beta_i)$, $r_i = B_i \oplus h(\alpha_i||ID_i||PW_i)$, and checks whether $B_i = h(\text{HPW}_i||\alpha_i||ID_i||r_i)$ matches; if so, it turns to Step 2; otherwise, it returns a logon failure message and terminates this session.

Step 2: $U_i \rightarrow$ FGWN: $M_9 = \{TID_i, \beta_i, R_o, T_1\}$. U_i selects the current timestamp T_7, thereupon computes $K_i = h(ID_i||\beta_i)$, $x_i = e_i \oplus K_h \oplus \text{HPW}_i$, and $R_o = K_h(x_i||T_1)$.

Step 3: after the reception of M_9, FGWN records the timestamp T_7. If $T_7 - T_1 \leq \Delta T$ is true, then M_9 is fresh. Then, FGWN computes $x_i = h(TID_i||x_{fg}||R_h)$ and checks whether $K_i = x_i \oplus h(ID_i||\beta_i)$. If the equation holds, it runs the next step; otherwise, it aborts the session.

Step 4: FGWN deletes all local records $\{ID_i, K_i, \text{honey_list}\}$ of U_i.

5. Security Analysis

This section provides a rigorous security analysis for the proposed authentication scheme. On the basis of 12-Criteria, informal analysis first discusses how the proposed scheme resists against some well-known attacks. Second, the well-popular BAN logic is utilized to validate the correctness of the proposed scheme as well as the feasibility for authentication and key negotiation. Finally, the BPR model-based formal security proof demonstrates the security of the proposed scheme well.

5.1. Informal Analysis

Resistance to Insider Attack. In multifactor authentication schemes, the user’s password, as a second factor, is of vital for the server/gateway to authenticate the user. The server/gateway in its usual sense is worth...
trusting, while it is facing a real possibility that insiders may disclose users’ sensitive information. At the registration phase, U_i’s password PW_i is masked by $HPW_i = h(PW_i || a_i || r_i)$ to transmit to HGW. Though a_i has the ability to obtain HPW_i, he cannot guess the correct PW_i. That is because r_i is a random number, only known to U_i, and derived information from U_i’s biometric factors are also secret. Additionally, the two parameters never appear in any communication channel, and a_i does not possess the ability to crack hash functions. As a consequence, the proposed scheme can resist insider attack.

Resistance to Password Guessing Attack. Assuming that a_i has generated the Cartesian products $\{ID_i, PW_i\}_i$ of U_i, and maliciously obtained the biometric factors BIO_i and SC through the reading device, then a_i can calculate $a_i = \text{Rep}(BIO_i, \beta_i)$, $r_i = B_i \oplus h(a_i || ID_i || PW_i)$, and $HPW_i = h(PW_i || a_i || r_i)$ and further check whether the equation $B_2 = h(HPW_i || a_i || ID_i || r_i)$ mod n_i holds to find out a correct password. It is noted that there are $2^{32}[24]$ passwords satisfying the equation, the attempts of which are enormous, thus the offline password guessing attack bounds to fail. Furthermore, a_i lists the number of user login failure when $HGWN$ verifies the identity of U_i, which makes it extremely unlikely that a_i can guess the right password through online password guessing within finite attempts. Clearly, the proposed scheme can resist diverse password guessing attacks.

Resistance to Replay Attack. It is known that a_i has the ability to eavesdrop and intercept messages over the public channel. So, a_i may retransmit the eavesdropped or intercepted messages in a new round of the protocol implementation, to make the other party believe that “he” is legitimate to communicate with him. In the proposed protocol, however, the timestamp is employed to demonstrate the freshness of each message, so as to filter out old messages intercepted by a_i. For an instance, a_i has intercepted $M_1 = \{TID_i, ID_{bg}, SID_j, D_0, D_1, D_2, D_3, K_i, T_1\}$, where $D_3 = h(TID_i || ID_j || SID_j || r_{uj} || x_i || K_i || T_1)$, and at time T_1, he attempts to resend $M_1' = \{TID_i, ID_{bg}, SID_j, D_0, D_1, D_2, D_3, K_i, T_1'\}$ to $HGWN$ for login. However, a_i can only change the timestamp in the message but not that in D_3, thus the launched replay attack bounds to fail. This instance illustrates that the proposed scheme can withstand replay attack.

User Anonymity. In terms of user anonymity, it is required that a_i cannot find out the true identities of users or trace their communication trajectories. In this scheme, each user U_i is assigned a pseudonym TID_i, and after a round of key negotiation, his pseudonym will be updated with a new pseudonym TID'_i. Moreover, the calculation of TID'_i depends on U_i’s private key x_i and identity ID_i, neither of which is exposed to the open channel. Therefore, a_i cannot trace the communication trajectory of the user via the pseudonym. As analyzed above, user anonymity is effective.

Forward Secrecy. According to the proposed protocol, U_i’s and S_j’s private keys are both calculated by a random number and the gateway node’s long-term key. It helps that even if the long-term key of the gateway node is leaked for some reason, a_i cannot figure out U_i’s or S_j’s private key due to no idea of the random number. As the session key $SK = SK_u = SK_{bg} = h(r_{u}, r_{bg} || r_j || ID_{bg})$ depends on r_u, r_{bg}, as well as r_j, three of which are severally masked by private keys of three parties, a_i cannot compute the right SK at all. Consequently, the presented scheme supports forward secrecy.

Effective Smart Card Logout. For those smart cards not used any more, improper handling may pose a huge safety hazard. On the basis of the smart card logout method described in this protocol, U_i must enter his right ID_i, PW_i, and BIO_i simultaneously while canceling his SC, so as to prevent a_i from launching malicious cancellation after the smart card is lost. In addition, a_i cannot achieve password guessing attack and obtain three authentication factors at the same time, so there is no way for a_i to masquerade as a legitimate user to cancel the smart card. Hence, the smart card logout method presented in this protocol is effective and secure.

5.2 Formal Analysis Based on BAN Logic. In the light of BAN logic, a detailed analysis in this section will illustrate that the interacting parties (U_i, $HGWN$, and S_j) can achieve mutual authentication and negotiate a common session key properly and securely. The analytic procedures for two cases in the proposed scheme are described as follows.

5.2.1 Security Analysis for Case 1

(i) Goals:

- G_1: $U_i \equiv HGWN \rightarrow SK_{U_i}$
- G_2: $U_i \equiv HGWN \rightarrow SK_{U_i}$
- G_3: $HGWN \equiv U_i \rightarrow SK_{U_i}$
- G_4: $HGWN \equiv U_i \rightarrow SK_{U_i}$
- G_5: $HGWN \equiv S_j \rightarrow SK_{U_i}$
- G_6: $HGWN \equiv S_j \rightarrow SK_{U_i}$
- G_7: $S_j \equiv HGWN \rightarrow SK_{U_i}$
- G_8: $S_j \equiv HGWN \rightarrow SK_{U_i}$

(ii) Idealized forms:

- M_1: $U_i \rightarrow HGWN: TID_i, ID_{bg}, SID_j, D_0, \langle r_{u} \rangle_{SI}$
- D_2: $U_i \leftrightarrow HGWN, r_{u}, x_i$
- M_2: $HGWN \rightarrow S_j: D_3, D_5, \langle r_{u} \rangle_{SI}, x_j$
- M_3: $S_j \rightarrow HGWN: D_7, \langle r_{u} \rangle_{SI}, HGWN, r_{u}, x_j$
- M_4: $HGWN \rightarrow U_i: D_0, D_{10}, D_{11}, D_{12}, \langle HGWN \rightarrow U_i, x_i, TID_i \rangle_{K_i}$

(iii) Assumptions:

- A_1: $U_i \equiv \#(r_{u}, r_{bg}, r_j)$
- A_2: $HGWN \equiv \#(r_{u}, r_{bg}, r_j)$
- A_3: $S_j \equiv \#(r_{u}, r_{bg}, r_j)$
A4: \(U_i \models U_i \xrightarrow{r_u} \text{HGWN}_{x_i} \)
A5: \(\text{HGWN} \not\models \text{HGWN} \xrightarrow{\alpha} S_j \)
A6: \(S_j \models S_j \xrightarrow{r_u} \text{HGWN} \)
A7: \(S_j \models S_j \xrightarrow{r_u} \text{HGWN} \)
A8: \(U_i \models U_i \xrightarrow{r_u} \text{HGWN} \)
A9: \(\text{HGWN} \models \text{HGWN} \xrightarrow{\alpha} U_i \)
A10: \(\text{HGWN} \models U_i \xrightarrow{r_u} r_{h_g} \)
A11: \(S_j \models S_j \xrightarrow{r_u} r_{h_g} \)
A12: \(\text{HGWN} \models S_j \xrightarrow{r_u} r_{h_g} \)
A13: \(U_i \models \text{HGWN} \xrightarrow{r_{h_g}} r_{h_g} \)
A14: \(U_i \models \text{HGWN} \xrightarrow{SK} \text{HGWN} \)
A15: \(\text{HGWN} \models S_j \xrightarrow{SK} \text{HGWN} \)

(iv) Main proofs:

From \(M_1 \) and \(R_6 \), we can know \(S_1 \): \(\text{HGWN} \xrightarrow{\alpha} (r_u, r_{h_g}) \).
From \(S1 \), \(A_5 \), and \(R1 \), we can get \(S2 \): \(\text{HGWN} \equiv U_i \xrightarrow{r_u} r_{h_g} \).
From \(S2 \), \(A_3 \), \(R2 \), and \(R4 \), we can get \(S3 \): \(\text{HGWN} \equiv U_i \xrightarrow{r_u} r_{h_g} \).
From \(S3 \), \(A_10 \), and \(R5 \), we can get \(S4 \): \(\text{HGWN} \equiv r_{h_g} \).
From \(A_3 \), \(R2 \), and \(SK = h(r_u \| r_{h_g} \| r_s \| ID_{h_g}) \), we can get \(S5 \): \(\text{HGWN} \equiv \#(SK) \).
From \(S3 \), \(S5 \), and \(R7 \), we can get \(S6 \): \(\text{HGWN} \equiv (U_i \xrightarrow{SK} \text{HGWN}) \).
Here, we have achieved \(G3 \).
From \(S6 \), \(A_3 \), and \(R4 \), we can get \(S7 \): \(\text{HGWN} \equiv U_i \xrightarrow{SK} \text{HGWN} \).
Then, \(G4 \) has been also achieved.
From \(M_2 \) and \(R6 \), we can know \(S8 \): \(S_j \xrightarrow{\alpha} (r_u, r_{h_g}) \).
From \(S8 \), \(A_6 \), and \(R1 \), we can gain \(S9 \): \(S_j \models \text{HGWN} \xrightarrow{r_u} r_{h_g} \).
From \(S9 \), \(A_3 \), \(R2 \), and \(R4 \), we can gain \(S10 \): \(S_j \models \text{HGWN} \xrightarrow{r_u} r_{h_g} \).
From \(S10 \) and \(R3 \), we can gain \(S11 \): \(S_j \models \text{HGWN} \xrightarrow{r_{h_g}} r_{h_g} \).
From \(S11 \), \(A_4 \), and \(R5 \), we can gain \(S12 \): \(S_j \models r_{h_g} \).
From \(A_3 \), \(R2 \), and \(SK = h(r_u \| r_{h_g} \| r_s \| ID_{h_g}) \), we can gain \(S13 \): \(S_j \equiv \#(SK) \).
From \(S11 \), \(S13 \), and \(R7 \), we can gain \(S14 \): \(S_j \equiv \text{HGWN} \xrightarrow{SK} S_j \).
Here, \(G7 \) has been proved.
From \(S14 \), \(A_3 \), and \(R4 \), we can gain \(S15 \): \(S_j \equiv \text{HGWN} \equiv \text{HGWN} \xrightarrow{SK} S_j \).
So, \(G8 \) has been also gained.
From \(M_9 \) and \(R6 \), we can get \(S16 \): \(\text{HGWN} \xrightarrow{\alpha} (r_u, r_{h_g}, r_s) \).
From \(S16 \), \(A_9 \), and \(R1 \), we can get \(S17 \): \(\text{HGWN} \equiv S_j \xrightarrow{SK} (r_u, r_{h_g}, r_s) \).
From \(S17 \), \(A_2 \), \(R2 \), and \(R4 \), we can get \(S18 \): \(\text{HGWN} \equiv S_j \equiv (S_j \xrightarrow{SK} \text{HGWN}, r_s) \).
From \(S18 \) and \(R3 \), we can get \(S19 \): \(\text{HGWN} \equiv S_j \equiv S_j \xrightarrow{SK} \text{HGWN} \).
Here, we have achieved \(G6 \).

From \(S19, A_5 \), and \(R5 \), we can get \(S20 \): \(\text{HGWN} \equiv S_j \xrightarrow{SK} \text{HGWN} \).
So, \(G5 \) has been also gained.
From \(M_4 \) and \(R6 \), we can gain \(S21 \): \(U_i \xrightarrow{\alpha} (\text{HGWN} \xrightarrow{SK} U_i, x_j, TID_{j \xrightarrow{SK} K}) \).
From \(S21 \), \(A_4 \), and \(R1 \), we can obtain \(S22 \): \(U_i \equiv \text{HGWN} \xrightarrow{SK} (U_i, x_j, TID_j) \).
From \(S22, A_4 \), and \(R4 \), we can obtain \(S23 \): \(U_i \equiv \text{HGWN} \equiv (\text{HGWN} \xrightarrow{SK} U_i, x_j, TID_j) \).
From \(S23 \) and \(R3 \), we can obtain \(S24 \): \(U_i \equiv \text{HGWN} \equiv \text{HGWN} \xrightarrow{SK} U_i \).
So, we have achieved \(G2 \).
From \(S24 \), \(A_4 \), and \(R5 \), we can obtain \(S25 \): \(U_i \equiv \text{HGWN} \xrightarrow{SK} U_i \).
Finally, we have gained \(G1 \).

5.2.2. Security Analysis for Case 2

(i) Goals:

G1: \(U_i \models \text{FGWN} \xrightarrow{SK} U_i \)
G2: \(U_i \models \text{FGWN} \equiv \text{FGWN} \xrightarrow{SK} U_i \)
G3: \(\text{FGWN} \models U_i \xrightarrow{SK} \text{FGWN} \)
G4: \(\text{FGWN} \models U_i \xrightarrow{SK} \text{FGWN} \)
G5: \(\text{FGWN} \models S_j \xrightarrow{SK} \text{FGWN} \)
G6: \(\text{FGWN} \models S_j \equiv S_j \xrightarrow{SK} \text{FGWN} \)
G7: \(S_j \models \text{FGWN} \equiv S_j \)
G8: \(S_j \equiv \text{FGWN} \equiv \text{FGWN} \xrightarrow{SK} S_j \)

(ii) Idealized forms:

\(M_5: U_i \rightarrow \text{FGWN} \xrightarrow{\alpha} \text{TID}_i, D_{x_i}, (r_u, r_{h_g})_{x_j} \)
\(M_6: \text{FGWN} \rightarrow S_j \rightarrow D_{x_i}, D_{x_j}, (r_u, r_{h_g})_{x_j} \)
\(M_7: S_j \rightarrow \text{FGWN} \xrightarrow{\alpha} D_{x_i}, (\text{FGWN} \xrightarrow{SK} S_j, r_s)_{x_j} \)
\(M_8: \text{FGWN} \rightarrow U_i \rightarrow D_{x_i}, D_{x_j}, (\text{FGWN} \xrightarrow{SK} U_i, r_f, r_{h_g})_{x_j} \)

(iii) Assumptions:

\(A_1: U_i \equiv \#(r_u, r_{f}, r_g, r_s) \)
\(A_2: \text{FGWN} \equiv \#(r_u, r_{f}, r_g, r_s) \)
\(A_3: S_j \equiv \#(r_u, r_{f}, r_g, r_s) \)
\(A_4: U_i \equiv U_i \xrightarrow{r_u} \text{FGWN} \)
\(A_5: \text{FGWN} \equiv \text{FGWN} \xrightarrow{r_s} S_j \)
\(A_6: S_j \equiv S_j \xrightarrow{r_s} \text{FGWN} \)
\(A_7: \text{FGWN} \equiv \text{FGWN} \xrightarrow{r_s} U_i \)
\(A_8: \text{FGWN} \equiv U_i \xrightarrow{r_f} U_i \)
\(A_9: S_j \equiv S_j \xrightarrow{SK} \text{FGWN} \)
\(A_{10}: \text{FGWN} \equiv S_j \xrightarrow{SK} \text{FGWN} \)
\(A_{11}: U_i \equiv \text{FGWN} \xrightarrow{r_f} \text{FGWN} \)
\(A_{12}: U_i \equiv \text{FGWN} \equiv \text{FGWN} \xrightarrow{SK} U_i \)
\(A_{13}: \text{FGWN} \equiv S_j \xrightarrow{SK} \text{FGWN} \)
Security and Communication Networks

(iv) Main proofs:

From M_5 and R6, we obtain S26: FGWN•($r_{j_{2}}$)x_{d}. From $S26$, A_7, and R1, we obtain $S27$: FGWN|$\equiv U_{j_{1}}\sim r_{u_{j}}$.

From $S27$, A_2, $R2$, and R4, we obtain $S28$: FGWN|$\equiv U_{j_{1}}\equiv r_{u_{j}}$.

From $S28$, A_8, and R5, we obtain $S29$: FGWN|$\equiv r_{u_{j}}$.

From A_2, $R2$, and $SK = h(r_{u_{j}})r_{fg}\|r_{s}\|ID_{fg}$, we obtain $S30$: FGWN|$\equiv #$(SK).

From $S28$, $S30$, and R7, we obtain $S31$: FGWN|$\equiv U_{j_{1}}^{SK}$FGWN.

So, G3 has been achieved.

From $S31$, A_3, and R4, we obtain $S32$: FGWN|$\equiv U_{j_{1}}\leftarrow FGWN$.

Here, G4 has been also obtained.

From M_4 and R6, we get $S33$: $S_{j_{1}}\leftarrow(r'_{u_{j}}r_{fg})_{x_{j_{1}}}$.

From $S33$, A_6, and R1, we get $S34$: $S_{j_{1}}\equiv FGWN\sim (r'_{u_{j}}r_{fg})$.

From $S34$, A_3, $R2$, and R4, we get $S35$: $S_{j_{1}}\equiv FGWN\equiv (r'_{u_{j}}r_{fg})$.

From $S35$ and R3, we get $S36$: $S_{j_{1}}\equiv FGWN\equiv r_{fg}$.

From $S36$, A_8, and R5, we get $S37$: $S_{j_{1}}\equiv r_{fg}$.

From A_3, $R2$, and $SK = h(r_{u_{j}})r_{fg}\|r_{s}\|ID_{fg}$, we get $S38$: $S_{j_{1}}\equiv #$(SK).

From $S36$, $S38$, and R7, we get $S39$: $S_{j_{1}}\equiv FGWN^{SK}S_{j_{1}}$.

Here, we have proved G7.

From $S39$, A_3, and R4, we get $S40$: $S_{j_{1}}\equiv FGWN\equiv FGWN^{SK}S_{j_{1}}$.

Here, we have achieved G8.

From M_4 and R6, we gain $S41$: FGWN•($r_{j_{1}}$)$x_{j_{1}}$.

From $S41$, A_5, and R1, we gain $S42$: FGWN|$\equiv S_{j_{1}}\sim (FGWN^{SK}S_{j_{1}}, r_{u_{j}})$.

From $S42$ and R3, we gain $S43$: FGWN|$\equiv S_{j_{1}}\sim FGWN^{SK}S_{j_{1}}$.

From A_2, $R2$, and $SK = h(r_{u_{j}})r_{fg}\|r_{s}\|ID_{fg}$, we gain $S44$: FGWN|$\equiv #$(SK).

From $S43$, $S44$, $R2$, and R4, we gain $S45$: FGWN|$\equiv S_{j_{1}}\equiv FGWN^{SK}S_{j_{1}}$.

Here, we have achieved G6.

From A_{13}, $S45$, and R5, we gain $S46$: FGWN|$\equiv FGWN^{SK}S_{j_{1}}$.

So, we have also achieved G5.

From M_4 and R6, we know $S47$: $U_{j_{1}}\leftarrow FGWN\equiv U_{j_{1}}(r_{fg}, r_{s})_{x_{j_{1}}}$.

From $S47$, A_{2}, and R1, we get $S48$: $U_{j_{1}}\equiv FGWN\sim (FGWN^{SK}U_{j_{1}}, r_{fg}, r_{s})$.

From $S48$ and $R3$, we get $S49$: $U_{j_{1}}\equiv FGWN\sim FGWN^{SK}U_{j_{1}}$.

From A_1, $R2$, and $SK = h(r_{u_{j}})r_{fg}\|r_{s}\|ID_{fg}$, we get $S50$: $U_{j_{1}}\equiv #$(SK).

From $S49$, $S50$, $R2$, and R4, we get $S51$: $U_{j_{1}}\equiv FGWN\equiv FGWN^{SK}U_{j_{1}}$.

So, G2 has been gained.

From $S51$, A_{12}, and R5, we get $S52$: $U_{j_{1}}\equiv FGWN\leftarrow U_{j_{1}}$. So, G1 has been also obtained.

Consequently, all security goals are amply demonstrated, both in Case 1 and in Case 2. In the meantime, it also confirms that the communication participants ($U_{j_{1}}$, HGWNN/FGWN, and $S_{j_{1}}$), can authenticate mutually and negotiate a common key successfully.

5.3. Formal Analysis Based on BPR Model

Theorem 1. For the protocol \mathcal{P}, assuming that, in a polynomial time t, s makes up to q_{e} Send($\Pi_{i_{1}}^{*}, m)$queries, q_{c} Excute($\Pi_{i_{2}}^{*}, \Pi_{i_{3}}^{*}$)queries, and q_{o} oracle queries. Let \mathcal{D} represent the password space subject to Zipf distribution, wherein C and s are Zipf parameters; let l denote the output length of hash functions. Now, we can get

$$\% \text{Adv}_{\mathcal{D}}^{\text{AKE}}(\mathcal{A}) \leq 2C'q_{e} + q_{e} + \frac{q_{o}^{2}}{2} + \left(\frac{(q_{e} + q_{o})^{2}}{p - 1}\right).$$

(8)

Proof. Five games $\mathcal{G}_{i_{1}}(i = 0, 1, 2, 3, 4)$ are considered to demonstrate Theorem 1, and simulation process of each game is analysed as below, wherein S_{i} indicates an event that \mathcal{A} outputs the right random bit b in $\mathcal{G}_{i_{1}}$, where $i = 0, 1, 2, 3,$ and 4.

\mathcal{G}_{0}: it simulates a true attack under the random oracle model. \mathcal{A} has the ability to access all oracles; so according Definition 1, we have

$$\text{Adv}_{\mathcal{D}}^{\text{AKE}}(\mathcal{A}) = 2\text{Pr}[S_{0}] - 1.$$ (9)

\mathcal{G}_{1}: it maintains two lists, $L_{j_{1}}$ and $L_{U_{j_{1}}}$, respectively, recording oracle queries and communications during the execution of \mathcal{P}. Besides, all other queries are run as the actual protocol. In \mathcal{G}_{1}, \mathcal{A} launches the passive attack to intercept all messages $M_{j_{1}}(j = 1, 2, 3, 4)$ through Excute(\cdot)query and then guesses the output result of Test($\Pi_{i_{1}}^{*}$)query. Due to the impossibility of figuring out $SK = h(r_{u_{j}})r_{fg}\|r_{s}\|ID_{hg}$, the advantage of a successful attack does not increase for \mathcal{A}, so we can get

$$\text{Pr}[S_{1}] = \text{Pr}[S_{0}].$$ (10)

\mathcal{G}_{2}: here, \mathcal{A} can make Send($\Pi_{i_{1}}^{*}, m)$queries and \mathcal{P} queries to convince the true communicator of forged messages. Only when \mathcal{A} happens to find some collisions and succeeds in constructing credible messages, the simulation terminates. In \mathcal{G}_{2}, two kinds of collisions may be contained: output collisions of hash functions and collisions of random numbers selected in \mathcal{P}. According to Birthday Paradox [30], the probabilities of their occurrence are $(q_{e}^{2}/2^{l_{1}})$ and $((q_{e} + q_{o})^{2}/2(p - 1))$, respectively. Therefore, we obtain.
\[|\Pr[S_2] - \Pr[S_1]| = \frac{q_b}{2^{l_1}} + \frac{(q_x + q_e)^2}{2(p - 1)}. \]

6.1. Security Features. On the basis of the security 12-Criteria, Table 3 presents the comparison results of these diverse authentication protocols, i.e., Guo et al. [22], Wu et al. [20], Srinivas et al. [21], Amin [19], and our proposed protocol. Definitely, the proposed protocol can satisfy all 12 evaluation criteria whereas others can meet 8 pieces at most. In particular, the new protocol in this paper exclusively provides the repairability and forward security, as well as resistance against stolen smart card attack. The protocol presented by Guo et al. [22] has weaknesses in no repairability, improper treatment of biometric features, and offline password guessing attack; the protocol of Wu et al. [20] cannot resist insider attack, stolen smart card attack, and offline password guessing attack; the protocol proposed by Srinivas et al. [21] does not protect against insider attack and offline password guessing attack and ensure that the user will be not traced; Amin’s protocol [19] does not provide resistance to insider attack and guarantee of untraceability of the user. Furthermore, none of these protocols, except the proposed one, implements forward secrecy.

It should be noted that, the 12 security evaluation criteria was proposed by Wang and Wang [24]: C1 for no password verifier-table; C2 for password-friendly; C3 for no password exposure; C4 for no smart card loss attack; C5 for resistance to known attacks; C6 for sound repairability; C7 for provision of key agreement; C8 for no clock synchronization; C9 for timely typo detection; C10 for mutual authentication; C11 for user anonymity; C12 for forward secrecy.

6.2. Computation Overhead. In this section, we compare the computation overhead among the above relevant schemes. In reality, login and authentication are much more frequent than registration, thus the performance of authentication and key-agreement protocols depends primarily on the computational costs of login and authentication phases. As depicted in Table 4, the proposed scheme is more computationally expensive than other schemes at the user side. This happens unsurprisingly because that fuzzy extractor is employed in this paper to extract and verify the biometric features, which is more applicable for high security systems. As for the gateways and resource-constrained sensor nodes, the computational costs are nearly the same. At any side, the schemes proposed by Wu et al. [20] and Amin [19] have the least computational overhead as they trade low safety features for high efficiency. In summary, despite other schemes outperforming in computational complexity, the proposed scheme can protect against all security threats faced by other schemes, which is more feasible in the real world.

6.3. Storage Costs. Comparison of storage costs among the proposed scheme and other relevant schemes is stated in this section, see Table 5 and Figure 5. Primarily, it is recommended that 32 bits for the (pseudo-) identity, 160 bits for the hash output, 128 bits for the fuzzy extractor public data, and 128 bits for a random number, as well as 32 bits for a timestamp are agreed, and these parameters are denoted separately as \(L_{ID} \), \(L_h \), \(L_{f} \), \(L_r \), and \(L_T \). As shown in Figure 5, storage overhead on the user and sensor nodes sides is nearly the same, but that on the gateway nodes is higher as in the proposed scheme; smart card logout is achieved with the assistance of honey list saving in

\[|\Pr[S] - \Pr[S]| \leq \frac{q_x}{2^{l_1}} \]
gateway nodes’ memories. However, in terms of storage capacity, gateway nodes are much better than smart cards and sensor nodes, thus the overhead is acceptable.

7. Conclusion

WSNs are becoming increasingly vital in IoT applications. Inevitably, multifactor and multigateway authentication protocols have become a focus. In this paper, through analyzing weaknesses in the existing schemes, we introduced the widely accepted criteria for evaluating security protocols. In line with the criteria, we revisited Guo et al.’s scheme and found some security flaws, i.e., no repairability, improper treatment of biometric factors, offline password guessing, and no forward secrecy. Then, we proposed a new three-factor authentication protocol for multiple gateways using fuzzy extractor and honey_list technique. Following that, we proved the correctness and security of the proposed scheme by BAN logic and BPR model. As a whole, our proposed scheme outperformed other relevant schemes for keeping efficient in performance, meanwhile satisfying the security criteria.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

L. Xue and Q. Huang contributed equally to this work.

Table 4: Comparison of computation overhead.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U_j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>$13T_h$</td>
<td>$9T_h$</td>
<td>$10T_h$</td>
<td>$7T_h$</td>
<td>$13T_h + T_{fe}$</td>
</tr>
<tr>
<td>Case 2</td>
<td>$18T_h$</td>
<td>$11T_h$</td>
<td>$14T_h$</td>
<td>$8T_h$</td>
<td>$15T_h + T_{fe}$</td>
</tr>
<tr>
<td>HGWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>$17T_h$</td>
<td>$11T_h$</td>
<td>$14T_h$</td>
<td>$8T_h$</td>
<td>$18T_h$</td>
</tr>
<tr>
<td>Case 2</td>
<td>$10T_h$</td>
<td>$7T_h$</td>
<td>$6T_h$</td>
<td>$17T_h$</td>
<td>$11T_h$</td>
</tr>
<tr>
<td>FGWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Case 2</td>
<td>$14T_h$</td>
<td>$7T_h$</td>
<td>$17T_h$</td>
<td>$7T_h$</td>
<td>$12T_h$</td>
</tr>
<tr>
<td>S_j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>$36T_h$</td>
<td>$24T_h$</td>
<td>$31T_h$</td>
<td>$20T_h$</td>
<td>$37T_h + T_{fe}$</td>
</tr>
<tr>
<td>Case 2</td>
<td>$48T_h$</td>
<td>$29T_h$</td>
<td>$43T_h$</td>
<td>$21T_h$</td>
<td>$44T_h + T_{fe}$</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Comparison of storage costs.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>$L_{ID} + 3L_h + L_r$</td>
<td>$L_{ID} + 3L_h + L_r$</td>
<td>$L_{ID} + 4L_h$</td>
<td>$2L_{ID} + 3L_h + L_r$</td>
<td>$2L_{ID} + 3L_h + L_r$</td>
</tr>
<tr>
<td>HGWN/FGWN</td>
<td>$3L_{ID} + 2L_r$</td>
<td>$3L_{ID} + 2L_r$</td>
<td>$4L_{ID} + L_r + L_T$</td>
<td>$4L_{ID} + L_r + L_h$</td>
<td>$3L_{ID} + 4L_r + L_h$</td>
</tr>
<tr>
<td>S_j</td>
<td>$2L_{ID} + L_h$</td>
<td>$2L_{ID} + L_h$</td>
<td>$L_{ID} + L_h + L_T$</td>
<td>$L_{ID} + L_h$</td>
<td>$L_{ID} + L_h$</td>
</tr>
</tbody>
</table>

Table 3: Comparison of security features.

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>C10</th>
<th>C11</th>
<th>C12</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

"✓" means the protocol satisfies this property; "×," the opposite.
Acknowledgments

This work was supported in part by the National Key Research and Development Program (2019YFB2101704 and 2018YFB0803403), National Natural Science Foundation of China (61872194 and 62072252), and Key Project on Anhui Provincial Natural Science Study by Colleges and Universities (KJ2019A0579, KJ2020A0513 and KJ2020A0497).

References