
Research Article
Detecting Portable Executable Malware by Binary Code Using an
Artificial Evolutionary Fuzzy LSTM Immune System

Jian Jiang and Fen Zhang

College of Computer and Electrical Engineering, Hunan Arts and Science University, Changde 415000, China

Correspondence should be addressed to Jian Jiang; jianjiang211@yahoo.com

Received 24 May 2021; Revised 17 June 2021; Accepted 22 June 2021; Published 8 July 2021

Academic Editor: Konstantinos Demertzis

Copyright © 2021 Jian Jiang and Fen Zhang. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As the planet watches in shock the evolution of the COVID-19 pandemic, new forms of sophisticated, versatile, and extremely
difficult-to-detect malware expose society and especially the global economy. Machine learning techniques are posing an in-
creasingly important role in the field of malware identification and analysis. However, due to the complexity of the problem, the
training of intelligent systems proves to be insufficient in recognizing advanced cyberthreats.*e biggest challenge in information
systems security using machine learning methods is to understand the polymorphism and metamorphism mechanisms used by
malware developers and how to effectively address them. *is work presents an innovative Artificial Evolutionary Fuzzy LSTM
Immune System which, by using a heuristic machine learning method that combines evolutionary intelligence, Long-Short-Term
Memory (LSTM), and fuzzy knowledge, proves to be able to adequately protect modern information system from Portable
Executable Malware. *e main innovation in the technical implementation of the proposed approach is the fact that the machine
learning system can only be trained from raw bytes of an executable file to determine if the file is malicious.*e performance of the
proposed system was tested on a sophisticated dataset of high complexity, which emerged after extensive research on PE malware
that offered us a realistic representation of their operating states. *e high accuracy of the developed model significantly supports
the validity of the proposed method. *e final evaluation was carried out with in-depth comparisons to corresponding machine
learning algorithms and it has revealed the superiority of the proposed immune system.

1. Introduction

Critical sectors, such as transport, energy, health, education,
and the financial sector, are increasingly dependent on
digital technologies for their core business functionalities
[1]. Although digitalization offers enormous opportunities
and solutions to many of the challenges of modern society, it
significantly exposes the economy and society to widespread
cyberthreats, most of which are implemented with spe-
cialized forms of malware [2].

Malware development is quite organized with constant
innovation, and sophisticated techniques are constantly
being developed to bypass even the most advanced digital
security systems. Due to the great popularity of theWindows
operating system, Portable Executable (PE) files have been at
the center of the efforts of organized cybercrime groups for

several years now [3]. PEs are executable file formats or
object code such as .exe, .dll, .sys, .ocx, and .drv, used in 32/
64-bit versions of the Windows operating system. *eir
format is essentially a data structure that encapsulates all the
information required by theWindows loader to manage and
execute the executable code contained in each file.

*e PE archetype consists of a set of headers and seg-
ments of the dynamic linker on assigning the file to memory.
An executable string consists of several regions, each of
which has different memory protection requirements [4].
Figure 1 shows the basic structure of PE programs.

Since the PE format was not designed to be resistant to
modification, it is relatively easy to tamper them for mali-
cious or improper use. Malware developers usually use
sophisticated polymorphism and metamorphism techniques
to obscure their malicious intentions. *e main difference

Hindawi
Security and Communication Networks
Volume 2021, Article ID 3578695, 12 pages
https://doi.org/10.1155/2021/3578695

mailto:jianjiang211@yahoo.com
https://orcid.org/0000-0002-4088-5830
https://orcid.org/0000-0002-5563-1737
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3578695

between polymorphic and metamorphic viruses is that the
polymorphic virus is encrypted using a variable encryption
key so that each copy of the virus looks different, while the
metamorphic virus rewrites its code to make each copy
different, without the use of an encryption key [5]. Packing
or obfuscation techniques are also widely used to greatly
complicate the analysis of infected PE files with polymorphic
or metamorphic viruses.

To investigate possible infected PE files, either static
analysis, i.e., examination of the file without being executed,
or dynamic analysis, i.e., execution of the file to extract
information and reveal its behavior, is performed. After
analyzing an executable PE and extracting appropriate at-
tributes, special techniques must be applied to detect the
intent of the file, so that it can be properly categorized. *e
various methods for the above detection are through either a
signature-based process for comparing and detecting dis-
tinct patterns in an updated database of known malware or
detection based on a behavior-based process, thus calcu-
lating behavioral parameters including elements such as
sender addresses and recipient, attachment types, and
various other measurable statistical features [6].

Signature-based processes are considered obsolete and
only used as an auxiliary method while achieving efficient
detection of malicious PE files is equal to the process of
analyzing a huge amount of data to identify the behavioral
patterns of each malware family, to group them in separate
similar categories. *is categorization with clearly defined
and sufficient criteria is of particular interest, as the de-
tection is more difficult and complex and also requires

advanced technical knowledge and experience to understand
the malicious behavior of the infected files [7]. *erefore, a
significant part of the research community of information
systems security and machine learning has turned its at-
tention to malware classification using specialized meth-
odologies and advanced techniques for modeling PE file
behavior.

*e rest of the work includes Section 2 that gives a
detailed description of the proposed Artificial Evolutionary
Fuzzy LSTM Immune System, a related work section, and
Methodology section which describes in detail the meth-
odology of the proposed system, while Experiments section
explains the data used and the scenarios taken into account
for the implementation of the proposed system. Finally,
Conclusions section summarizes the research conducted
and presents the future objectives that extend it.

2. The Proposed Artificial Evolutionary Fuzzy
LSTM Immune System

As mentioned, malware detection from the current gener-
ation of antimalware products typically uses a signature-
based approach, where a set of rules attempts to detect
different groups of known types of malware. *ese rules are
very specific; they are generally fragile and usually cannot
detect new or transformed malware even if it uses the same
functionality. Instead, the proposed architecture introduces
an advanced methodology for distinguishing between be-
nign and malicious PE executable files for Windows OS,

Size - 64 bytes
Purpose - checks if the file is valid

PE file or not
Main components - e_magic, e_ifanew

Purpose - contains information about
the file

Main components - Signature,
File Header, Optional Header

Purpose - contains the main content
of the, including code, data, resources,

and other executable files
Main components - .TEXT, .RDATA.

.DATA, .RSRC

Size - 128 bytes
Purpose - displays warning if file

cannot be run on windows

Purpose - contains information about
the sections present in PE files

Main components - Name1,
VirtualSize, SizeOfRawData,

PointerToRawData, characteristics

DOS MZ Header

DOS Stub

PE File Header

Section Table

Section 1

Section 2

Section ...

Section n

Figure 1: Basic structure of PE file (https://malware.news/).

2 Security and Communication Networks

https://malware.news/

taking as input only the raw byte sequence of the files under
investigation [3, 4, 8].

*is approach has several practical advantages as it does
not require complex hand-crafted features or specialized
knowledge of how it is used to compile the way the malware
is working.*is means that, from the point that the model is
properly trained, it can generalize new threats and at the
same time be resistant to variants of malware that may result
from polymorphism or metamorphism. Also, the compu-
tational complexity depends linearly on the length of the
examined sequence (binary size), which means that the
classification can be done relatively quickly and can work
even in very large files [9]. It is also interesting that the
analysis can be done in sections or subsections of the binary
code, which makes the approach adaptable to new or similar
file formats, which may come from different compilers and
implementation architectures.

But the most basic and essential feature in dealing with
polymorphic malicious files is the fact that the contents of a
binary code at the operational level can be arbitrarily
rearranged with small effort, but there is a complex spatial
correlation between their functions due to system call
functions and jump commands [10, 11]. *us, this analysis
can lead to the detection and successful categorization of
code that has undergone polymorphism or metamorphism
techniques that are used by malware developers and are
particularly difficult to detect by existing methodologies.

*e main innovation of the proposed immune system is
the fact that it can only be trained from raw bytes of an
executable file to determine if the file is malicious. However,
there are many additional challenges. Specifically, treating
each byte as a unit in an input sequence means that a se-
quence classification problem of the order of thousands to
millions of time steps is created. *is goes far beyond the
length of data entry into sequence classifiers. Also, bytes in
malware can have a lot of information details. Any byte
received could encode the human-readable text, binary code,
or arbitrary objects such as images, audio, etc. In addition,
some of this content may be encrypted [12, 13].

But the most important problem is that sequence allo-
cation in individually processed cases will not work, as
malware indexes can be sparse and distributed throughout
the file, so there is no way tomap global tags for a training set
(file) in later phases without importing too much noise. In
addition, having only one label for thousands or millions of
time steps of an input sequence with sparse distinctive
features creates an extremely difficult machine learning
problem due to the very weak training signal [14].

To address the above challenges in this work, an in-
novative Artificial Evolutionary Fuzzy LSTM Immune
System is proposed, which is inspired by the way the body
reacts to the appearance of a pathogen and mimics, at a
higher, abstract level, the general framework of the im-
mune system, combining evolutionary intelligence, me-
dium-term memory, and fuzzy knowledge to detect
Portable Executable Malware (PEM).

In artificial intelligence, Artificial Immune Systems (AIS)
are a class of computationally intelligent, rule-based ma-
chine learning systems inspired by the principles and

processes of the vertebrate immune system. *e algorithms
are typically modeled after the immune system’s charac-
teristics of learning and memory, for use in problem solving.
AIS are distinct from computational immunology and
theoretical biology that is concerned with simulating im-
munology using computational and mathematical models
towards better understanding the immune system, although
such models initiated the field of AIS and continue to
provide a fertile ground for inspiration. In any case, a de-
tailed explanation of how exactly the vertebrate immune
system operates, is necessary in order to understand the
proposed system.

When a virus enters the human cells, some of its protein
fragments (peptides) bind to the Major Histocompatibility
Complexes (MHC)molecular system.MHC genes are highly
polymorphic and encode cell membrane protein molecules
(antigens), which show structural and functional similari-
ties. Lymphocytes, as specific cells of the immune system,
undertake the task to recognize the virus. To achieve the
identification of virus-infected cells, lymphocytes must have
specific receptors to bind to the antigens (peptides) that bind
to the MHC, so that at their cross-linking, they produce an
immune response which translates into specific cytotoxic
processes that kill infected cells.

*e immune response focuses on the production of
specific antibodies that are produced by a chemical immune
response, while at the same time clones of
specific lymphocytes are produced that activate the cell-
mediated immune response. Both antibodies
and lymphocytes recognize certain virus proteins (antigens),
bind to them, and either inactivate the virus itself (neu-
tralizing antibodies) or kill the virus-infected cells [15].

*e proposed algorithm does not attempt to model
exactly the above mechanism of the immune system, but
borrows some of its features, in particular, the theory of
clone selection and immune network. *e recursion process
will allow detecting polymorphism and metamorphism
malware.

It establishes the idea that it is worth cloning only
the lymphocytes that better recognize the pathogen, to create
a large number of antibodies that will largely match specific
antigens, significantly enhancing the role of memory anti-
bodies. Antibodies are considered to be the possible solu-
tions, antigens are the test data, and the degree of similarity
between an antibody and an antigen represents the quality of
the solution.

3. Literature Review

*e basic principles of inspiration that AIS [16, 17] try to
simulate, are the ability of the natural immune system to
acknowledge normal cells, to distinguish the normal from
the foreign, to be able to accurately characterize whether a
foreign cell is harmful or not, to use lymphocyte cloning and
mutation to adapt to the foreign cells that the body is dealing
with, and to react directly to foreign molecules expressed by
a pathogen that triggers the immune system response
(antigens) that the body has already experienced, an action
which is due to memory cells [18].

Security and Communication Networks 3

Also, a very important feature that provides inspiration
and tries to be modeled by AIS concerns the multiple levels,
the defense-in-depth, and the cover overlap of defense of the
natural immune systems. A simple example of capturing these
characteristics is the way the skin of living organisms’ works
[17].*e first line of defense is the skin, nasal hairs, etc., which
essentially block the absorption of pathogens such as foreign
particles, viruses, bacteria, fungi, etc. *is zone is reinforced
by feedback mechanisms like tears, saliva, sweat, and tears
which strengthen the normal defense, by removing pathogens
from the body or containing digestive enzymes [19].

Another important feature that AIS tries to model is the
combination of innate and acquired immunization [20]. *e
innate immune system uses several molecular patterns to
identify pathogens; it exists from birth and does not adapt
during the life of living organisms. *e acquired immune
system, on the other hand, is the creation of the body’s
exposure to pathogens and the retrieval of the history of
invaders and how they can be treated. In case a pathogen
tries to invade the organism, a combined action takes place
between the innate and the acquired immune system to deal
with the invasion [16, 21].

*e immensely valuable physical ability of the immune
system to distinguish between different cells and locate and
often eradicate the infected has inspired researchers in the
field of information systems security to create corresponding
mechanisms that could diversely enhance the active security
of these systems [22].

A summarization with the most well-known immune
methods that can be extracted from literature is presented in
Table 1.

Over the past years, researchers have tried to combine the
features of Artificial Immune Systems (AIS) with cyberse-
curity and more specifically to find malware. Also malware
detection and more specifically Portable Executable Malware
and the process of differentiating it from benign programs
pose a significant research field for security researchers. In this
section, we present some studies in both fields [23].

Fernandes et al. [21] made a survey of the applications of
AIS to computer security. *e article introduces the prin-
ciples of Artificial Immune Systems and surveys several
works applying such systems to computer security problems.
*is work pointed to the open issues afterward, elaborating
on the novel applicability of these systems to cloud com-
puting environments. Also, Aldhaheri et al. [10] proposed a
novel Deep Learning and Dendritic Cell Algorithm based
IDS framework (DeepDCA), to identify IoT intrusion and
minimize the false alarm generation. In addition, Tabata-
baefar et al. [22] proposed an AIS based intrusion detection
system to achieve higher precision in intrusion detection. In
this scheme two sets of antibodies—positive and neg-
ative—are generated for normal and attack samples, re-
spectively, using negative selection and positive selection
theories in primary detectors’ generation. *e simulation
showed that the proposed algorithm achieved 99.1% true
positive rate while the false positive rate is 1.9%.

Kumar et al. [4] proposed a novel derived feature en-
gineering technique that improves the performance of a
machine learning-based classifier for malicious PE file

detection [24, 25]. *e proposed technique used static analysis
techniques to extract the features which have lower time and
resource requirement than dynamic analysis. And finally, Vyas
et al. [8] investigated static feature-based malware detection by
using different supervised learning algorithms and proposed a
network malware detection process for real-time malware
detection on the network. *ey targeted malicious PE file
detection with a small number of features and investigated how
much they could push the supervised learning techniques
towards malware detection while minimizing the computa-
tional cost for network malware detection. *is research ex-
plored four supervised techniques: Decision Tree, k-NN,
SVMs, and Random Forests for malware detection using the
constructed 28 static features. Techniques were evaluated on
four types of malware: backdoor, virus, trojan, and worm.

4. Methodology

*is paper proposes a novel method to understand the
polymorphism and metamorphism mechanisms used by
malware developers and how to effectively address them.*e
forecasting approach provides insights of the way of the
evolution of malware practices and can facilitate decision-
making and management of security strategies. *e deter-
mination achieved by the proposed model is indicative of its
effectiveness and reliability to the extent that it incorporates
fitting techniques of high resolution with latent information
being visible after transforming the PE file into a raw code.
*e proposed Artificial Evolutionary Fuzzy LSTM Immune
System is presented in Figure 2.

*e flow procedure is generally described as follows
[15–17, 21, 22, 26, 27].

4.1. Initialization. During initialization, all the elements of
the data set that the algorithm receives as input are nor-
malized in such a way that the Euclidean distance between
any two elements of the data set is in the interval [0, 1]. Let D

be the set containing the data to be classified and x, y ∈ D

where x, y ∈ R; then, the distance is defined as

distEuclidean x0, xj �

�����������

n

i�1
x

i
0 − x

i
j

2

so thatd(x, y)

� ‖x − y‖norm ≤ 1,∀x, y ∈ D.

(1)

*e data set D consists of x classes of size W, with the
training set T being a subset of a class of D and used to train
the elements of this class so that

Table 1: Immune methods in literature review.

ID Method References
1 Lymphocyte cloning and mutation [16–18]
2 Skin defense [17, 19]
3 Immunization [16, 20, 21]
4 Cell defense [10, 22]
5 Antibodies [22]

4 Security and Communication Networks

Ti⊆Wi⊆D, i ∈ 1, 2, . . . , x{ }. (2)

*e algorithm then calculates the affinity threshold, i.e.,
the average value of the distances between the elements of
the training set, as follows:

AffThr �
n

i�1

n

j�i+1

aff agi, agj

(n(n − 1))/2
,whereaff(x, y) � ‖x − y‖norm.

(3)

*e final stage of this phase is the initialization of the
set of memory antibodies and the set of available
antibodies.

4.2. Antibody Set Initialization. For each ai ∈ P, 1≤ i≤ |P|,

antibody a random sequence of si ∈ L symbols is selected and
assigned to it, ai←si. *e set Gr ∈ L: Gr � G is also defined.
*e set of memory antibodies for each class is initialized to the
current antigenic template from the same template class or a
set of antigenic templates from the same template class.

4.3. Antigen Presentation. An ag ∈ Gr, 1≤ i≤ |Gr| antigen is
randomly selected and presented to the population, while at
the same time the binding function f is calculated for each
antibody in the population. *e following set is thus ob-
tained: V vj: vj � f(aj, agi), 1≤ j≤ |P| which describes

Initialization

Memory
antibodies

Available
antibodies

Antigen presentation

Antibody production

Antibody selection

Evolution

Cloning

Memory refresh

Clone
maturation

Clone
selection

Candidate
antibody

Memory
antibody

Classification

Population renewal

Resource
allocation
Training

Suppression
of available
antibodies

Production
of mutant
offspring

Polymorphic mutation

Evolution

Gr ≠ 0 Gr = 0

Figure 2: Structure of the proposed immune system.

Security and Communication Networks 5

the degree of binding of each antibody in the population
with the ag antigen. *e ag antigen is removed from Gr so
Gr←Gr − ag .

4.4. Determination of Compatible Memory Antibody. *e
algorithm is one-shot; i.e., it examines one element (antigen)
at a time. *e first step is to identify a compatible memory
antibody from the set of memory antibodies. Let ag be an
antigen from the training set; identify the mcmatch memory
antibody that exhibits the greatest degree of stimulation
relative to the current ag antigen. mcmatch �

argmaxmc ∈MCag·c stim(ag, mc)όπoυstim(x, y) � 1 − ‖x−

y‖norm.
*us mcmatch is the memory antibody that is less distant

from the ag antigen. If the set of memory antibodies of this
template class is empty, i.e., MCag·c � ∅, then the
mcmatch←ag; i.e., the mcmatch is the antigenic template itself
and thus is placed inside the set of memory antibodies.

4.5. Identification of Candidate Antibody. *e candidate
vector for memory is the characteristic vector that exhibits
the greatest degree of stimulation relative to the current
antigenic pattern, called mccandidate.

4.6. Antibody Production. *e mcmatch memory antibody
that exhibits the highest degree of stimulation to the current
antigenic standard ag is used as the archetype to produce a
set of mutated versions of the original. *ese antibodies will
be included in all available antibodies to address the poly-
morphism and metamorphism mechanisms used in mal-
ware development. *e rate of mutation is inversely
proportional to the degree of stimulation to the current
antigenic pattern.

4.7. Antibody Selection. Based on the data of a set V, the nb

antibodies are selected that indicated the best binding
quality and now constitute the set B, |B| � nb.

4.8. Amplification/Cloning. Based on the quality of its
binding to the antigen ag, each antibody of set B is cloned,
with each antibody yielding more clones depending on its
quality. A new set C includes the resulting clones.

4.9. Clone Maturation. Each element cj of set C changes at
an aj rate which depends on the degree of binding of clone cj

to the antigen ag. *e better the binding quality, the lower
the rate of mutation so that no reversible changes are made
to the antibody [28, 29]. *e set of mutant clones composes
the set Cm.

4.10. Clone Selection and Memory Refresh. *e function f is
applied to each element of the set Cm and the set V′ is
obtained which contains the connection quality of each
mutated clone, V′ � vj

′: vj
′ � f(cj

′, gi), 1≤ j≤ |Cm| . Based
on V′ the nm best clones are selected which constitute the set

B′. Imaging K is then applied to the gi antigen to obtain the
Mi set of memory antibodies that are candidates for re-
placement. Based on the memory renewal policy followed by
the algorithm, a final set of Mi

′ cells is obtained such that
nm � |Mi

′|≤ |Μi|. *e memory cells of the set Mi
′ will be

replaced by other selected cells if and only if these cells show
a better quality of connection, which means that the con-
dition f(m, gi)<f(a, gi), m ∈Mu

′, a ∈ B′, must apply [30].

4.11. Introduction of Memory Antibodies. Affinity threshold
is used as a criterion for placing mccandidate in the set of
memory antibodies if its degree of stimulation, in terms of
the current antigenic standard, is higher than that of mcmatch.
If this is the case, then

aff mccandidate, mcmatch(� mccandidate − mcmatch
����

����norm, (4)

and then mccandidate is placed in the memory antibody set and
replaced by mcmatch.

4.12. Training Procedure. *e training procedure is repeated
until the average degree of stimulation of all available an-
tibodies is less than a predetermined value. *is step of the
algorithm aims to generate antibodies that better recognize
the current antibody.

4.12.1. Resource Allocation. For each element of the set of
available antibodies, a portion of the total system resources is
committed depending on the degree of stimulation of the
current antigenic pattern.

4.12.2. Suppression of Available Antibodies. *ose anti-
bodies that bound the smallest part of the total system re-
sources are deleted.

4.12.3. Production of Mutant Offspring. *e subset of
available antibodies that have secured most of the system’s
resources has an additional opportunity to produce mutant
progeny.

4.13. Population Renewal. To maintain population diversity,
either nt cells are selected from the set V′ and introduced
into the population replacing some others, or nd worse cells
from the P population are selected and replaced with
completely new ones.

4.14. Classification. *e k-NN classifier with Self-Adjusting
Memory (k-NN SAM) is used for classification [31–33]. *e
k-NN SAM algorithm is inspired by the field of human
memory research and specifically by the dual model of short-
term and long-term memory (STM & LTM). *e infor-
mation that reaches the STM through the sensory organs is
accompanied by relevant knowledge derived from the LTM.
*e information that receives a lot of attention and is
considered important is transferred to LTM in the form of
Synaptic Consolidation. STM capacity is quite limited and

6 Security and Communication Networks

information is retained for a very short time, unlike LTM,
which can retain information for several years. A typical
example of how humanmemory works in this field is the fact
that we never forget the way we ride a bike, no matter how
many years have passed since our last bike ride. *e ar-
chitecture of k-NN SAM is partly inspired by this model,
presenting proportions such as the obvious separation of
short-term and long-term memory, the different retention
times between memories, and the transfer of knowledge
from STM to LTM and vice versa. *e implementation of
this algorithm as a categorization model is based on the
general assumption that the new data is more relevant to the
current predictions, but prior knowledge is also required for
their correct classification. *e optimal combination of the
two processing levels can minimize errors and increase
categorization accuracy. Memories are represented by sets of
short-term memory (MST), long-term memory (MLT), and
merged memory (MM). Each memory is a subset of Rn ×

1, . . . , c{ } of different lengths, which fluctuates during the
adjustment process. MST represents the current idea and is a
dynamic slider containing the latest m data flow examples:
ΜST � xi, yi(∈ R

n
× 1, . . . , c{ }∨i � t − m + 1, . . . , t .

(5)

MLT retains all former information, which does not
conflict with that of MST. Unlike MST, MLT is not a con-
tinuous part of the data stream, but a set of points p:

Μ � xi, yi(∈ R
n

× 1, . . . , c{ }∨i � 1, . . . , p . (6)

*e association of both memories is the MM memory:

MM � MST ∪
 M. (7)

Each set includes the weighted k-NN classifier:

R
n

× 1, . . . , c{ }, kNNMST
, kNNM, kNNMM

. (8)

*e k-NN function assigns a label to a given point x

based on a set Z � (xi, yi) ∈ Rn × 1, . . . , c{ }∨i � 1, . . . , n :

kNNZ(x) � argmax

xi∈Nk(x,Z)∨yi�c

1
d xi, x(

∨c � 1, .., c
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(9)

where d(xi, x) is the Euclidean distance between two points
and the Nk(x, Z) returns the set k of x′ s nearest neighbors
to Z.

Generally speaking, the LSTM function is capable of
learning order dependence in sequence prediction patterns
[34]. Each one of the 3 types of the gate in a LSTM cell, forget
gate, input gate, and output gate (MST, MLT, and MM), will
decide what portion of the older data have to be forgotten,
what portion of newer data have to be remembered, and
what portion of the memory has to be given out corre-
spondingly [35]. *e main reason we used the LSTM
function is that the contents of a binary at the function level
can be arbitrarily rearranged with little effort in cases of
polymorphism and metamorphism, but there is always a
complicated spatial correlation across functions due to

function calls and jump commands which can be identified
by a recurrent model.

4.15. Termination Condition. If Gr ≠ 0, then the algorithmic
procedure is repeated from the second step of the antigen
presence. Otherwise, some criterion of convergence of
memory antibodies M with the antigens of set G is checked.
In the case of unsuccessful convergence, Gr←G and the
algorithm is repeated from the second step of the antigen
presence then, wherein in the opposite case Gr � 0 and thus
the algorithm terminates and a generation of evolution is
completed.

4.16. Polymorphic Mutation. Antibodies involved in the
treatment of polymorphism and metamorphism mecha-
nisms used by malware developers are initialized through
Gibbs sampling [36, 37]. Gibbs sampling is a Markov
Monte Carlo chain algorithm that takes repeated samples
from the target p distribution, taking into account all other
variables [38]. *e basic idea is simple: instead of calcu-
lating in detail the quantities we are interested in, with
complex posterior distributions, we simulate a sample of
values from a suitable Markovian chain that is in equi-
librium. So we can calculate the characteristics we want
(average value, dispersion, etc.) through the corresponding
values of the sample. *e Gibbs sampler simulates ob-
servations from multidimensional target distributions
through their fully bound distributions, which in our case
have a known form. *us, the problem of simulating ob-
servations from a large-dimensional target distribution is
transformed into a problem of simulating observations
from smaller dimensional distributions [39].

After defining the set of antibodies by the above pro-
cedure (Algorithm 1), assign each point x(i) of the data set to
some possible solution Ck so that the function Score(C, D) is
maximized or minimized on a case-by-case basis. *e
equation of calculating the function is given as follows:

Score(C, D) �
Κ

k�1
d x, ck(, (10)

where ck � (1/nk)x∈ck
x and d(x, y) � ‖x − y‖2.

*e probability of classification error is

PB ≤PC ≤PB +
1
��
ke

√ , (11)

where PB is the optimal Bayesian error which expresses the
probability that c is the value of the dependent variable C
based on the values x�(x1, x2, ..., xn) of the attributes X�(X1,
X2,..., Xn) and is given by the relation [40]

P(c∨x) � P(c) ·

n

i

P xi∨c(. (12)

In this way, vague sets of solutions are created. *is is a
more realistic categorization of elements with fuzzy
boundaries, where the transition from the category of X
elements belonging to the fuzzy set A to the category of X

Security and Communication Networks 7

elements that do not belong to A is not abrupt-clear but is
gradual-vague. Among the created fuzzy sets, operations can
be performed on a case-by-case basis as follows (μ is called
the membership function of the fuzzy set) [41]:

μA∪ Β
(x) � μA

(x)∨μΒ(x) � max μA
(x), μΒ(x) ∀x ∈ X,

μA∩ Β
(x) � μA

(x)∧μΒ(x) � min μA
(x), μΒ(x) ∀x ∈ X,

μA·Β
(x) � μA

(x) · μΒ(x)∀x ∈ X,

μΓA
� 1μ A

(x).

(13)

*e use of fuzzy sets arises from the fact that learning
techniques are designed for stable environments, in which
training and testing data are considered to be generated from
the same (possibly unknown) distribution. A properly
designed and implemented binary code corresponding to a
modified pattern may come from a slightly differentiated
malware and it can lead the algorithm to make a wrong
classification decision. *e fuzzy set theory permits the
gradual assessment of the membership of elements in a set;
this is described with the aid of a membership function
valued in the real unit interval [0, 1] [42]. From this point of
view, it helps in understanding the dynamic environment
and offers a range of adequate explanations that could occur
as part of the human decision-making process [43].

5. Experiments

A set of 19,620 PE files was used to test and validate the
proposed system, of which 11,084 were benign files from a
clean install of Microsoft Windows and some commonly
installed applications, while the remaining 8,536 files were
PEM that came from the most updated VirusShare database
[44]. All experiments were performed in the Google Colab
[45] environment using a Tesla P100 GPU, using the
Tensorflow library. To achieve timely model convergence, it
was necessary to train the proposed system using a rela-
tively small but at the same time satisfactory batch size,
which after extensive trial and error tests resulted in 872
samples. Due to overuse of memory, this required the use of
parallel model training using all available GPU memory.
*e results of the process are presented in the table below
and the corresponding diagrams. Specifically, the most
popular evaluation measures, which can clearly and

objectively identify the proposed system with extensive
comparison with other machine learning algorithms, are
presented in Table 2 [46]:

*e Correctly Classified Instances, i.e., the accuracy of
the procedure, was calculated at 98.59%, which essentially
expresses the percentage of classification of the plots of PE
samples that were checked and that are correctly cate-
gorized. Only 276 files, i.e., 1.41%, were categorized in-
correctly, a fact that is interpreted as 0.014 false positive
rate, with a corresponding 0.986 true positive rate. Fig-
ure 3 depicts the confusion matrix that provides the ac-
curate and aggregate information needed to evaluate the
model [46].

In particular, information for a more complete under-
standing and evaluation of the process, concerning the
unique number of performance measures that can be
expressed about the number of true positive, true negative,
false positive, and false negative classifications, is presented
in Figure 4, with the display of Precision, Recall, and F1-
Score for each class separately [46].

*e most important measurement for evaluating the
performance of the model is the ROC area, which gathers
information about the prediction quality of the catego-
rizer for different threshold values while remaining in-
dependent of the possible class imbalance in the data. *e
very high ROC area rating (with Weighted Average of
0.987, i.e., very close to 1), as shown in Figure 5 below,
corresponds to the successful ranking of most malicious
programs [46].

A visualization of the Precision, Recall, and F1-Score,
concerning the classifier discrimination threshold, is shown
in Figure 6. *e discrimination threshold depicts how the
system ranks a PE in the positive order versus the negative
order. Generally, this is usually set at 50%, but in this case,
the threshold was set to 48% to increase the sensitivity to
false positives based on the queue rate, i.e., the percentage of
files to be checked [46].

Finally, additional diagrams showing the quality of the
proposed model are presented in Figures 7–9 [46].

Making a general assessment of the process proposed
and evaluated in this study, we demonstrated the catego-
rizer’s ability to differentiate between benign and malicious
PE files with high accuracy and with the same importance
given to each one, without any unwanted bias, which is most
often the result of bad categorizers that cannot generalize. It
is also important to note that very accurate process

Initialize x(t) � (x
(t)
1 , . . . , x

(t)
k

)fort � 0
For t � 0, 1, . . .

Pick index i uniformly at random from 1, . . . , k

Draw a sample a p(xi
′∨x(t)

− i) where x
(t)
− i is the set of all variables in x(t) except for the ith variable.

Let x(t+1) � (x
(t)
1 , x

(t)
2 , . . . , x

(t)
i− 1, a, x

(t)
i+1, . . . , x

(t)
k)

Let xi denote the ith variable and let x− i denote the set of all variables except xi. Let Q(xi
′, x− i∨xi, x− i) � 1/kp(xi

′∨x− i). Let
A(xi
′, x− i∨xi, x− i) � min(1, a) where

a � (p(xi
′, x− i)Q(xi, x− i∨xi

′, x− i)/p(xi, x− i)Q(xi
′, x− i∨xi, x− i))⟶ a � (p(xi

′, x− i)p(xi ∨x− i)/p(xi, x− i)p(xi
′∨x− i))→ a

� (p(xi
′∨x− i)p(x− i)p(xi∨x− i)/p(xi∨x− i)p(x− i)p(xi

′∨x− i))⟶ a � 1

ALGORITHM 1: Polymorphic mutation algorithm.

8 Security and Communication Networks

predictions encourage the use of the model, as the manual
analysis of a single binary PE file by a dedicated malware
researcher can take more than 10 hours. *us, in the pro-
posed way, the process is significantly simplified and
accelerated, which makes this method capable of being used
in forensic investigations, where a fast and valid assessment
of malicious actions is required.

Benign

Benign

Malware

Malware

134 8402

14210942

Figure 3: Confusion matrix.

1

0

Precision Recall f1

1.0

0.8

0.6

0.4

0.2

0.0

0.982 0.990 0.986

0.989 0.980 0.985

Figure 4: Precision, Recall, and F1-Score by class.

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4
False positive rate

0.6 0.8 1.0

ROC of class 0, AUC = 1.00
ROC of class 1, AUC = 1.00
Microaverage ROC curve, AUC = 1.00
Macroaverage ROC curve, AUC = 1.00

Figure 5: ROC curves.

1.0

0.8

0.6

0.4

0.2

0.0

Sc
or

e

0.0 0.2 0.4 0.6
Discrimination threshold

0.8 1.0

Precision
Recall
f1

tf = 0.48
Queue rate

Figure 6: *reshold plot.

Table 2: Performance metrics.

Correctly classified instances 19344 98.59%
Incorrectly classified instances 276 01.41%

Weighted average
Method Accuracy TP rate Precision Recall F1-score MCC ROC area PRC area MAE RMSE K stats
Proposed 98.59% 0.986 0.986 0.986 0.986 0.971 0.987 0.981 0.0141 0.1167 0.9714
SVM 92.91% 0.929 0.930 0.930 0.930 0.935 0.960 0.965 0.0205 0.1233 0.9398
NaBayes 88.38% 0.884 0.884 0.885 0.885 0.884 0.890 0.890 0.0318 0.2034 0.8904
k-NN 90.63% 0.906 0.900 0.900 0.910 0.900 0.900 0.950 0.0297 0.1293 0.9008
RF 97.03% 0.970 0.970 0.970 0.970 0.965 0.970 0.972 0.0170 0.1195 0.9682
SVM � support vector machines; NaBayes�naı̈ve Bayes k-NN� k nearest neighbor; RF � random forest; TP rate� true positive rate; FP rate� false positive
rate; MCC�Matthews correlation coefficient; ROC area� receiver operating characteristic area; PRC area�Precision-Recall curve area; MAE�mean
absolute error; RMSE� root mean square error.

Security and Communication Networks 9

6. Conclusions

*e proposal of the present work is about a method of
malware detection inspired by the effectiveness of the im-
mune system.*e implementation of themethod is based on
the fact that minimal effort has been made to utilize bio-
logically inspired machine learning in polymorphic and
metamorphic malicious classification problems. *e aim of
the proposed Artificial Evolutionary Fuzzy LSTM Immune
System is to produce multiple identical solutions, to increase
the algorithm classification accuracy into various malicious
patterns, which result from polymorphism or metamor-
phism. It is a hybrid system that optimally combines evo-
lutionary intelligence, medium-term memory, and fuzzy
knowledge to analyze and classify Portable Executable
Malware.

*e proposed immune system is trained to differentiate
between benign and malicious Windows executable files
with only the raw byte sequence of the executable as input.
*is approach has several practical advantages [47]:

(1) No hand-crafted features or knowledge of the
compiler used is required. *is means the trained
model is generalizable and robust to natural varia-
tions in malware.

(2) *e computational complexity is linearly dependent
on the sequence length (binary size), which means
inference is fast and scalable to very large files.

(3) Important subregions of the binary can be identified
for forensic analysis.

(4) *is approach is also adaptable to new file formats,
compilers, and instruction set architectures.

*e main innovation of the proposed algorithmic
method is the detectors that successfully detect malicious
patterns and which are placed in long-term memory so that,
in this way, the set of detectors creates a different distri-
bution of the set of successful training. Essentially, the
problem of dealing with polymorphism and metamorphism
mechanisms is modeled as a problem of optimizing the
distance of the set of detectors with the objects of the training
set.*e function to be optimized is a function of the distance
of the detectors to the objects of the training set.

Similarly, a key innovation in technical implementation
is the challenge of whether a machine learning system could
only be trained from raw bytes of an executable file to
determine if the file is malicious. *is success could greatly
simplify the tools used to detect malware, improve detection
accuracy, and detect obscure but important malware fea-
tures. We are convinced that this article proves that
detecting malware from raw byte sequences has unique and
challenging properties that make it a fertile research field for
the machine learning community.

*e algorithm implemented can be the basis for several
future extensions. More specifically, some extensions and
variations to the classification algorithm could be applied to
investigate system behavior in cases of adversarial examples.
*e function could also be investigated by adding predefined
weight tables containing weights depending on the weight of

0.0 0.2 0.4 0.6 0.8 1.0

Perfectly calibrated
Proposed classifier

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

os
iti

ve
s

Figure 7: Reliability curves.

Class 0
Class 1
Baseline

0.0

0.2

0.4

0.6

0.8

1.0

G
ai

n

1.00.80.60.40.20.0
Percentage of sample

Figure 8: Gains curves.

0.98

0.96

0.94

0.92

0.90

0.88

0.86

Sc
or

e

2 4 6
Actual_estimator__max_depth

8 10

Training score
Cross validation score

Figure 9: Training and validation curves.

10 Security and Communication Networks

the feature in the classification process, to implement the
proposed system faster and more quickly. An additional
feature that could be added to the classification algorithm is a
function for transferring data to even larger dimensions to
create different correlations between data and categorization
patterns. Finally, another point of research could be the
addition of a feature reduction process for the more efficient
operation of the proposed Artificial Evolutionary Fuzzy
LSTM Immune System.

Data Availability

*e data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is research work was supported by the MOE (Ministry of
Education in China) Liberal Arts and Social Sciences
Foundation (No. 17YJCZH157). It was also supported by the
Innovation Team of Guangdong Provincial Department of
Education (2018KCXTD031).

References

[1] I. F. Mikhalevich and V. A. Trapeznikov, “Critical infra-
structure security: alignment of views,” in Proceedings of the
2019 Systems of Signals Generating and Processing In the Field
of on Board Communications, pp. 1–5, Moscow, Russia,
March 2019.

[2] E. Raff, J. Sylvester, and C. Nicholas, “Learning the PE header,
malware detection with minimal domain knowledge,” in
Proceedings of the 10th ACM Workshop on Artificial Intelli-
gence and Security, pp. 121–132, Dallas, TX, USA, November
2017.

[3] T.-Y.Wang, C.-H.Wu, and C.-C. Hsieh, “Detecting unknown
malicious executables using portable executable headers,” in
Proceedings of the 2009 Fifth International Joint Conference on
INC, IMS and IDC, pp. 278–284, Seoul, South Korea, 2009.

[4] A. Kumar, K. S. Kuppusamy, and G. Aghila, “A learning
model to detect maliciousness of portable executable using
integrated feature set,” Journal of King Saud University
Computer and Information Sciences, vol. 31, no. 2, pp. 252–
265, 2019.

[5] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,
“BotHunter: detecting malware infection through IDS-driven
dialog correlation,” in Proceedings of the 16th {USENIX} Se-
curity Symposium ({USENIX} Security 07), pp. 1–16, August
2007, https://www.usenix.org/conference/16th-usenix-security
-symposium/bothunter-detecting-malware-infection-through-
ids-driven.

[6] L. Chen, T. Li, M. Abdulhayoglu, and Y. Ye, “Intelligent
malware detection based on file relation graphs,” in Pro-
ceedings of the 2015 IEEE 9th International Conference on
Semantic Computing (IEEE ICSC 2015), pp. 85–92, Anaheim,
CA, USA, February 2015.

[7] L. Garcia, F. Brasser, M. Cintuglu et al., “My malware knows
physics! attacking PLCs with physical model aware rootkit,” in
Proceedings of the 2017 Network and Distributed System Se-
curity Symposium, March 2017.

[8] R. Vyas, X. Luo, N. McFarland, and C. Justice, “Investigation
of malicious portable executable file detection on the network
using supervised learning techniques,” in Proceedings of the
2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pp. 941–946, Lisbon, Portugal, May 2017.

[9] A. Borkar, A. Donode, and A. Kumari, “A survey on intrusion
detection system (IDS) and internal intrusion detection and
protection system (IIDPS),” in Proceedings of the 2017 In-
ternational Conference on Inventive Computing and Infor-
matics (ICICI), pp. 949–953, Coimbatore, India, November
2017.

[10] S. Aldhaheri, D. Alghazzawi, L. Cheng, B. Alzahrani, and
A. Al-Barakati, “DeepDCA: novel network-based detection of
IoT attacks using artificial immune system,” Applied Sciences,
vol. 10, no. 6, p. 1909, 2020.

[11] M. S. Ejaz, M. R. Islam, M. Sifatullah, and A. Sarker,
“Implementation of principal component analysis on masked
and non-masked face recognition,” in Proceedings of the 2019
1st International Conference on Advances in Science, Engi-
neering and Robotics Technology (ICASERT), pp. 1–5, Dhaka,
Bangladesh, May 2019.

[12] G. Memmi, K. Kapusta, and H. Qiu, “Data protection:
combining fragmentation, encryption, and dispersion,” in
Proceedings of the 2015 international Conference on cyber
Security of smart cities, Industrial Control System and Com-
munications (SSIC), pp. 1–9, Chengdu, China, August 2015.

[13] R. Alshammari and A. Nur Zincir-Heywood, “Identification
of VoIP encrypted traffic using a machine learning approach,”
Journal of King Saud University Computer and Information
Sciences, vol. 27, no. 1, pp. 77–92, 2015.

[14] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and
K.-K. R. Choo, “A deep recurrent neural network based
approach for internet of things malware threat hunting,”
Future Generation Computer Systems, vol. 85, pp. 88–96, 2018.

[15] G.W. Litman, J. P. Cannon, and L. J. Dishaw, “Reconstructing
immune phylogeny: new perspectives,” Nature Reviews Im-
munology, vol. 5, no. 11, pp. 866–879, 2005.

[16] E. Guillen and R. Paez, “Artificial immune systems—AIS as
security network solution,” in Bio-InspiredModels of Network,
Information, and Computing Systems, J. Suzuki and
T. Nakano, Eds., vol. 87, pp. 680-681, Springer, Berlin,
Germany, 2012.

[17] M. Read, P. S. Andrews, and J. Timmis, “An introduction to
artificial immune systems,” in Handbook Of Natural Com-
puting, G. Rozenberg, T. Bäck, and J. N. Kok, Eds., Springer,
Berlin, Germany, pp. 1575–1597, 2012.

[18] H. Park, J. E. Choi, D. Kim, and S. J. Hong, “Artificial immune
system for fault detection and classification of semiconductor
equipment,” Electronics, vol. 10, no. 8, p. 944, 2021.

[19] C.-Y. Chang, Y.-C. (Angel) Lu, W.-C. Ting, T.-W. D Shen,
and W.-C. Peng, “An artificial immune system with bootstrap
sampling for the diagnosis of recurrent endometrial cancers,”
Open Medicine, vol. 16, no. 1, pp. 237–245, 2021.

[20] S. F. Rosenblatt, J. A. Smith, G. R. Gauthier, and L. Hébert-
Dufresne, “Immunization strategies in networks with missing
data,” PLoS Computational Biology, vol. 16, no. 7, Article ID
e1007897, 2020.

[21] D. A. B. Fernandes, M. M. Freire, P. A. P. Fazendeiro, and
P. R. M. Inácio, “Applications of artificial immune systems to

Security and Communication Networks 11

https://www.usenix.org/conference/16th-usenix-security-symposium/bothunter-detecting-malware-infection-through-ids-driven
https://www.usenix.org/conference/16th-usenix-security-symposium/bothunter-detecting-malware-infection-through-ids-driven
https://www.usenix.org/conference/16th-usenix-security-symposium/bothunter-detecting-malware-infection-through-ids-driven

computer security: a survey,” Journal of Information Security
and Applications (JISA), vol. 35, pp. 138–159, 2017.

[22] M. Tabatabaefar, M. Miriestahbanati, and J.-C. Gregoire,
“Network intrusion detection through artificial immune
system,” in Proceedings of the 2017 Annual IEEE International
Systems Conference (SysCon), pp. 1–6, IEEE, Montreal, QC,
Canada, April 2017.

[23] R. Pump, V. Ahlers, and A. Koschel, “Evaluating artificial
immune system algorithms for intrusion detection,” in Pro-
ceedings of the 2020 FourthWorld Conference on Smart Trends
in Systems, Security and Sustainability (WorldS4), pp. 92–97,
IEEE, London, UK, July 2020.

[24] R. Harang and E. M. Rudd, “SOREL-20M: a large scale
benchmark dataset for malicious PE detection,” 2020, http://
arxiv.org/abs/2012.07634.

[25] Namita and Prachi, “PE file-based malware detection using
machine learning,” in Proceedings of the International Con-
ference on Artificial Intelligence and Applications, pp. 113–123,
Singapore, 2021.

[26] A. Sharma and D. Sharma, “Clonal selection algorithm for
classification,” in Proceedings of the Artificial Immune Sys-
tems—10th International Conference, pp. 361–370, Springer,
Cambridge, UK, July 2011, Lecture Notes in Computer
Science.

[27] X. Wang, A. S. Deshpande, G. B. Dadi, and B. Salman,
“Application of clonal selection algorithm in construction site
utilization planning optimization,” Procedia Engineering,
vol. 145, pp. 267–273, 2016.

[28] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimedia Tools and
Applications, vol. 80, no. 5, pp. 8091–8126, 2021.

[29] Y. Yuan, W. Wang, and W. Pang, “A genetic algorithm with
tree-structured mutation for hyperparameter optimisation of
graph neural networks,” 2021, http://arxiv.org/abs/2102.
11995.

[30] J. Liu, Z. Zhang, F. Chen, S. Liu, and L. Zhu, “A novel hybrid
immune clonal selection algorithm for the constrained cor-
ridor allocation problem,” Journal of Intelligent
Manufacturing, vol. 31, no. 8, 2020.

[31] V. Losing, B. Hammer, and H. Wersing, “KNN classifier with
self adjusting memory for heterogeneous concept drift,” in
Proceedings of the 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 291–300, IEEE, Piscataway, NJ,
USA, December 2016.

[32] M. Roseberry, A. Cano, and B. Krawczyk, “Multi-label KNN
classifier with self adjusting memory for drifting data
streams,” ACM Transactions on Knowledge Discovery from
Data, vol. 13, no. 6, pp. 1–31, 2019.

[33] A. Abolfazli and E. Ntoutsi, “Drift-aware multi-memory
model for imbalanced data streams,” in Proceedings of the
2020 IEEE International Conference on Big Data (Big Data),
pp. 878–885, Atlanta, GA, USA, December 2020.

[34] N. S. Malinović, B. B. Predić, and M. Roganović, “Multilayer
long short-term memory (LSTM) neural networks in time
series analysis,” in Proceedings of the 2020 55th International
Scientific Conference on Information, Communication and
Energy Systems and Technologies (ICEST), pp. 11–14, IEEE,
Niš, Serbia, September 2020.

[35] J. Zhang, Y. Zeng, and B. Starly, “Recurrent neural networks
with long term temporal dependencies in machine tool wear
diagnosis and prognosis,” SN Applied Sciences, vol. 3, no. 4,
p. 442, 2021.

[36] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an
analysis of security issues, challenges, and open problems in

the internet of things,” in Proceedings of the 2015 IEEE World
Congress on Services, pp. 21–28, New York, NY, USA, June
2015.

[37] “Gibbs sampling - an overview | ScienceDirect topics.” https://
www.sciencedirect.com/topics/economics-econometrics-
and-finance/gibbs-sampling (accessed May 24 2021)..

[38] S. Triantafillou, F. Jabbari, and G. Cooper, “Causal Markov
boundaries,” 2021, http://arxiv.org/abs/2103.07560.

[39] H. S. Farahani, A. Fatehi, and M. A. Shoorehdeli, “Between-
domain instance transition via the process of Gibbs sampling
in RBM,” 2020, http://arxiv.org/abs/2006.14538.

[40] R. Van de Schoot, S. Depaoli, R. King et al., “Bayesian statistics
and modelling,”Nature ReviewsMethods Primers, vol. 1, no. 1,
pp. 1–26, 2021.

[41] M. Jezewski, R. Czabanski, and J. Leski, “Introduction to fuzzy
sets,” inIeory and Applications of Ordered Fuzzy Numbers: A
Tribute to Professor Witold Kosiński, P. Prokopowicz,
J. Czerniak, D. Mikołajewski, Ł. Apiecionek, and D. Śl zak,
Eds., Springer International Publishing, Cham, Germany,
pp. 3–22, 2017.

[42] A. Imtiaz, U. Shuaib, H. Alolaiyan, A. Razaq, andM. Gulistan,
“On structural properties of -complex fuzzy sets and their
applications,” Complexity, vol. 2020, Article ID e2038724, ,
2020.

[43] R. Tansuchat, U. Pham, and C. Van Le, “On soft computing
with random fuzzy sets in econometrics and machine
learning,” Soft Computing, vol. 25, no. 12, pp. 7745–7751,
2021.

[44] “VirusShare.com”. https://virusshare.com/(accessed May 24
2021).

[45] “Google Colaboratory”. https://colab.research.google.com/
notebooks/(accessed May 24 2021).

[46] P. Flach, “Performance evaluation in machine learning: the
good, the bad, the ugly, and the way forward,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 9808–9814, 2019.

[47] J. Barker, “Malware detection in executables using neural
networks,” 2017, https://developer.nvidia.com/blog/malware-
detection-neural-networks/.

12 Security and Communication Networks

http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/2102.11995
http://arxiv.org/abs/2102.11995
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/gibbs-sampling
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/gibbs-sampling
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/gibbs-sampling
http://arxiv.org/abs/2103.07560
http://arxiv.org/abs/2006.14538
https://virusshare.com/
https://colab.research.google.com/notebooks/
https://colab.research.google.com/notebooks/
https://developer.nvidia.com/blog/malware-detection-neural-networks/
https://developer.nvidia.com/blog/malware-detection-neural-networks/

