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With the development of IoT devices, wearable devices are being used to record various types of information. Wearable IoT
devices are attached to the user and can collect and transmit user data at all times along with a smartphone. In particular, sensitive
information such as location information has an essential value in terms of privacy, and therefore some IoT devices implement
data protection by introducing methods such as masking. However, masking can only protect privacy to a certain extent in logs
having large numbers of recorded data. However, the effectiveness may decrease if we are linked with other information collected
from within the device. Herein, a scenario-based case study on deanonymizing anonymized location information based on logs
stored in wearable devices is described. As a result, we combined contextual and direct evidence from the collected information. It
was possible to obtain the result in which the user could effectively identify the actual location. +rough this study, not only can a
deanonymized user location be identified but we can also confirm that cross-validation is possible even when dealing with
modified GPS coordinates.

1. Introduction

With the development of IoT devices, the intimacy between
device users and devices has increased. Previously, IoT
devices were strongly perceived as being complex and dif-
ficult to use. Typical examples are wearable IoT devices,
intelligent buildings, and smart cities. However, there are
pros and cons to the development of such devices. Although
IoT technology has made people’s lives easier and more
prosperous, there may be privacy issues with the informa-
tion collected through such IoT devices [1]. In particular,
sensors possessed by IoT devices will become more refined
and diversified, and more diverse information will be ex-
changed through high-performance networks. Under this
situation, in the case of a wearable device attached to a
person 24 h a day, there is a much greater possibility of
infringing on privacy. In line with this idea, wearable device
manufacturers try to collect only the minimum amount of
data necessary for a service by using anonymization tech-
niques to prevent possible invasion of privacy of the data
they collect [2]. In this paper, a method for deanonymizing

anonymized location information is described using a sce-
nario studied based on an IoTdevice investigation. +rough
four scenarios, the location information, which is sensitive
information among the personal information of users, was
collected or reprocessed for the development of meaningful
data.

+e structure of this thesis is as follows: Section 1 de-
scribes the direction of this research. In Section 2, we de-
scribe related studies on data analysis and data privacy
processing methods for wearable IoT devices. Section 3
describes the experimental methodology used. In Section 4,
case studies conducted based on the methodology described
in Section 3 are detailed. Section 5 presents the significance
and limitations of the experiments and follow-up studies and
provides some concluding remarks.

2. Related Works

IoT devices are closely related to available devices and their
need in people’s lives; therefore, their analysis is becoming
more critical. In particular, in the case of a wearable device, a
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user carries the device along with a smartphone at all times,
which collects various logs. Based on this perspective, many
studies have investigated the internal information of
wearable devices.

In particular, Kasukurti and Patil [3] presented a
methodology for investigating wearable devices along with a
case study. In this study, data such as geolocation infor-
mation, the user’s physical and health information, activity
logs, account details of social media interaction, calendar
details, media files, key generation mechanisms, and Key-
Gen logs can be gathered. We can assert the practicality of a
wearable device based on data.

In [4], an investigation method was conducted on three
devices: Fitbit, Garmin, and HETP watches, all of which are
popular low-cost devices. +e methods for collecting fo-
rensic data through these devices are sound, and the
identification of files of interest and location data on such
devices has been studied.

In [5], the authors conducted a case study on a
TomTom Spark 3 device. After installing the application
on a companion Android-based device, the authors
confirmed that data such as the device information, past
user activities, and audio files could be acquired through
an analysis.

Yoon and Karabiyik [6], Almogbil et al. [7], and
Almogbil et al. [8] conducted a study using Fitbit, which is a
wearable device. Fitbit supports functions such as the GPS
itself. In addition, there is a possibility of manipulated or
altered GPS-tracked activities, and thus there is a need for an
open-source tool for dealing with sensitive information such
as social media message notifications, credit card infor-
mation, and health-related data. Fitbit saved this kind of data
as plaintext. However, some other devices have stored
sensitive information with masking or encryption to protect
user privacy.

In [9], the authors researched sensitive information
stored in wearable devices. +ey used a Samsung Gear S3,
which is also a device used in a study by Becirovic and
Mrdovic [10]. +e authors confirmed that some data, in-
cluding SMS messages and information, are stored on
companion devices, determining the device owner’s con-
textual environment. Baggili et al. [11] and Hassenfeldt et al.
[12] also established a research methodology for wearable
devices.

To understand the subtle nature of an insider threat, this
paper reviews previous studies in this area. It examines the
different types of insider threats based on insider charac-
teristics and activities. Moreover, it explores sensors that can
detect insider threats in an automated manner and the
public datasets available for research. Finally, it examines the
detection approaches used in related studies from various
perspectives. In particular, IoTdevices are the main threat to
insider detection [13].

Because mobile devices are used in various areas, the risk
of cyberattacks targeting them is becoming critical. In this
paper, a threat intelligence evaluation is proposed for mobile
malware from the viewpoint of situational awareness
through the extraction of features that can detect Android
malware using machine learning [14].

Location spoofing is a problem in mobile devices. In the
present experiment, the authors used the Bluetooth dis-
covery functionality to collect information about nearby
devices and learn about the surrounding environment,
which can be used to verify the genuineness of the GPS data.
From this perspective, we are trying to discover masked
location GPS data [15].

Because the problem of SCA in IoT devices has in-
creased, the trends of SCAs used in such devices are in-
troduced in this paper, and the urgency of developing
countermeasures to single-trace attacks that only use side-
channel information is suggested [16].

In addition, we consider deanonymization for a broader
approach. +is paper proposes an inference attack that can re-
identify anonymous mobility data. +e attack is based on a
mobility model called the mobility Markov chain (MMC).
Gambs et al. designed several distances between MMCs to
evaluate their impact on anonymization. Experiments on real
datasets demonstrate the efficiency of the attack. +e results
showed that anonymizing mobility data is a difficult task [17].

+ese studies collected various types of data, and the
research methodologies described wearable devices. In some
cases, devices such as Fitbit store sensitive information using
plain text with a high risk of privacy violation, whereas
devices such as Samsung Gear S3 partially mask the in-
formation using GPS. +is study attempted to re-identify
attempts to process such sensitive information, such as
through masking.

3. Methodology

3.1. Scenario. We used a specific scenario for the case study
because the primary target data in the study are location in-
formation, which establishes a situation in which location in-
formation can be sensitive. We got inspired from a famous
cyber competition in South Korea. With the outbreak and
spread of COVID-19 in 2021, the concept of a “self-quarantine”
began to emerge. In South Korea, a law was enacted by which a
person suspected of being infected with COVID-19 cannot
leave the house for two weeks and must have their symptoms
observed [18]. Under this scenario, Alice wants to go to the
movie theatre to eat something using only a wearable device
while leaving her smartphone at home. Law enforcement au-
thorities can investigate such cases and track the self-quarantine
location. Figure 1 shows some content related to the intro-
ductory part of the scenario. Based on this situation, an attempt
was made to re-identify the masked location information in the
wearable device.

3.2. Experimental Environment. +e device used for the
experiment was a Samsung Gear S3, and information about
its companion device is shown in Figure 2. As previously
confirmed in the related works section, we confirmed that
some devices such as the Fitbit store sensitive location in-
formation such as GPS in plain text. +e related information
can be checked, as shown in Figure 3. Moreover, we executed
a python-based anonymizer to generate masked sensitive
anonymized data.
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3.3. IoT Device Investigation. +e device investigation used in
this study utilized the tools applied in digital auditing. +e
SamsungGear S3 used in the scenario applies to TizenOS based
on Android. +e most commonly used file format for exam-
ining Android devices is the SQLite format [19]. In addition,
various third-party applications running on Tizen OS use
WebView independently [9]. To this end, we used the WEFA
tool to analyze web-related artifacts and cache data. In addition,
we conducted an investigation and deanonymization of
wearable IoT devices and used basic Linux commands such as
cat, grep, and awk for a log analysis [20].

In addition, before proceeding with the case study,
classification was carried out using the concept of generating

and storing evidence based on the Criminal Procedure Act of
the Republic of Korea [21]. Generic evidence is data auto-
matically generated by a system or application and is evi-
dence with relatively little human intervention. Typical
examples of its creation include web cache logs, system logs,
and event-related logs. Archival evidence is data created to
express a person’s thoughts or feelings, representative ex-
amples of e-mails, SMSs, posts, or photographs. In this
study, the generated evidence was directly related to the
user’s location information. +is is called direct evidence.
+e archived evidence is indirectly related to the user’s
location information; therefore, only contextual evidence
can be known.

Figure 2: Information about wearable and companion devices.

Figure 1: Scenario setup with e-mail.

Figure 3: Example of sensitive anonymized data.
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+e process of the IoT device investigation is shown in
Figure 4. We considered masking-based anonymization
techniques and encryption, which make it harder to identify
specific users.

3.4. IoT Data Acquisition Investigation. +e Android Debug
Bridge (ADB) was used to acquire data from the Galaxy Gear
S3. Because Tizen OS has components of Android, data can
be collected using the pull function of the ADB [22]. +e
collection was generated only under the/data folder related
to the user’s behavior and the integrity of the collected data,
which we can ensure using ad1 of FTK Imager [23].

4. Case Studies

4.1. Contextual Evidence (Personal E-Mail). Based on this
scenario, we assumed that Alice escaped self-quarantine to
meet Charlie; it is shown in Figure 5.We checked this type of
data through an e-mail record. We determined the e-mail
log using an SQLite database labeled/com.samsung.wemail/
data/dbspace/.wemail.db. Alice received that e-mail and
asked whether she had left her self-quarantine to go to a
movie theatre for something to eat, which remains the limit
of the contextual evidence. However, she later stated that she
could serve as background knowledge that she could use
direct evidence.

4.2.ContextualEvidence (MapApplicationandWebBrowser).
As shown in Figure 6, we confirmed that the device owner
executed the GoogleMaps application by checking the given
wearable device. An artifact labeled/usr/home/owner/ap-
plications/dbspace/.context-app-history.db contains the
history of the applications executed in TizenOS in SQLite
format.

In addition to the previously checked wemail, we can
check the execution traces related to the Gearbrowser and
Google Map. Google Map-related information can be found
in/usr/home/owner/apps_rw/Eb12CGjuFc and/usr/apps/
Eb12CGjuFc. After checking the directory structure before
running the analysis, we can estimate that it operates based
on chromium by checking the folder called chromium-efl, as
shown in Figure 7 [24].

Next, as a result of a string search for files in the folder
using the command, data estimated as GPS coordinates
could be obtained in Figure 8.

In addition, by examining the cache data using Chro-
meCacheView, as shown in Figure 9, it is possible to check
the search history of some GPS coordinates (37.535180,
126.903378) and the search near subway station.

To analyze the Gearbrowser log in the same way,/usr/
apps/com.fin10.tizen.gearbrowser and/usr/home/owner/
apps_rw/com.fin10.tizen.gearbrowser were targeted; it is
shown in Figure 10.

As a result of checking the search history and string,
traces related to CGV, a Korean movie brand, were found in
Mok-dong. We cannot provide direct evidence due to
contextual evidence’s limitation, but it can act as back-
ground knowledge for use as future direct evidence.

4.3. Direct Evidence (Anonymized GPS Coordinates). +e
GPS data recorded in the device, that is, the system log
related to the coordinates, leave a record of the location of
the actual device, independent of user actions, such as the
map, mail application, and web applications, which we
looked at previously. We found GPS-related coordinates on
TizenOS Gear S3 in/usr/data/location/dump_gps.log. Only
those corresponding to the coordinate data were extracted
separately using regular expressions and grep.+e extraction
results are as shown in Figure 11.

In Gear S3, we have seen that every even number of digits
of the GPS coordinates is masked. +rough the analysis of
4.1 and 4.2, we can infer that the relevance to Seoul, Korea, is
high. In Seoul, Korea, the range is from longitude 37.715133
to 37.413294 and latitude 126.734086 to 127.269311. We
observed that the first masked numbers of latitude and
longitude were 7 and 2, respectively.

Because the GPS log is data from the GPS sensor, there
may be errors in the GPS values depending on the sur-
rounding environment and situation [25]. To prevent risk
owing to such errors, we attempted deanonymization using
data up to the second masking, which is far from the error
range. As a result of checking the statistics based on the
masked number, we observed almost no change in latitude
and longitude except on 5/22, the day in which the indi-
vidual escaped self-isolation, as shown in Figure 12.

In particular, checking the GPS masked based on the
e-mail timeframe (after 2 pm) conducted in 4.1 on May 22,
the individual was estimated to have escaped self-isolation,
which we confirmed through the highest number occurring
for the situation about Alice. We confirmed this through
contextual evidence. +e related images are shown in
Figure 13.

It is not easy to specify the original GPS log owing to
the masking of the original system log. However, we
succeeded in deanonymizing the location visited by the
actual user by correlating the information on the country
where the incident occurred.

4.4. Direct Evidence (WI-FI SSID Names). We can check the
logs related to the Wi-Fi connection in/usr/data/snlp/
snlp_dump on TizenOS. In particular, a list of searched APs
related to the Wi-Fi search is shown. In many stores and
subway stations, the name of theWi-Fi connection is the name
of the store or subway station. In general, the Wi-Fi range is
approximately 50–100m. We can estimate that the user’s
device exists within 1 of 100 locations, the location of which can
be determined using the store name or subway station that
appears on the SSID [26]. We can infer this from the current
location through/usr/data/snlp/snlp_dump, which records the
SSID search result, as shown in Figure 14. In addition, awk and
grep were used to extract related logs from/usr/data/snlp/
snlp_dump. Subsequently, cases that could identify the actual
location using heuristics were confirmed.

+e first case is the location identified when contextual
evidence is used with other evidence. Under this scenario,
we confirmed through the Wi-Fi search, log-based on
circumstantial evidence that we determined through the
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Figure 4: Research process of IoT device investigation.

Figure 5: Information regarding Alice’s appointment.

Figure 6: Application execution log.
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Figure 7: Structure of folder data (Google Maps).

Figure 8: Results of string search in Google Maps folder.

Figure 9: Web cache result.

Figure 10: Related information about Gearbrowser.

Figure 11: Extracted masked location data.
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.pref of Google Maps, that the device exists in the cor-
responding location, which indicated transportation in-
frastructure (KTX), as shown in Figure 15.

At approximately 17 : 34, we inferred that the device
was passed near Kwanghwamoon Station. However, the
error range was too broad with a masked GPS log, and we

could not conduct cross-validation. In the dean-
onymization method using the SSID name, we found that
the location specification was not as precise as in the
anonymized GPS data. However, we found a case in which
location identification was sufficiently possible when
combined with contextual evidence.

Figure 12: Statistics about masked location log (day by day).

Figure 13: Deanonymization result on GPS coordinates.

Figure 14: Deanonymization result with SSID name and GPS coordinates.

Figure 15: Location detection based on SSID names.
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5. Conclusions

+is paper presented a deanonymization method for loca-
tion information in an anonymized wearable IoT environ-
ment. As expected from the existing related studies on
wearable devices, we checked various records related to user
behavior and a system log. We conducted a case study using
these user behavior data by building a scenario that could
occur with an actual IoT device in the current COVID-19
environment, which is a hot topic.

In the case study, we divided the data collected from a
Samsung Gear S3 into contextual evidence based on user
behavior and direct evidence related to the system logs. We
found contextual evidence, e-mail data, and application data.
+rough an email, users can exchange information such as a
promise to go to a specific place. Such evidence is consistent
with the nature of contextual evidence. +ere is a limitation
in that which is necessary to determine whether the user
went to the location separately. We stated that only an
appointment had beenmade and that it had not occurred. As
traces related to the application, searching for information
about movie theaters through the map application and the
Internet was found. +ese traces are also data related to
searching for a route, and there is a limitation in which they
cannot be used as direct evidence that the actual user went to
the location.

However, this does not mean that contextual evidence is
meaningless. We used contextual evidence and direct evi-
dence as a later case study. First, through anonymization,
GPS coordinates were set as direct evidence, and masking
was applied to the log itself, making it impossible to specify
the user’s location and path. However, based on the in-
formation obtained through contextual evidence in advance,
the location can be specified using information that the user
is in Seoul and will see a movie. In addition, contextual
evidence can help with direct evidence related to the Wi-Fi,
which is called snlp dump. Logic reinforcement was possible
through Wi-Fi SSID-based distance estimation for contex-
tual information obtained through the map application.

+is case study examined the meaning of contextual and
direct evidence collected through wearable devices. From the
perspective of direct evidence, if privacy such as masking is
not processed, it can be used as the most powerful type of
intelligence. However, in the case of masking, as in the
current scenario, contextual evidence is indispensable. In
addition, when using such a GPS manipulation application,
if we conduct cross-verification with contextual evidence, we
can also characterize whether the attacker applied actual
GPS data.

However, the argument in this study has certain limi-
tations. First, we found that it was impossible to generalize
the results because only one type of wearable device was
masked. However, regardless of the masking process, there
are ways in which contextual and direct evidence can be used
sufficiently as a general approach. Moreover, to apply these
methodologies, there must be a guarantee that no log loss or
manipulation exists during the collection phase [27].

In future research, we plan to anonymize sensitive in-
formation in anonymized IoT devices. In particular, in this

paper, geolocation is limited as sensitive information;
however, we intend to research more diverse devices and
sensitive information in future research.
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