
Research Article
EdgeServerPlacement for ServiceOffloading in Internet ofThings

Rong Ma

Basic Teaching Department, Nanjing University Jinling College, Nanjing, 210089, China

Correspondence should be addressed to Rong Ma; 030239@jlxy.nju.edu.cn

Received 6 August 2021; Revised 6 September 2021; Accepted 13 September 2021; Published 30 September 2021

Academic Editor: Xuyun Zhang

Copyright © 2021 Rong Ma.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of the Internet of)ings, a large number of smart devices are being connected to the Internet while
the data generated by these devices have put unprecedented pressure on existing network bandwidth and service operations. Edge
computing, as a new paradigm, places servers at the edge of the network, effectively relieving bandwidth pressure and reducing
delay caused by long-distance transmission. However, considering the high cost of deploying edge servers, as well as the waste of
resources caused by the placement of idle servers or the degradation of service quality caused by resource conflicts, the placement
strategy of edge servers has become a research hot spot. To solve this problem, an edge server placement method orienting service
offloading in IoTcalled EPMOSO is proposed. In this method, Genetic Algorithm and Particle SwarmOptimization are combined
to obtain a set of edge server placements strategies, and Simple Additive Weighting Method is utilized to determine the most
balanced edge server placement, which is measured by minimum delay and energy consumption while achieving the load balance
of edge servers. Multiple experiments are carried out, and results show that EPMOSO fulfills the multiobjective optimization with
an acceptable convergence speed.

1. Introduction

Internet of)ings (IoT) is a network that connects any
object to the Internet through sensors to realize intelligent
identification, tracking, and control. With the rapid devel-
opment of information technology, the IoT is playing an
increasingly important role in daily life [1–3]. In recent
years, with the popularity of smart mobile devices and the
explosion of computationally intensive mobile applications,
the lack of computing resources of smart mobile devices and
sensors cannot guarantee the real-time processing of these
computationally intensive tasks [4, 5]. As a strategy to al-
leviate the pressure on computing resources, cloud com-
puting is introduced into the IoT [6–8].)e data collected by
sensors or computing-intensive tasks from smart devices are
transmitted to a cloud platform with powerful storage and
computing capabilities, where the computation results can
be stored in the cloud for subsequent operations [9, 10].

However, considering long distance between sensors and
cloud platform, the transmission delay is unacceptable in
some services, like the real-time identify, track, and control
[5, 11]. To reduce the transmission delay and improve the

quality of service and user experience, edge computing is
introduced to reduce the delay and realize real-time control
with edge servers, which are closer to user devices. In detail,
edge service technology assigns computing and storage
capabilities to edge servers and provides edge services with
lower latency and better user experience [12, 13].

In most of the existing edge computing research, re-
searchers are more inclined to focus on the process of
migrating tasks to the edge server under the premise that the
edge server has been deployed. In this process, service
providers tend to deploy small number of edge servers for
the high price of edge servers and environmental reasons
[14, 15]. However, fewer studies are focusing on the layout of
edge servers on the effect of edge services while the location
of edge servers has a crucial impact on latency [15]. Inef-
ficient edge server layout will cause unacceptable latency and
make poor quality of user experience.)erefore, it is nec-
essary to design an efficient edge server layout strategy to
ensure the quality of edge services [16]. Not only that, edge
servers are not always deployed around the sensors, and it is
also necessary to ensure that the data from relatively far away
sensors can be processed in time. In addition, to ensure the

Hindawi
Security and Communication Networks
Volume 2021, Article ID 5109163, 16 pages
https://doi.org/10.1155/2021/5109163

mailto:030239@jlxy.nju.edu.cn
https://orcid.org/0000-0003-3252-4928
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5109163

quality of edge services and the stability of the edge server
system and avoid excessive load on some edge servers while
other edge servers are not fully utilized, it is urgent to achieve
overall load balancing of edge servers. Considering the above
requirements, it is a challenge to find an edge server layout
strategy that can realize real-time control and guarantee the
overall edge service quality.

To solve above challenges, an edge server placement
strategy is designed , which aims to reduce the delay in the task
transmission and the energy consumption of the edge servers.
Specially, the main contributions can be concluded as follows:

(i) We propose an edge server placement method
named EPMOSO in which Genetic Algorithm and
Particle Swarm Optimization are effectively com-
bined to obtain a set of placement strategies, and
most balanced edge server placement considering
delay and energy consumption is determined by
Simple Additive Weighting Method.

(ii) Several experiments have been carried out, and re-
sults prove that the method achieves multiobjective
optimization with acceptable convergence speed.

)e rest of the article is organized as follows: Section 2
describes the related work. In Section 3 and Section 4, an
edge computing system model for offloading services under
the IoT environment and the layout strategy of edge servers
are described. Massive experiments are conducted in Section
5. In Section 6, we conclude this article.

2. Related Work

In this section, the related work is divided into two parts: (1)
disadvantages of cloud computing remote services solved by
edge server placement, and (2) research status of edge service
placement and service offloading:

(1) A large amount of data generated by sensors and
devices in the IoT needs to be processed and stored.
However, the central data center cannot meet such
high demand for processing and storage resources
[17, 18], introducing cloud computing into the IoT,
which brings new changes to the data processing and
storage. Hong et al. [19] studied whether the cloud
system in the IoT can provide a unified platform for
the continuous processing of complex data, analyzed
the requirements for the engineering design of the
IoT cloud system, and discussed the main engi-
neering principles that need to be implemented.
Dinh et al. [20] proposed an interactive model that
integrates location-based IoT and cloud services to
process cloud computing applications. In this model,
the IoTcloud system provides sensing services based
on mobile users’ interests and locations. In addition,
in response to the problem of privacy leakage in data
transmission in the IoT, Christos et al. [21] inte-
grated the IoTcloud platform and big data and built a
security wall between the cloud server and the In-
ternet to eliminate the problem of privacy leakage.

However, when dealing with delay-sensitive tasks,
the long delay caused by the long physical distance
between the sensor and the cloud platform is un-
acceptable, which promotes the generation and de-
velopment of edge computing to meet the needs of
these delay-sensitive tasks [22]. Edge computing
deploys Edge Servers (ES) with rich computing re-
sources and storage resources on the edge of the
network to process these delay-sensitive tasks, which
effectively reduces delays and the pressure of
transmission, and relieve the resource pressure of
sensors and equipment [23, 24]. It has become a new
trend to integrate edge computing and cloud com-
puting into the IoT to deal with many computing
tasks. Hassan et al. [25] put forward the key re-
quirements for the application of edge computing in
the IoT and discussed the scenarios where edge
computing can be applied. To improve the security
and efficiency of the IoT cloud platform, Wang et al.
[8] integrated the trust evaluation mechanism, ser-
vice template, and edge computing into the IoTcloud
platform framework.)e framework establishes a
service parameter template on the cloud platform
and establishes a service parsing template in the edge
platform to improve the efficiency of the framework
and also improves the security of the entire system
through the trust evaluationmechanism. In addition,
in order to improve the flexibility of the edge
physical network platform, Morabito et al. [26]
studied how to introduce Lightweight Virtualization
(LV) into the edge physical network platform and
discussed the challenges that must be solved first to
effectively utilize the advantages of LV.

(2))e introduction of edge computing has greatly re-
duced the delay of task transmission in the IoT.
However, when the number of tasks is at a high peak,
processing multiple delay-sensitive tasks in the same
edge server will cause additional waiting delays that
reduce the quality of edge services and bring a poor
user experience.)erefore, researchers began to work
on solving the problem of service offloading that
migrated tasks to relatively idle edge servers. Wang
et al. [27] used Dynamic Voltage Scaling (DVS) to
optimize the computing speed, transmit power, and
offload rate of smart mobile devices, thereby reducing
the energy consumption of smart mobile devices and
the time delay in task execution. Yu et al. [28] con-
sidered that when multiple mobile users offload re-
petitive computing tasks to the edge of the network,
they developed a cache-enhanced service offloading
strategy based on sharing computing results to reduce
the delay in task processing. As the subject of machine
learning becomes more and more popular, re-
searchers have also begun to study how to apply
machine learning to edge IoT systems [29–31]. Liu
et al. [28] grouped users according to priority. For
grouped users of different priorities, Markov decision
was adopted to design corresponding service

2 Security and Communication Networks

offloading strategies to reduce system costs, and the
deep Q-network was used to train the model and
determine the best service offloading strategy. San-
gaiah et al. [32] proposed a method of using machine
learning to protect the confidentiality of the user’s
location in response to the privacy leakage problem in
the process of service offloading, which improves the
security of users when using edge services.

)e current research on edge server layout strategy based
on the determined service offloading strategy are relatively
small, but it is necessary to ensure the performance of edge
services and the quality of real-time control by studying the
layout of edge servers [15].)erefore, this article proposes an
edge server layout method for offloading services in the IoT,
which aims to reduce the delay in the task transmission and
the energy consumption of the edge servers and realize the
overall load balance of the edge servers.

3. Edge Computing System Model Orienting
Service Offloading

)is section proposes an edge computing system model
orienting service offloading and gives the corresponding
computing formulas for the three optimization goals of
delay, energy consumption, and load balancing in detail.)e
symbols and descriptions of this article are shown in Table 1.

3.1. Model Design.)e edge computing model orienting
services offloading in the IoT is shown in Figure 1.

In Figure 1, the edge computing model is divided into
three levels: user layer, edge service layer, and cloud service
layer. At the user level, smart devices transfer computa-
tionally intensive tasks to sensors. At the edge service layer,
sensors S� {s1, s2, . . ., sN} are deployed to collect the
computationally intensive tasks of users in the coverage area.
A small number of edge server ES� {es1, es2, . . ., esM} are
deployed near some sensors to process the tasks collected by
the sensors and perform corresponding operations based on
the computing results to provide edge services for the de-
vices. At the cloud service layer, the cloud platform handles
tasks that require cloud services.

In this article, the delay, energy consumption, and load
variance of different edge server layouts are used to judge the
advantages and disadvantages of the edge server layout
strategy. To facilitate comparison, for different edge server
layout strategies, the sensor task transmission path deter-
mination rules are the same. After determining the mission
transmission path of all sensors, three indicators of time
delay, energy consumption, and load variance are computed.
In addition, this article assumes that the CPU of the edge
server is a single-core processor, and the configuration of
each edge server is the same.)erefore, when there are tasks
in the edge server being processed, the unprocessed sensor
tasks will enter the waiting queue of the edge server waiting
to be processed. At the same time, if a certain edge server has
a lot of load tasks, the edge server can hand over the task that
latest arrives at the edge server to an edge server that is
relatively close and has less load.

3.2. Time Delay Model.)e transmission and computing
delays of sensor tasks include the task transmission delay of
the task from the sensor to the edge server, the task processing
delay of the edge server processing the task, the task waiting
time of the task waiting in the edge server, and the return time
of server returning the computing result to the sensor. Be-
cause the sensor can only cover a certain range, the edge
server has two states: within the coverage area of the sensor
and not within the coverage area of the sensor. When there is
an edge server in the coverage area of the sensor, the sensor
directly transmits the task to the edge server.When there is no
edge server in the sensor coverage, the mission transmission
path of the sensor needs to be further determined. Using a
binary state variable Ym

n to determine whether the m-th edge
server esm is within the coverage of the n-th sensor sn,

Y
m
n �

1, esm is with in the coverage of sn,

0, otherwise,
 (1)

then the computing formula of the time for the sensor sn to
transmit the task to the server esm is as follows:

ATn � 1 − Y
m
n(· sn

m
n ·

dsn

λ
. (2)

where dsn is the data volume of the sensor sn computing task,
λ is the data transmission rate of the sensor to the sensor or
edge server, and snm

n is the number of sensors passed by the
sensor sn to the edge server esm.

)e computing formula for the time spent by the edge
server to compute the task of the sensor sn is shown in formula
(3), where cm

n is the total number of clock cycles required for
processing the task of the sensor sn in the edge server esm, and
fm is the main frequency of the edge server esm.

BTn �
c

n
m

fm′
. (3)

Because the task scheduling in the server adopts the First
Come First Service (FCFS) algorithm, the computing for-
mula for the waiting time of the task of the sensor sn in the
server is as follows:

CTn �

Zm
n

z�1
ET

m
z − ATn, (4)

where Zn
m is the number of rounds that the task of sensor sn

waits for computation in the edge server esm, and ETm
z is the

time that the edge server esm spends in the z-th round of task
computation, but the task of edge server sn does not always

Table 1: Symbols and corresponding descriptions.

Symbol Description
ES)e collection of edge servers, ES� {es1, es2, . . ., esM}
S)e collection of sensors, S� {s1, s2, . . ., sN}
Z)e number of rounds of the task in the waiting queue
ASL)e average delay of the edge server
TE Total energy consumption
ALV)e average load variance of the edge server.
K Number of chromosomes

Security and Communication Networks 3

arrive at the edge server immediately, so the waiting time of
this task needs subtracting the time delay spent in the task
transmission process.

)e computing formula for the time taken by the edge
server to return the computing result to the sensor sn is
shown in formula (5), where dsn

′ represents the task com-
puting result of the sensor sn.

DTn � 1 − Y
m
n(· sn

m
n ·

dsn
′

λ
, (5)

where Ym
n is a binary state variable, snm

n is the number of
sensors passed by the sensor sn to the edge server esm.

)erefore, the task transmission delay of the task from
the sensor to the edge server, the task processing delay of the
edge server processing the task, the task waiting time of the
task waiting in the edge server, and the result return time of
the server returning the computing result to the sensor
together constitute the task transmission delay and calcu-
lation delay of sensor sn:

STn � ATn + BTn + CTn + DTn, (6)

and then the formula for computing the average delay of all
sensor tasks is as follows:

AST �
1
N

N

n�1
STn. (7)

3.3. Energy Consumption Model. Considering that sensors
are always collecting environmental information and
transmitting tasks to the edge server, the running time of the
edge server is the key to computing energy consumption.
)e time computing formula for the service provided by the
m-th edge server esm is as follows:

SPTm �

Zm

z�1
ET

m
z , (8)

where Zm is the total number of rounds of the m-th edge
server esm computing task.

Defining ρ as the operating power of edge servers, the
basic energy consumption to keep all edge servers running
continuously is as follows:

AE �
M

m�1
SPTm · ρ(. (9)

Defining σ as the power of edge server task processing,
the energy consumption of the m-th edge server esm task
processing is as follows:

VMEm � SPTm · σ, (10)

and then the operating energy consumption of all corre-
sponding edge server computing tasks is as follows:

BE �
M

m�1
VMEm. (11)

Defining τ as the power when a single edge server is idle,
and the energy consumption of the m-th edge server esm
without task processing is as follows:

EVEm � max
m�1

M
SPTm − SPTm · σ, (12)

where the SPTm is the running time of the m-th edge server
esm, and σ is the power of edge server task processing.)en,
the corresponding energy consumption when the edge
server is idle:

CE �
M

m�1
EVEm. (13)

)erefore, the total energy consumption of the edge
server is as follows:

TE � AE + BE + CE. (14)

3.4. Load Model. Considering that load describes the
number of computing tasks in all edge servers, it is more
appropriate to use load variance to evaluate whether load

Wireless
Wired

Cloud
Platform
Edge
Server
Sensor

Edge Service
Layer

User Layer

Cloud Service
Layer

Figure 1:)e edge computing model orienting services offloading in the IoT.

4 Security and Communication Networks

balancing is achieved between edge servers. Defining a bi-
nary variable determines whether them-th edge server esm is
being occupied:

EOm �
1, edge server esm is being occupied,

0, otherwise.
 (15)

)e total number of edge servers occupied is as follows:

NE �
M

m�1
EOm. (16)

)e load of the m-th edge server esm is measured by the
number of tasks processed in esm, and the average load of the
edge server is shown in formula (17), where TPm represents
the number of tasks processed in the m-th edge server esm:

ARU �
1

NE

M

m�1
TPm. (17)

)erefore, the load variance of them-th edge server esm is
as follows:

LVm � ARU − TPm(
2
. (18)

Finally, the average load variance of all occupied edge
servers is as follows:

ALV �
1

NE

M

m�1
LVm. (19)

3.5. Problem Definition.)is article aims to minimize the
average delay in formula (7), the total energy consumption
in formula (14) and the variance of the average load in
formula (19).)e multiobjective optimization problem is
defined as

minAST,

minTE,

minALV,

s.t.m≤ n,

s.t.max
m�1

M
dsn ≤min

m�1

M

wlm,

(20)

where wlm represents the maximum processing task size of
the m-th edge server esm, and formula (21) guarantees that
the total number of edge servers is less than the total number
of sensors. In addition, formula (20) guarantees that the task
size of a single sensor is less than the maximum processing
task size of a single edge server.

4. Method of Edge Server Placement Orienting
Service Offloading

In a scenario where hundreds of sensors are densely dis-
tributed, a certain number of edge server layout strategies are
iteratively generated to minimize the delay in the service
offloading process, minimize the energy consumption of the
edge server, and balance the load of the edge server. In this

case, a low-complexity suboptimal algorithm for solving the
NP-hard problem is needed to find the optimal solution for
the edge server layout.)is article proposes an edge server
layout strategy optimization method EPMOSO based on GA
and PSO to iteratively optimize the edge server layout
strategy.

4.1. Optimizing the Edge Server Layout Strategy Based on GA.
GA is a commonly used heuristic algorithm for solving
MINLP. It is an algorithm that simulates the law of survival
of the fittest in nature to search for the optimal solution
randomly. It only requires that the problem to be solved is
computable.)e GA process is divided into four steps:
Initialization, Selection, Crossover, and Mutation.)e de-
tails of each step of GA are as follows.

4.1.1. Determination of Initialization and Task Transmission
Route. As GA simulates the law of survival of the fittest in
nature, genes and chromosomes are important optimization
objects for GA. In the process of using GA to iteratively
optimize the layout strategy of edge servers, the layout
position of a single edge server is regarded as a gene, and the
genes corresponding to the layout positions of all edge
servers together constitute a chromosome, let ESPm denote
the position of the m-th edge server and then ESP� {ESP1,
ESP2, . . ., ESPM} constitutes a chromosome. During the
initialization, each chromosome randomly assigns geo-
graphic locations to each edge server, forming an initial set
of edge server layout strategies for subsequent iterations.

Because this article studies the impact of edge server
layout on edge service quality, to compare the advantages
and disadvantages of different edge server layout strategies,
the task transmission method is determined in advance.)e
sensor transmits the task to the edge server that is the closest
physical distance to itself to reduce the task transmission
delay. A load threshold is set for the edge server to achieve
load balancing of the edge server as much as possible. When
the load of the edge server to which the sensor is to be
transmitted exceeds the load threshold, the sensor transmits
the task to the next edge server with the closest physical
distance excluding this edge server.)e task sensor path
confirmation algorithm is shown in Algorithm 1.

4.1.2. Selecting Fitness Function. In GA, the fitness function
is used to measure the adaptability of the chromosome.)e
fitness function is based on the average delay of the task
transmission process shown in formula (7), and the total
energy consumption of the edge server shown in formula
(14).)e average load variance of the edge server shown in
formula (19) is used to compute the chromosome fitness.
Tower the transmission delay, the lower the total energy
consumption of the edge server and the lower the average
load variance of the edge server, the better the server layout
strategy of the corresponding edge server.)erefore, when
solving the problem of edge server layout, the lower the
fitness of a chromosome, the more it indicates that the
chromosome has strong adaptability in the chromosomes of
this iteration.)e fitness function is defined as formulas

Security and Communication Networks 5

(23)–(26). Formula (23) represents the fitness function of
transmission delay, formula (24) represents the fitness
function of edge server energy consumption, formula (25)
represents the fitness function of edge server load balancing,
and formula (26) represents the comprehensive fitness
function of the k-th chromosome, where wd, we, and wl are
the weights of delay, energy consumption, and load bal-
ancing fitness, respectively.

After computing the fitness, GA performs selection
operations based on the adaptive capacity of each chro-
mosome. In the selection operation, the commonly used
selection algorithms include Roulette Wheel and Tourna-
ment.)e roulette algorithm puts all chromosomes into a
wheel for selection, and the probability of each chromosome
being selected is proportional to its fitness.)erefore, the
roulette algorithm is more suitable for the problem of
maximum optimization. However, the championship al-
gorithm not only requires low computing resources but also
does not need to modify the code itself when applied to the
minimum optimization problem.)erefore, this article uses
the tournament algorithm as the selection algorithm.)e
tournament algorithm will select the few chromosomes with
the strongest adaptability, that is, the lower adaptability, to
copy directly for the next iteration.

DFk �
ASKk

K
k�1 ASKk

,

EFk �
TEk

K
k�1 TEk

,

LFk �
ALVk

K
k�1 ALVk

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

AFk � wd · DF + we · EF + wl · LFk. (22)

4.1.3. Crossover and Mutation. In order to increase the
diversity of chromosomes and extend the search range of
strategies to generate better edge server layout strategies and

search for global optimal solutions and avoid falling into
local optimal solutions, GA introduces crossover and mu-
tation operations. Selection operations retain a certain
number of ancestral chromosomes, while crossover and
mutation operations are used to generate a certain number
of descendant chromosomes.

In the process of crossover, two ancestral chromosomes
are randomly selected to exchange several corresponding
genes, thereby generating two new offspring chromosomes.
When dealing with the multiobjective optimization prob-
lem, the probability of crossover is designed for the cross-
over operation, and each gene is based on the possibility of
crossover to exchange, that is, if the gene needs to be crossed,
the corresponding edge server positions of the two ancestral
chromosomes will be exchanged. If other edge servers of the
exchanged chromosomes have been deployed in the position
to be exchanged, the edge server will be reset to a new lo-
cation. An example of the crossover operation is shown in
Figure 2(a).

In the process of mutation, two ancestral chromosomes
are randomly selected, and each gene on the two chromo-
somes mutates according to the mutation probability,
thereby generating a new descendant chromosome. When
dealing with the multiobjective optimization problem, each
gene on the chromosome is mutated according to the
mutation probability, that is, if the gene needs to be mutated,
the edge server will be randomly deployed in a random
location, if other edge servers have been deployed in this new
location, then a random algorithm is used to reallocate the
location until no edge server is deployed in the location. An
example of the mutation operation is shown in Figure 2(b).

Due to the use of the PSO algorithm to optimize the
performance of the GA algorithm, to facilitate the imple-
mentation of the subsequent PSO algorithm, in addition to
the basic steps of the GA, the chromosome corresponding to
the historical minimum fitness and the historical minimum
fitness during the iteration process of the numbered chro-
mosome will also be recorded.)e corresponding chro-
mosomes are used for PSO algorithm iteration, and these
chromosomes are updated after each round of GA iteration.
Algorithm 2 describes the specific process of Genetic Al-
gorithm iterative optimization of edge server layout strategy.

Inputs: Sensor S, Edge server ES, Task threshold of ES
Output: Determined task transmission path

(1) for n� 1 to N do
(2) Find the nearest edge server esm
(3) if the number of task of edge server esm ≤ task threshold of ES then
(4) Delete esm from ES
(5) Go to step 2
(6) else
(7) Confirm that the sensor sn will transmit the task to the edge server esm
(8) Number of tasks of edge server esm+ 1
(9) end if
(10) end for
(11) return Determined task transmission path

ALGORITHM 1: Task transmission path confirmation algorithm.

6 Security and Communication Networks

4.2.Optimizing the Edge Server Layout Strategy Based on PSO.
PSO is also a heuristic algorithm commonly used to solve
MINLP. It is an intelligent population optimization algo-
rithm based on social information sharing.)e algorithm
originated from the study of the information sharing be-
havior of bird flocks during predation.)e purpose of
individuals in a flock is to search for food, but the indi-
vidual does not know the specific location of the food.
When an individual in the flock finds food, it will share the
location of food with the flock, and then, other individuals
will move in that direction. With the continuous sharing of
information, all individuals in the flock can find food. PSO
does not have the crossover and mutation operations of GA
and has the advantages of high accuracy and fast
convergence.

Particles are the optimization objects of the PSO algo-
rithm. Because this article uses PSO to optimize the per-
formance of GA, the particles of the PSO algorithm are
equivalent to the genes of GA. But to facilitate the realization
of the PSO algorithm, a speed attribute is added to the GA
gene.)erefore, the particle (gene) has two attributes: po-
sition and speed.)e position attribute of the particle
represents the layout position of a single edge server in the
current state, and the speed attribute of the particle controls
the direction and distance of the layout position of the edge
server.)e process of PSO includes two steps: initialization
and particle attribute update:

(1) Initialization: considering that PSO is used to op-
timize the convergence speed of GA, the PSO ini-
tialization part in this article cancels the initialization
of the position attributes of each particle and uses the
chromosome generated by GA iteration as input to
initialize the speed of each particle.

(2) Particle attribute update: the particles are deployed
separately in the scene, and the optimal solution
found is recorded as the individual optimal position,
and the optimal solution found in the population is

recorded as the global optimal position. To avoid the
result of the population falling into the local optimal
solution, it is necessary to adjust two attributes of
speed and position according to the global optimal
position when each particle adjusts the two attributes
of speed and position.

V
k,m
t+1 � V

k,m
t + c1 · pbestmt − X

k,m
t + c2 · gbestm − X

k,m
t , (23)

X
k,m
t+1 � X

k,m
t + V

k,m
t+1 . (24)

)e velocity and position of the particles are iterated
according to formulas (23) and (24), where Vk,m

t represents
the velocity of the m-th particle of the k-th chromosome at
the t-th iteration, and Xk,m

t represents the position of the m-
th particle of k-th chromosome. c1 and c2 are acceleration
constants, generally set to 0.5. pbestm

t represents the best
position of them-th particle in the t-th iteration, and gbestm

represents the best position of the m-th particle in the
historical iteration.

In the process of using PSO to iteratively optimize the
edge server layout strategy, each gene of the chromosome
in the iteration process adjusts its position based on the
chromosome the historical minimum fitness recorded by
GA and the historical minimum fitness during the it-
eration. Algorithm 3 describes the specific process of
using PSO to optimize GA iteratively optimized
chromosomes.

4.3. Selecting theOptimalEdgeServerLayoutStrategyBasedon
SAW. A set of optimized edge server layout strategies op-
timized by GA and PSO iteratively; the SAW decision-
making method is used to determine the final edge server
layout strategy. First, the three indicators of delay, energy
consumption, and load of the edge server layout strategy
were standardized:

Ancestral
Chromosome 1

Ancestral
Chromosome 2

ESP1 ESP2 ... ESPm ESPm+1 ... ESPM

ESP1 ESP2 ...

... ...

cross
over

Offspring
Chromosome 1

Offspring
Chromosome 2

ESP1
⌃ ESP2

⌃ ESPm⌃ ESPm+1
⌃ ESPM⌃

... ...ESP1
⌃ ESP2

⌃ ESPm ESPm+1 ESPM⌃

...ESPm⌃ ESPM⌃

(a)

ESP1

ESP1

ESPm-1 ESPm+1ESPm

ESPm ESPM

ESPM
Ancestral

Chromosome 1

Ancestral
Chromosome 2

mutation

ESPm-1
⌃ ESPm+1

⌃

(b)

Figure 2: Chromosome crossover and mutation. (a) Chromosome crossover operation. (b) Chromosome mutation operation.

Security and Communication Networks 7

DU �

ASTmax − AST
ASTmax − ASTmin

, ASTmax ≠ASTmin,

1, ASTmax � ASTmin,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

EU �

TEmax − TE

TEmax − TEmin
, TEmax ≠TEmin,

1, TEmax � TEmin,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

LU �

ALVmax − ALV
ALVmax − ALVmin

, ALVmax ≠ALVmin,

1, ALVmax � ALVmin,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where ASTmax, ASTmin, TEmax, TEmin, ALVmax, and ALVmin,
respectively, represent the highest and lowest transmission
delay of the chromosomes optimized iteratively, the energy
consumption of the edge server, and the variance of the
overall load balance of the edge server. In the standardi-
zation operation, there are two ways to compute the nu-
merator: the maximum value of the optimization index
minus the current value of the optimization index and the
current value of the optimization index minus the minimum
value of the optimization index. Taking the delay of the
transmission into account, the total energy consumption of

the edge server and the variance of the average load of the
edge server are both minimum optimization problems.
)erefore, in the standardization operation, the current
value of the optimization index is subtracted from the
maximum value of the optimization index.

After standardizing each index, the utility value of the
corresponding chromosome is computed according to the
corresponding weight of delay, energy consumption, and
load balance, as shown in formula (26), where DU, EU, and
LU are standardized values of delay, energy consumption,
and the variance of load, respectively, and wd, we, and wl are
the weights corresponding to the delay, energy consump-
tion, and variance of load, respectively.)e utility value is
used to determine whether the edge server layout strategy
corresponding to the chromosome is the optimal edge server
layout strategy. After computing the utility value, the edge
server layout strategy with the highest utility value is selected
as the final edge server layout strategy:

AU � wd · DU + wd · EU + wl · LU. (26)

4.4. Summary of theMethod. Both GA and PSO are heuristic
algorithms commonly used to solve MINLP.)e GA al-
gorithm simulates the natural phenomenon of retaining
excellent genes and eliminating genes that are not suitable
for the environment during the population iteration process,

Inputs: K chromosomes, Number of iterations T, variable t, the number of chromosomes to operate k
Output: K chromosomes after GA iteration optimization

(1) for t� 0 to T do
(2) if t�� 0 then
(3) Initialize K chromosomes
(4) else
(5) Compute the fitness of K chromosomes and select k chromosomes with lower fitness
(6) Record the chromosome with the lowest fitness
(7) Select two chromosomes randomly and perform crossover operations
(8) Select two chromosomes randomly and perform mutation operations
(9) end if
(10) end for
(11) return K chromosomes

ALGORITHM 2: Optimizing edge server layout strategy based on GA.

Inputs: K chromosomes that have been iteratively optimized by GA, Number of iterations T, Variable t
Output: K chromosomes optimized by PSO

(1) for t� 0 to T do
(2) if t�� 0 then
(3) Initialize the velocity of each particle of K chromosomes
(4) else
(5) Adjust the position of each particle according to formulas (23) and (24)
(6) end if
(7) end for
(8) return K chromosomes

ALGORITHM 3: Edge server layout strategy based on PSO.

8 Security and Communication Networks

thereby solving the target problem.)e advantage of GA is
that it can better find the global optimal solution, but its
convergence speed is slow, and a satisfactory solution can
only be obtained when the number of iterations is large.)e
advantage of the PSO algorithm is that the algorithm is
simple, and the convergence speed is fast, but it can often
only find the target solution in a limited search area, so it is
easy to fall into the local optimal solution instead of the
global optimal solution [33].)erefore, in this article, to
integrate the advantages of GA and PSO, use PSO to op-
timize GA and propose an edge server layout strategy re-
search method for offloading services in IoT, EPMOSO,
which uses GA and PSO to iteratively optimize a set of
excellent edge server layout strategy, and finally use SAW
method to determine the final edge server layout strategy.
An example of EPMOSO is shown in Figure 3.

Algorithm 4 describes the core process of EPMOSO.
Algorithm 3, taking the sensor set, edge server set, and it-
eration number as input, first randomly allocates the initial
test position for the edge server and initialize the chro-
mosomes, use the set of chromosomes as the input of GA,
and perform coarse-grained optimization.)en, selection,
crossover, and mutation are performed; the chromosome of
this iteration is used as the input of PSO, and the position of
each gene is updated. After the fine-grained optimization of
PSO, this iteration ends. Until the number of iterations is full
and output a set of optimized edge server layout strategies.
For this group of edge server layout strategies, compute its
utility value and use the SAWmethod to determine the final
edge server layout strategy.

5. Experiment Analysis

In this section, the effectiveness of EPMOSO is evaluated by
analyzing the results of comparative experiments. First,
introduce the experimental configuration of the experiment
in this article and introduce the content of the algorithm
compared with EPMOSO.)en, according to the experi-
mental results, the pros and cons of the EPMOSO and other
methods proposed in this article are analyzed from different
angles.

5.1. Experimental Configuration. In comparison experi-
ments, the effectiveness and efficiency of EPMOSO were
compared with the other algorithm in the case of different
edge server sizes.)e parameter settings of this experiment
are shown in Table 2, and the two comparison algorithms in
the experiment are shown as follows:

(1) Genetic Algorithm [33]: the genetic algorithm and
EPMOSO are used separately to compare the con-
vergence trends of the two methods to evaluate the
convergence speed of EPMOSO, to highlight that the
EPMOSOmethod still has a good convergence speed
when the global optimal solution can be found.

(2) Particle population algorithm [34] the particle
population algorithm PSO and EPMOSO are used
separately to verify whether the edge server layout

strategy iterated by EPMOSO is the global optimal
solution and highlight the advantages of EPMOSO
over PSO in solving the global optimal solution.

5.2. Comparative Analysis. In the comparative analysis, the
effectiveness of EPMOSO, GA, and PSO is analyzed from
four aspects: the delay of the transmission, the total energy
consumption of the edge server, the average load variance,
and the utility value of the edge server. In addition, the
convergence rate of the three methods is evaluated by an-
alyzing the convergence curves of the indicators of the three
algorithms in the iterative process. Finally, under different
edge server scales, the optimal solution selected by SAW
selection iteration is presented in Figure 10.

5.2.1. Comparison of Delay. In the experiment of this article,
all edge servers have the same configuration, so the task
processing speed of each edge server is the same. Under the
same edge server scale, the task processing time of the edge
server during the iteration of EPMOSO, GA, and PSO is
always the same. EPMOSO, GA, and PSO mainly optimize
the transmission time of the task and the waiting time of the
task in the edge server. In addition, because tasks have more
edge servers that are closer to each other as task transmission
options, and there is no need to migrate tasks to edge servers
that are farther away, the task transmission time will de-
crease as the number of edge servers increases. In addition,
due to the increase in the number of edge servers, the
number of tasks gathered on the same edge server is reduced,
so the waiting time of tasks in the edge server is also reduced.
In Figure 4, it can be seen from the image that when the edge
server scale is 15, 20, 25, and 30, compared with GA and
PSO, EPMOSO has a stronger ability to optimize latency.

5.2.2. Comparison of Energy Consumption. In the experi-
ment, considering that the energy consumption of a single
edge server is related to the number of tasks gathered in the
edge server and the processing time of these tasks, as the
number of edge servers increases, the number of tasks
gathered in a single edge server is relatively reduced.)e
energy consumption of the server is also relatively reduced.
Although the energy consumption of a single edge server is
relatively reduced, the increase in the number of edge servers
leads to an increase in the total energy consumption of edge
servers. Figure 5 compares the total energy consumption of
edge servers under different edge server sizes. It can be seen
from the figure that when the edge server scale is 15, 20, 25,
and 30, compared with GA and PSO, EPMOSO has rela-
tively small advantages in energy consumption optimization.

5.2.3. Comparison of Load Variance. In the experiment, the
task load threshold is set for each edge server.)erefore,
before the algorithm is optimized, all edge servers have
basically realized load balancing, but with the continuous
optimization of the algorithm, the layout of edge servers
tends to be reasonable, then the load variance of the edge
server will still achieve a certain optimization. Figure 6
presents the edge server load variances optimized by

Security and Communication Networks 9

Initialization

Edge Server Layout
Location

SelectionCrossover Mutation
GA

Adjust position and velocity
PSO

Less than the number of
iterations

SAW Select the optimal edge server layout
strategy

Figure 3: Example of EPMOSO.

Table 2: Experimental parameters.

Parameter Value
Number of sensors N 200
Number of edge servers M 15, 20, 25, 30
)reshold of the number of edge server tasks 18, 14, 12, 8
Sensor task size [30–100]MB
Task transfer rate 10MB/s
Idle power of edge server 100W
Operating power of edge server 300W
Number of chromosomes 10
Number of iterations 50
Number of chromosomes selected 6
Number of chromosome crossovers 2
Probability of chromosome crossovers 0.6
Number of chromosome mutations 2
Probability of chromosome mutations 0.8

Inputs: Sensor collection S, Edge server collection ES, Number of iterations T, Variable t
Output: Determined final edge server layout strategy

(1) Randomly set the location of the edge server and initialize the chromosome
(2) Initialize the velocity of each gene of each chromosome
(3) for t� 0 to T do
(4) Execute GA algorithm according to Algorithm 2
(5) Execute PSO algorithm according to Algorithm 3
(6) end for
(7) Compute the utility value of K chromosomes
(8) Use SAW algorithm to determine the final edge server layout strategy
(9) return Best Edge Server Layout Strategy

ALGORITHM 4: Summary of EPMOSO method.

10 Security and Communication Networks

EPMOSO, GA, and PSO under different edge server sizes. It
can be seen from the image that when the edge server size is
15, 20, 25, and 30, EPMOSO still shows better optimization
capabilities.

5.2.4. Comparison of Utility. In this experiment, the SAW
method is used to determine the final edge server layout
strategy.)e SAWmethod first computes the utility value of
the chromosome.)e higher the utility value, the better the
edge server layout strategy corresponding to the chromo-
some.)erefore, in the continuous iterative optimization
process, the utility value of the chromosome will be higher
and higher, indicating that the solution searched by the
optimization algorithm is getting closer and closer to the
global optimal solution. Figure 7 presents the utility value of
the edge server layout strategy determined by SAW and
iterative optimization of EPMOSO, GA, and PSO under
different edge server scales. Obviously, when the edge server
scale is 15, 20, 25, and 30, the edge server layout strategy

optimized by EPMOSO has a higher utility value.)erefore,
compared with GA and PSO, using EPMOSO for iterative
optimization can obtain a better edge server layout strategy.

5.2.5. Comparison of Convergence Speed. In the experiment,
considering that if there are too many iterations, EPMOSO,
GA, and PSO will gradually tend to converge, and it is
impossible to directly determine the convergence speed of
EPMOSO through comparison.)erefore, the comparison
experiment of EPMOSO, GA, and PSO iteratively optimizes
the edge server layout strategy is set to 50 times. After
EPMOSO, GA, and PSO are initialized, they each iterate 50
times to iteratively optimize a set of edge server layout
strategies. Figures 7–9 compare the process of EPMOSO,
GA, and PSO to optimize the delay of the task transmission
process, the total energy consumption of the edge servers,
and the load variance of the edge serves.

EPMOSO
GA
PSO

15 20 25 30
Scale of Edge Server

0

2000

4000

6000

8000

10000

12000

En
er

gy
 co

ns
um

pt
io

n
(J

)

Figure 5: Comparison of energy consumption under different edge
server scales.

15 20 25 30
Scale of Edge Server

EPMOSO
GA
PSO

0

2

4

6

8

10

12

14

Lo
ad

 v
ar

ia
nc

e

Figure 6: Comparison of load variance under different edge server
scales.

15 20 25 30
Scale of Edge Server

EPMOSO
GA
PSO

0
100
200
300
400
500
600
700
800
900

1000

D
el

ay
 (s

)

Figure 4: Comparison of delay under different edge server scales.

EPMOSO
GA
PSO

15 20 25 30
Scale of Edge Server

0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94

U
til

ity

Figure 7: Comparison of utility under different edge server scales.
(a) Edge server scale: 15. (b) Edge server scale: 20. (c) Edge server
scale: 25. (d) Edge server scale: 30.

Security and Communication Networks 11

In Figure 8, Figures 8(a)–8(d) compare the changes of
delay in the iterative process when the edge server size is 15,
20, 25, and 30. In Figures 8(a)–8(d), EPMOSO showed a faster
convergence rate in the first 20 iterations and a lower delay
after optimization. In the next 30 iterations, the edge server
layout strategy in the iteration is getting closer and closer to
the global optimal solution, so the convergence speed of the
three algorithms slows down.)erefore, compared with GA
and PSO, EPMOSO not only has a better effect in optimizing
the delay of the transmission process but also has a better
convergence speed.)erefore, EPMOSO is effective for op-
timizing the time delay of the task transmission process.

In Figure 9, Figures 9(a)–9(d) compare the changes in
energy consumption during the iteration. When the scale of
edge server is 15, EPMOSO spend lower energy initially than
GA and PSO, but as the number of iterations increases, the

energy consumption of EPMOSO and PSO is similar, even
when the number of iterations reaches 50, the energy
consumption of three is almost same.When the scale of edge
server is 20, the performance of the three is almost the same,
but EPMOSOS has a slight advantage throughout the iter-
ation process, the more the number of iterations, the more
obvious its advantage. When the scale of edge server is 25,
the same conclusion can be drawn as when the scale is 20.
When the scale of edge server is 30, EPMOSO’s performance
is slightly worse than the other two algorithms initially; when
the number of iterations reaches 10, its energy consumption
is slightly better than the other two algorithms but fluctuates
up and down. Although compared with GA and PSO,
EPMOSO’s advantage in convergence speed is not obvious,
but EPMOSO’s optimization of the total energy consump-
tion of edge servers is effective.

EPMOSO
GA
PSO

8 15 22 29 36 43 501
Number of iterations

0

500

1000

1500

2000

2500
D

el
ay

 (s
)

(a)

EPMOSO
GA
PSO

0

500

1000

1500

2000

2500

D
el

ay
 (s

)

8 15 22 29 36 43 501
Number of iterations

(b)

EPMOSO
GA
PSO

8 15 22 29 36 43 501
Number of iterations

0

500

1000

1500

2000

2500

D
el

ay
 (s

)

(c)

EPMOSO
GA
PSO

0

200

400

600

800

1000

1200

1400

1600
D

el
ay

 (s
)

8 15 22 29 36 43 501
Number of iterations

(d)

Figure 8: Comparison of delay convergence rate under different edge server scales. (a) Edge server scale: 15. (b) Edge server scale: 20.
(c) Edge server scale: 25. (d) Edge server scale: 30.

12 Security and Communication Networks

In Figure 10, Figures 10(a)–10(d) compare the difference
in load variance during the iteration. When the scale of edge
server is 15, EPMOSO showed a faster convergence rate in
the first 35 iterations and a lower load variance, but the
convergence rate of the three afterward is almost the same.
When the edge server scale is 20, the convergence speed of
the three is not much different, but EPMOSO is slightly
better than the other two.When the scale of edge server is 25,
the same conclusion can be drawn as when the scale is 20.
When the scale of edge server is 30, the convergence speed of

EPM and PSO in the first 20 iterations are basically the same,
but it is better than the other two afterward. Considering that
this article has set task thresholds for all edge servers, it is
reasonable that the optimization effect of edge server load
variance is not obvious. However, it can be seen from the
figure that EPMOSO can still optimize the load variance of
edge servers to a certain extent.

In summary, EPMOSO can optimize the delay of the task
transmission process, the total energy consumption of the
edge server, and the load variance of the edge server. In the

EPMOSO
GA
PSO

0

2000

4000

6000

8000

10000

12000

14000
En

er
gy

 co
ns

um
pt

io
n

(J
)

8 15 22 29 36 43 501
Number of iterations

(a)

EPMOSO
GA
PSO

0

2000

4000

6000

8000

10000

12000

En
er

gy
 co

ns
um

pt
io

n
(J

)

8 15 22 29 36 43 501
Number of iterations

(b)

0

2000

4000

6000

8000

10000

12000

14000

En
er

gy
 co

ns
um

pt
io

n
(J

)

EPMOSO
GA
PSO

8 15 22 29 36 43 501
Number of iterations

(c)

9200

9400

9600

9800

10000

10200

10400

10600

En
er

gy
 co

ns
um

pt
io

n
(J

)

EPMOSO
GA
PSO

8 15 22 29 36 43 501
Number of iterations

(d)

Figure 9: Comparison of the convergence rate of energy consumption under different edge server scales. (a) Edge server scale: 15. (b) Edge
server scale: 20. (c) Edge server scale: 25. (d) Edge server scale: 30.

Security and Communication Networks 13

comparison between EPMOSO and GA, although GA also
can find the global optimal solution, when the number of
iterations is 50, GA obviously cannot achieve better con-
vergence, and EPMOSO can not only find the global optimal
solution but also achieve relatively better convergence. In
comparing EPMOSO and PSO, PSO converges faster in the
early stage of the iterative process. However, PSO is more
likely to fall into a local optimal solution, so the convergence
speed of PSO slows down in the later stage of the iterative
process, and the optimization effect becomes worse. While
EPMOSO maintains a good convergence rate, the optimi-
zation effect is still good.

5.2.6. Optimal Layout Strategy.)e experiment in this
article uses GA and PSO to iteratively optimize a set of
excellent edge server layout strategies, and the SAW
method determines the final edge server layout strategy.
)e optimal edge server layout strategy under different
edge server scales is given in Figure 11. In theory, the layout
of the edge server should be symmetrical and regular but
considering that the task size of the sensor in this exper-
iment is only a fixed range, and the task size of different
sensors is set randomly; therefore, the layout of the edge
server of the experimental results is asymmetric and
irregular.

0

5

10

15

20

25

30

35

40

45
Lo

ad
 V

ar
ia

nc
e

EPMOSO
GA
PSO

8 15 22 29 36 43 501
Number of iterations

(a)

0

5

10

15

20

25

30

Lo
ad

 V
ar

ia
nc

e

EPMOSO
GA
PSO

8 15 22 29 36 43 501
Number of iterations

(b)

EPMOSO
GA
PSO

0

5

10

15

20

25

Lo
ad

 V
ar

ia
nc

e

8 15 22 29 36 43 501
Number of iterations

(c)

EPMOSO
GA
PSO

0

5

10

15

20

25

30
Lo

ad
 V

ar
ia

nc
e

8 15 22 29 36 43 501
Number of iterations

(d)

Figure 10: Comparison of the convergence rate of load variance under different edge server scales. (a) Edge server scale: 15. (b) Edge server
scale: 20. (c) Edge server scale: 25. (d) Edge server scale: 30.

14 Security and Communication Networks

6. Conclusion

Aiming at the problem of poor edge service quality and poor
real-time control effect under a relatively small number of
edge server scales, a research method of edge server layout
strategy for offloading services in IoT is proposed to provide
services with lower latency while reducing the edge server
energy consumption and ensuring the stability of the edge
server system.)is method quantifies the above problem as a
multiobjective optimization problem, which aims to reduce
the time delay of the task transmission process and the energy
consumption of the edge server while realizing the overall
load balance of the edge server and proposes EPMOSO, which
is a research method of edge server layout strategy for off-
loading services in IoT.)is method first uses GA and PSO to
iteratively optimize a set of excellent edge server layout
strategies and then uses the SAW method to determine the
optimal edge server layout strategy.)e results of comparative
experiments show that the EPMOSOmethod proposed in this
article has the advantage of a better convergence speed when
the global optimal solution can be found.

Data Availability

)e raw data required to reproduce these findings cannot be
shared at this time as the data also form part of an ongoing
study.

Conflicts of Interest

)e author declares no conflicts of interest.

References

[1] Q. Wu, K. He, and X. Chen, “Personalized federated learning
for intelligent IoT applications: a cloud-edge based frame-
work,” IEEE Open Journal of the Computer Society, vol. 1,
pp. 35–44, 2020.

[2] X. Xu, Z. Fang, J. Zhang et al., “Edge content caching with
deep spatiotemporal residual network for IoV in smart city,”
ACM Transactions on Sensor Networks, vol. 17, no. 3, pp. 1–33,
2021.

[3] W. H. Hassan, “Current research on Internet of)ings (IoT)
security: a survey,” Computer Networks, vol. 148, pp. 283–294,
2019.

[4] L. D. Xu, Y. Lu, and L. Li, “Embedding blockchain technology
into IoT for security: a survey,” IEEE Internet of Bings
Journal, vol. 8, no. 13, Article ID 10452, 2021.

[5] H. Elazhary, “Internet of)ings (IoT), mobile cloud, cloudlet,
mobile IoT, IoT cloud, fog, mobile edge, and edge emerging
computing paradigms: d,” Journal of Network and Computer
Applications, vol. 128, pp. 105–140, 2019.

[6] L. Kong, M. K. Khan, F. Wu, G. Chen, and P. Zeng, “Mil-
limeter-wave wireless communications for IoT-cloud sup-
ported autonomous vehicles: overview, design, and
challenges,” IEEE Communications Magazine, vol. 55, no. 1,
pp. 62–68, 2017.

[7] T. Wang, G. Zhang, A. Liu, B. Md Zakirul Alam, and Q. Jin,
“A secure IoT service architecture with an efficient balance
dynamics based on cloud and edge computing,” IEEE Internet
of Bings Journal, vol. 6, no. 3, pp. 4831–4843, 2018.

[8] X. Xu, Q. Huang, Y. Zhang, S. Li, L. Qi, and W. Dou, “An
LSH-based offloading method for IoMTservices in integrated
cloud-edge environment,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 16, no. 3s,
pp. 1–19, 2021.

[9] M. Jia, Z. Yin, D. Li, and Q. Guo, “Toward improved off-
loading efficiency of data transmission in the IoT-cloud by
leveraging secure truncating OFDM,” IEEE Internet of Bings
Journal, vol. 6, no. 3, pp. 4252–4261, 2018.

[10] T. Wang, Y. Lu, J. Wang, H. N. Dai, X. Zheng, and W. Jia,
“EIHDP: edge-intelligent hierarchical dynamic pricing based
on cloud-edge-client collaboration for IoT systems,” IEEE
Transactions on Computers, vol. 70, 2021.

[11] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation
based on deep reinforcement learning in IoT edge comput-
ing,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1133–1146, 2020.

(a) (b)

(c) (d)

Figure 11: Edge server layout under different edge server scales. (a) Edge server scale: 15. (b) Edge server scale: 20. (c) Edge server scale: 25.
(d) Edge server scale: 30.

Security and Communication Networks 15

[12] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, “Joint
computation offloading and multiuser scheduling using ap-
proximate dynamic programming in NB-IoTedge computing
system,” IEEE Internet of Bings Journal, vol. 6, no. 3,
pp. 5345–5362, 2019.

[13] H. Tian, X. Xu, T. Lin et al., “DIMA: distributed cooperative
microservice caching for Internet of)ings in edge com-
puting by deep reinforcement learning,” World Wide Web,
2021.

[14] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server
placement in mobile edge computing,” Journal of Parallel and
Distributed Computing, vol. 127, pp. 160–168, 2019.

[15] G. Cui, Q. He, F. Chen, H. Jin, and Y. Yang, “Trading off
between user coverage and network robustness for edge server
placement,” IEEE Transactions on Cloud Computing, 2020.

[16] B. Shen, X. Xu, L. Qi, X. Zhang, and G. Srivastava, “Dynamic
server placement in edge computing toward Internet of ve-
hicles,” Computer Communications, vol. 178, pp. 114–123,
2021.

[17] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Ap-
plications of wireless sensor networks: an up-to-date survey,”
Applied System Innovation, vol. 3, no. 1, p. 14, 2020.

[18] H.-L. Truong and S. Dustdar, “Principles for engineering IoT
cloud systems,” IEEE Cloud Computing, vol. 2, no. 2,
pp. 68–76, 2015.

[19] T. Dinh, Y. Kim, and H. Lee, “A location-based interactive
model of Internet of)ings and cloud (IoT-Cloud) for mobile
cloud computing applications,” Sensors, vol. 17, no. 3, p. 489,
2017.

[20] C. Stergiou, K. E. Psannis, B. B. Gupta, and Y. Ishibashi,
“Security, privacy & efficiency of sustainable cloud computing
for big data & IoT,” Sustainable Computing: Informatics and
Systems, vol. 19, pp. 174–184, 2018.

[21] M. Ashouri, P. Davidsson, and R. Spalazzese, “Cloud, edge, or
both Towards Decision Support for Designing IoT applica-
tions,” in Proceedings of the 2018 Fifth International Con-
ference on Internet of Bings: Systems, Management and
Security, pp. 155–162, IEEE, Valencia, Spain, October 2018.

[22] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
vision and challenges,” IEEE internet of things journal, vol. 3,
no. 5, pp. 637–646, 2016.

[23] N. Abbas, Y. Zhang, A. Taherkordi, and Tor Skeie, “Mobile
edge computing: a survey[J],” IEEE Internet of Bings Journal,
vol. 5, no. 1, pp. 450–465, 2017.

[24] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran,
“)e role of edge computing in Internet of)ings,” IEEE
Communications Magazine, vol. 56, no. 11, pp. 110–115, 2018.

[25] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott,
“Consolidate IoT edge computing with Lightweight virtual-
ization,” IEEE Network, vol. 32, no. 1, pp. 102–111, 2018.

[26] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-
edge computing: partial computation offloading using dy-
namic voltage scaling,” IEEE Transactions on Communica-
tions, vol. 64, no. 10, pp. 4268–4282, 2016.

[27] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation
offloading with data caching enhancement for mobile edge
computing,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 11, Article ID 11098, 2018.

[28] A. K. Sangaiah, D. V. Medhane, T. Han, M. S. Hossain, and
G. Muhammad, “Enforcing position-based confidentiality
with machine learning paradigm through mobile edge
computing in real-time industrial informatics,” IEEE Trans-
actions on Industrial Informatics, vol. 15, no. 7, pp. 4189–4196,
2019.

[29] S. Wang, T. Tuor, T. Salonidis et al., “Adaptive federated
learning in resource constrained edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1205–1221, 2019.

[30] X. Xu, D. Zhu, X. Yang, S. Wang, L. Qi, and W. Dou,
“Concurrent practical byzantine fault tolerance for integra-
tion of blockchain and supply chain,” ACM Transactions on
Internet Technology, vol. 21, no. 1, pp. 1–17, 2021.

[31] X. Xia, F. Chen, Q. He et al., “Data, user and power allocations
for caching in multi-access edge computing,” IEEE Trans-
actions on Parallel and Distributed Systems, p. 1, 2021.

[32] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An
efficient computation offloading management scheme in the
densely deployed small cell networks with mobile edge
computing,” IEEE/ACM Transactions on Networking, vol. 26,
no. 6, pp. 2651–2664, 2018.

[33] A. A. Al-Habob, O. A. Dobre, A. G. Armada, and S. Muhaidat,
“Task scheduling for mobile edge computing using genetic
algorithm and conflict graphs,” IEEE Transactions on Ve-
hicular Technology, vol. 69, no. 8, pp. 8805–8819, 2020.

[34] Y. Zhang, Y. Liu, J. Zhou, J. Sun, and K. Li, “Slow-movement
particle swarm optimization algorithms for scheduling se-
curity-critical tasks in resource-limited mobile edge com-
puting,” Future Generation Computer Systems, vol. 112,
pp. 148–161, 2020.

16 Security and Communication Networks

