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Since the birth of narrowband Internet of)ings (NB-IoT), the Internet of)ings (IoT) industry hasmade a considerable progress
in the application for smart cities, smart manufacturing, and healthcare.)erefore, the number of UEs is increasing exponentially,
which brings considerable pressure to the efficient resource allocation for the bandwidth and power constrained NB-IoTnetworks.
In view of the conventional algorithms that cannot dynamically adjust resource allocation, resulting in a low resource utilization
and prone to resource fragmentation, this paper proposes a double deep Q-network (DDQN)-based NB-IoT dynamic resource
allocation algorithm. It first builds an NB-IoT environment model based on the real environment. )en, the DDQN algorithm
interacts with the NB-IoT environment model to learn and optimize resource allocation strategies until it converges to the
optimum. Finally, the simulation results show that the DDQN-based NB-IoTdynamic resource allocation algorithm is better than
the traditional algorithm in the resource utilization, average transmission rate, and UE average queuing time.

1. Introduction

With the advancement of science and technology, the IoT is
being used more and more widely in various industries [1].
In order to meet the needs of the IoT industry, it has
redesigned a new communication solution for the IoT,
which is called the NB-IoT [2]. )e access system was
proposed in the 69th plenary meeting of the 3rd generation
(3GPP) organization. )e NB-IoT system focuses on low-
complexity and low-throughput radio access technology.
)e main research goals include improved indoor coverage,
support for a large number of low-throughput user
equipment, lower latency sensitivity, and ultralow equip-
ment cost, low equipment power consumption, and network
architecture. For the use scenarios of NB-IoT, the relevant
technical characteristics of NB-IoT are as follows [3]:

(1) Low power consumption: NB-IoT uses power save
mode (PSM) and extended discontinuous reception
(eDRX) to reduce power consumption. It is esti-
mated that a 5Wh battery can provide maximum
battery life up to 10 years.

(2) Channel bandwidth: the bandwidth is 200 kHz, in-
cluding a guard band of 20 kHz.

(3) Coverage enhancement: NB-IoT achieves coverage
enhancement mainly by increasing the uplink power
spectral density and repeated transmission so that
outdoor coverage is large and indoor penetration is
improved. In the same frequency band, compared
with the existing general packet radio service, general
packet radio service (GPRS) network coverage in-
creased by 20 dB, the maximum coupling loss (MCL)
can reach 164 dB, and the coverage area is expanded
100 times.

(4) A large number of equipment access: it can support a
large number of low-throughput terminals, up to
50K connections per cell. Under the coverage of the
same base station, NB-IoT can support up to 50–100
times the number of access devices compared to the
existing wireless technology.

(5) Low cost: NB-IoT only supports FDD half-duplex
mode, which is cheaper than full duplex. )e cost of
the module is less than US$5. It is expected to be
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reduced to US$2-3 by 2020, and a single antenna is
used for transmission. It can also reduce the com-
plexity of chip processing, thereby reducing costs.

Based on the characteristics above, NB-IoT can locate
devices with poor channel transmission conditions or delay
tolerance and can be widely used in smart homes, smart
cities, smart grids, healthcare, smart manufacturing, and
smart logistics [4–6].

Although NB-IoT technology is developing in full swing,
it still faces the challenges of spectrum efficiency, system
capacity, and interference coexistence [7]. NB-IoT intro-
duces processes such as repeated transmission and reiniti-
alization of the scrambling sequence, which increases the
complexity of part of the NB-IoT physical layer processing
process [8]. Narrowband physical uplink shared channel
(NPUSCH) has a bandwidth of only 180 kHz. It not only
carries uplink data services but also needs to transmit re-
sponse information indicating whether the narrowband
physical downlink shared channel (NPDSCH) has been
successfully received. )erefore, efficient use of spectrum
resources is very necessary [9].

)erefore, how NB-IoT allocates spectrum resources for
UEs efficiently is a key issue. In view of the low resource
utilization of traditional resource allocation algorithms,
fragmentation is prone to occur, and the average waiting
delay is high, and this article proposes a DDQN-based
dynamic resource allocation algorithm. )is article first
builds an NB-IoT environment model based on the real
environment. )e DDQN algorithm interacts with the NB-
IoT environment model and stores historical experience in
the experience pool to accumulate data for subsequent
model training and learning. After learning and iteration,
the algorithm is better than the traditional algorithm in
resource utilization, average transmission speed, and aver-
age waiting time.

)e rest of the paper is organized as follows. A relate
work on NB-IoT is provided in Section 2. Section 3 presents
the experimental design, including the environment model
of NB-IoT uplink and the proposed of DDQN algorithm.
)e performance analysis is reported in Section 4. We finally
conclude the paper in Section 5.

2. Relate Work

At present, most machine-type communications are still
based on the LTE scheduler [10]. Using the LTE scheduler
can maximize the overall transmission success rate and
minimize the machine-to-machine (M2M) delay. In [11],
EDDF-based LTE scheduling procedures have been shown
to be effective in maximizing the transmission success rate
and minimizing delay. In [12], Afrin et al. proposed a
schedular based on an OPNET simulation model of an LTE
TDD system. )e scheduler can satisfy the uplink delay
budget for more than 99% of packets for bursty delay
sensitive M2M traffic even when the system is fully loaded
with regard to the data channel utilization. However, this
requires additional signaling overhead to transmit the
waiting time at the head of the queue.

In order to solve the static problem of the algorithms,
adaptive algorithms have also been extensively studied in
the resource allocation of NB-IoT. In [13], Sampath et al.
used an adaptive algorithm to develop an analytical outer
loop power control model to deal with signal-to-inter-
ference ratio fluctuations. Li et al. [14] studied the in-
fluence of uplink interference on link adaptation in
heterogeneous networks and proposed a cooperative
uplink adaptation scheme using cooperation between base
stations. In [15], a novel algorithm for improving outer
loop link adaptation (OLLA) convergence speed in the
downlink of long-term evolution (LTE) is presented. )e
algorithm is validated with a connection-level simulator,
fed with real connection traces collected from a live LTE
network. In [16], the potential of OLLA to cope with the
aforementioned problem is studied, and a dynamic OLLA
(d-OLLA) algorithm is proposed.

In order to optimize the resource allocation of NB-IoT,
some resource issues for NB-IoT have also been studied. Su
et al. [17] propose a method for active detection and pro-
cessing of redundant rules. In [18], a new Aloha-based tag
identification protocol is presented to improve the reading
efficiency of the EPC C1 Gen2-based UHF RFID system.
Min Oh et al. [19] proposed an efficient small data trans-
mission scheme in the 3GPPNB-IoTsystem. For the efficient
use of radio resources, the proposed scheme enables devices
in an idle state to transmit a small data packet without the
radio resource control connection setup process. )is can
improve the maximum number of supportable devices in the
NB-IoT system which has insufficient radio resources. Re-
cently, Huang et al. [20] identified radio resource scheduling
issues for NB-IoT systems and provided a comprehensive
performance evaluation. )en, the authors proposed an NB-
IoTdownlink scheduling algorithm. Wu et al. [21] proposed
a deep Q-learning network (DQN) method used to control
the hand-over (HO) procedure of the user equipment (UE)
by well capturing the characteristics of wireless signals/in-
terferences and network load. In [22], a multiagent deep
Q-network- (DQN-)based dynamic joint spectrum access
and mode selection (SAMS) scheme is proposed for the SUs
in the partially observable environment. Zhang et al. [23]
proposed a two-step deep reinforcement learning-based
algorithm to solve nonconvex and dynamic optimization
problem. However, the above research studies have not
addressed how to reduce resource fragmentation. In our
previous work [24], we propose a dynamic resource allo-
cation algorithmwithout theoretical analyses for the NB-IoT
uplink scheduling problem and did not consider the waiting
delay of the UE.

In this article, we consider the waiting delay of the UE
and the NB-IoT scheduling problem for 3GPP NB-
IoT cellular networks. )e objective is to maximize resource
utilization and reduce resource fragmentation while en-
suring UE has a short waiting time delay. )erefore, we
propose a dynamic resource scheduling algorithm based on
deep reinforcement learning to optimize the resource uti-
lization of NB-IoT. In Section 3, we will first introduce the
systemmodel and the problem formulation will be presented
as follows.
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3. System Model and Problem Formulation

In this section, we first introduce the NB-IoT uplink system
model and give some parameter settings in the NB-IoT
uplink. )en, we will model and analyze the resource al-
location problem based on the NB-IoTuplink systemmodel.

3.1. $e System Model of NB-IoT Uplink. NB-IoT uplink
frequency domain resources are the same as downlink, and
frequency domain resources are 180 kHz, using SC-FDMA
[3]. Taking into account the low-cost requirements of NB-
IoT devices, it is necessary to support single frequency
(single tone) transmission in the uplink. In addition to the
original 15 kHz, a new subcarrier spacing of 3.75 kHz has
been set for a total of 48 subcarriers. Considering that
3.75 kHz is rarely used in real commercial environments,
this article only considers the case of 15 kHz, which is di-
vided into 12 subcarriers in the frequency domain. For the
uplink, NB-IoTdefines two physical channels: NPUSCH and
NPRACH (narrowband physical random access channel)
and demodulation reference signal (DMRS). NPRACH al-
location in the frequency domain is periodically allocated by
the evolved node B (eNB). )e UE transmits the NPRACH
on the fixed frequency domain resources allocated by the
eNB, and the remaining channels are used for NPUSCH
transmission. NPUSCH is used to transmit uplink data and
control information. NPUSCH transmission can use single
tone or multitone transmission.

Compared with the physical resource block (PRB) as the
basic resource scheduling unit in long-term evolution (LTE),
the resource unit of the NB-IoT uplink shared physical
channel NPUSCH is scheduled with a flexible combination
of time-frequency resources. )e basic unit of scheduling is
called resource unit (RU). NPUSCH has two transmission
formats, the corresponding resource units are different, and
the content of transmission is also different. NPUSCH
format 1 is used to carry the uplink-shared transmission
channel UL-SCH, to transmit user data or signaling, and the
UL-SCH transmission block can be scheduled and sent
through one or several physical resource units. )e occupied
resource unit includes two formats, which are single tone
and multitone. NPUSCH format 2 is used to carry uplink
control information, such as ACK/NAK response. )e
specific RU of single tone andmultitone is defined in Table 1.

)e value of RU in NPUSCH is determined by TBS,
MCS, and the number of repetitions.)e specific RU value is
calculated from Table 2.

3.2. Problem Formulation. In this section, we study the NB-
IoT uplink resource allocation problem over NB-IoT net-
works. )e objective is to maximize the resource utilization
of NB-IoT and reduce resource fragmentation. )e system
model can be formulated as follows.

First of all, NB-IoT does not support measurement re-
ports. According to the difference in minimum path loss
(MCL), 3GPP defines three coverage levels: normal cover-
age, extended coverage, and extreme coverage. )e MCL
corresponding to the three coverage levels is no higher than

144 dB, no higher than 154 dB, and no higher than 164 dB.
Under different coverage levels, NPUSCH and NPRACH
channels use different MCS and repetition times.

NPRACH is periodically transmitted in the NB-IoT
uplink, and the number of repetitions NNPRACH

rep corre-
sponding to the three coverage levels is 2, 4, and 8. )e unit
length of NPRACH NNPRACH

slots is 2ms. And, the number of
PRACH subcarriers NNPRACH

sc is configured by the base
station; then, the resource RNPRACH occupied by a NPRACH
resource can be expressed as

RNPRACH � N
NPRACH
rep ∗N

NPRACH
sc ∗N

NPRACH
slots . (1)

)e starting subcarrier index of the NPRACH resource
NNPRACH

scoff set is configured by the base station, and the default
base station configuration is used in this article, which is 8,
16, and 32.

)e UE transmits data through the NPUSCH, and the
relevant parameters of the NPUSCH are indicated by the
Format N0 of the DCI in the NPDCCH, including the
modulation and coding scheme ITBS, the number of repe-
titions NNPUSCH

rep , the number of time slots NUL
slot, and the

subcarrier indication NNPUSCH
sc . From the modulation and

coding scheme ITBS and the data size DS to be transmitted,
we can check Table 2 and calculate NR:

NRU � argmin TBS ITBS( 􏼁> � DS􏼂 􏼃. (2)

)en, the resource RNPUSCH occupied by a NPUSCH
transmission can be calculated by the formula

RNPUSCH � N
∗
RUN

NPUSCH
sc ∗N

UL
slot ∗N

NPUSCH
rep . (3)

)e utilization of frequency domain resources on a time
domain resource Ui can be expressed as the sum of
NPRACH and NPUSCH occupying the time domain re-
source at that moment divided by the number of NB-IoT
subcarriers. )e formula is as follows:

Ui �
􏽐 R

NPUSCH
i + 􏽐 R

NPRACH
i

N
RA
sc

. (4)

Constrained by the communication protocol [25], the
allocation of wireless resources needs to consider the period,
so the goal we pursue is to maximize Ui at each moment and
minimize the fragmentation of resources at each moment:

asc, at( 􏼁 � argmaxUi. (5)

4. Dynamic Resource Allocation Algorithm
Based on DDQN

Reinforcement learning is one of the important tools in the
field of machine learning. It is widely used to deal with
Markov dynamic programming problems [26, 27]. As shown
in Figure 1, the AI engine is designed as an agent that
combines deep learning and reinforcement learning. )e
agent interacts with the Mac layer in NB-IoT and observes
the resource occupancy and UE request as the state of the
environment from the Mac layer. )e AI engine generates
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corresponding actions to allocate corresponding resources
to the UE.

)e agent optimizes and adjusts the strategy through the
rewards of environmental feedback and repeats this process
until the optimal strategy is finally obtained. In reinforce-
ment learning, Q learning is a very effective learning method
and is widely used in various fields. Different from the
SARSA algorithm and other on-policy algorithms, Q
learning is updated according to the improved strategy of
q(st+1, ∗ ), so as to achieve closer target value. Its goal
formula can be defined as

Ut � Rt+1 + cRt+2 + · · · + c
n− 1

Rt+n + c
n max

a∈A St+n( )
q St+n, a(sc,t)􏼐 􏼑.

(6)

Q learning updates the action value based on the above
formula, which easily leads to maximization deviation and
makes the estimated q(0)(·, ·) action value too large.
)erefore, double Q learning is introduced. )e double Q
learning algorithm uses two independent action value es-
timates and q(1)(·, ·) and replaces maxaq(St+1, a(sc,t)) in Q
learning with q(0)(St+1, argmaxaq(1)(St+1, a(sc,t))) or
q(0)(St+1, argmaxaq(1)(St+1, a(sc,t))). Since q(0)and q(1) are
independent estimates, there is

E q
(0)

St+1, A
∗

( 􏼁􏽨 􏽩 � q St+1, argmaxaq
(1)

St+1, a(sc,t)􏼐 􏼑􏼐 􏼑.

(7)

In the process of double learning, both q(0) and q(1) are
updated gradually, and each step of learning can select any
one of the following two to update with equal probability:

U
(0)
t � Rt+1 + cq

(1)
St+1, argmaxaq

(0)
St+1, a(sc,t)􏼐 􏼑􏼐 􏼑,

U
(1)
t � Rt+1 + cq

(0)
St+1, argmaxaq

(1)
St+1, a(sc,t)􏼐 􏼑􏼐 􏼑.

(8)

)e traditional Q learning algorithm can effectively obtain
the optimal strategy when the state space and action space are
small. However, in actual situations, the state space and action
space of the agent are very large. At this time, it is difficult for
theQ learning algorithm to achieve the ideal effect.)erefore, a
deep Q network composed of a combination of Q learning and
neural network can solve this problem well.

Reinforcement learning data is usually nonstatic, non-
independent, and uniformly distributed. One state of data may
continue to flow in, and the next state is usually highly cor-
related with the previous state. )erefore, small deviations in
the value of the Q function will affect the entire strategy. As a
supervised learning model, deep neural networks require data
to meet independent and identical distribution. In order to
break the correlation between data, DQN adopts themethod of
experience replay, storing the past training data in the form of
(st, at, rt, st+1) in the experience pool, and randomly extracts
part of the data each time as the input of the neural network for
training. )rough the use of experience replay, the correlation
between the original data is broken, and the training data
become more independent and evenly distributed.

)e network composed of double Q learning and DQN is
called double deep Q network (DDQN). In the DDQN, only
the evaluation network is used to determine the action, and
the target network is used to determine the estimate of the
return. )e algorithm process of the DDQN is shown in
Algorithm 1.

Table 1: NPUSCH RU format.

NPUSCH Subspacing Sub TS Duration
Format (kHz) Num Num (ms)
1 3.75 1 16 32
1 15 1 16 8
1 15 3 8 4
1 15 6 4 2
1 15 12 2 1
2 3.75 1 4 8
2 15 1 4 2

Table 2: Transport block size (TBS) table for NPUSCH.

NRU

ITBS 1 2 3 4 5 6 7 8

0 16 32 56 88 120 152 208 256
1 16 32 56 88 120 152 208 256
2 32 72 144 176 208 256 328 424
3 32 72 144 176 208 256 328 424
4 56 120 208 256 328 408 552 680
5 56 120 208 256 328 408 552 680
6 88 176 256 392 504 600 808 1000
7 104 224 328 472 584 712 1000 1224
8 120 256 392 536 680 808 1096 1384
9 136 296 456 616 776 936 1256 1544
10 144 328 504 680 872 1000 1384 1736
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In view of the characteristics of NB-IoT uplink data
transmission, the state observed by the agent is divided into
12 frequency domains, and the distribution of resource
utilization in each frequency encounter on the time axis is
used as the feature of each frequency domain. At the same
time, the state also includes UE data size, NPUSCH format,
transmission quality, number of repetitions, and the number
of NRU. )e corresponding action taken by the agent is to
allocate the corresponding resources required by the UE in
the frequency domain resources. )erefore, the action of the
agent is composed of 12 actions, corresponding to the di-
vided 12 frequency domain positions.

5. Performance Evaluation

In this section, we present the analysis of NB-IoT dynamic
resource allocation algorithm based on DDQN. First, we
introduce the NB-IoT environment model parameters and
the DDQN algorithm model parameters, and then, we will
give a specific performance comparison between the DDQN
algorithm and the traditional algorithm.

5.1.Model Parameter Settings. In order to verify whether the
DDQN algorithm can achieve better results in a complex

network environment, this paper simulates the NB-IoT
uplink data link NPUSCH to establish an environment
model. Every second, an average of 1000 UEs need to es-
tablish a connection to transmit data, and the communi-
cation quality of each UE is randomly selected. According to
the distribution of communication quality in real scenarios
[5], this article divides the communication quality into three
types: good, medium, and poor, and their probability cor-
responds to 60%, 30%, and 10%.When each UE establishes a
connection, the communication quality is randomly de-
termined according to the probability. According to the
characteristics of NB-IoT data transmission in real life, the
data transmission volume is generally 50-250 bytes, and the
data volume of the UE in the simulation is also randomly
generated based on this range. )e simulation model and
deep reinforcement learning constructed in this paper are
implemented by Python, and the DDQN algorithm is
designed and trained based on PyTorch. )e values of the
network parameters and deep reinforcement learning pa-
rameters in this experiment are shown in Tables 3 and 4.)e
neural network used for training is a fully connected neural
network, which contains a hidden layer, and the hidden layer
contains 50 neurons. )e activation function used by each
neuron is ReLU. )e size of the discount factor determines

Initialize the evaluation network q(·, ·; w) and target network q(·, ·; wtarget)

for episode in episodes do
initialize and choose state S(NPUSCH,NPRACH,UE) from NB-IoT MAC
while episode not end do
sampling q(S, ·; w) and get action Asc,t
observation from NB-IoT MAC and get reward R and next state S′
store experience (S, Asc,t, R, S′)⟶ D

D⟶ (Si, A(sc,t)i, Ri, Si
′)(i∈B)

Ui � Ri · +cq(Si
′, argmaxaq(Si

′, asc,t; w); wtarget)

update w

S← S′
if batch size≥memory capacity then

update wtarget ← w

end if
end while

end for

ALGORITHM 1: Procedure of double deep Q network.
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MAC

RRC
PDCP

RLC

Network Interface

AI Engine

Deep Learning

Reinforcement Learning

Resource Scheduling

eNB

Figure 1: )e interaction process between AI engine and NB-IoT environment.
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how much the algorithm attaches importance to current
returns and future returns.)e smaller the discount factor is,
the more the algorithm tends to have short-term high
returns. Since a series of actions need to be made in this
experiment, in order to obtain a longer-term high return,
this article sets the discount factor to 0.9.

Based on the parameters of Tables 3 and 4, the experiment
scenario is simulated. In this experiment, dynamic resource
scheduling is performed on the 180 kHz NB-IoT uplink data
link NPUSCH. On average, 1,000 UEs are scheduled per
second, and the number of iteration rounds is 100,000. Cal-
culate the average resource utilization, average transmission
speed, and average waiting delay after each dynamic scheduling
as the performance evaluation index. Specific performance
comparison will be shown in the following.

5.2. Analysis of NB-IoT Dynamic Allocation Algorithm Based
on DDQN. In this simulation, 1,000 UE request data
transmission every second, and the communication quality
distribution of UE is designed to be 60% with good quality,
30% with medium communication quality, and 10% with
poor communication quality. In 100,000 iterations, the
actual UE distribution per second is shown in Figure 2. )e
figure shows the average distribution of three communi-
cation qualities per second within 100s. )e three com-
munication qualities are all at 60% and 30% and 10%
fluctuate, of which good communication quality is slightly
higher than 60%.

According to the data size sent by NB-IoT, in reality, the
amount of data transmitted by the UE is set to be randomly
distributed between 50 and 250. In this simulation, the average
data size actually transmitted per second is shown in Figure 3.
Compared with the average data size of good communication
quality and medium communication quality, the average
transmission data size of UEs with poor communication
quality fluctuates greatly. )e three types of data size variance
are shown in Figure 4. )is phenomenon is because the

number of UEs is small, and the randomly distributed number
is much lower than the number with good communication
quality and medium communication quality.

In this simulation, the UE will use the communication
quality and data volume shown in Figures 2 and 4 as the UE’s
communication characteristics and, respectively, use DDQN
dynamic resource allocation algorithm and traditional re-
source allocation algorithm for resource allocation. Calcu-
late the average resource utilization rate, average
transmission speed, and average waiting time delay after
each dynamic scheduling as evaluation indicators. )e
simulation results are shown in Figures 5–7.

As shown in Figure 5, it is a comparison chart of the
average resource utilization between the DDQN dynamic
resource allocation algorithm and the traditional algorithm.
)e resource utilization rate is obtained by calculating the
utilization of the 12 subcarriers divided by the 180 kHz
frequency domain. )e average resource utilization rate is
obtained by dividing the resource utilization rate per mil-
lisecond by the total number of UEs in history.

)rough comparison, it can be found that, in the initial
10,000 iterations, the resource utilization rate of the DDQN
dynamic resource allocation algorithm fluctuates greatly,
and the agent is still in the exploratory stage, and the average
resource utilization rate fluctuates sharply between 50% and
80%. Between 10,000 iterations and 20,000 iterations, the
fluctuation of the DDQN dynamic resource allocation al-
gorithm has been greatly reduced, and its resource utiliza-
tion rate is better than that of the transmission resource
allocation algorithm. After 20,000 iterations, the average
resource utilization of the DDQN dynamic resource allo-
cation algorithm can be stabilized at about 83%, which is an
improvement of about 7% compared to the traditional
dynamic resource allocation algorithm.

Figures 6 and 7 show the corresponding data trans-
mission speed and the average waiting time of the UE. )e
sum of the data size carried by each subcarrier in one of the
time domains is used as the data transmission speed per

Table 3: NPUSCH parameters.

Parameter name Parameter value
Channel bandwidth 180
Subcarrier spacing 15
ITBS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
NPUSCH repetitions 0, 8
Data size Range (50, 250)

Table 4: DDQN algorithm parameters.

Parameter name Parameter value
Greedy policy, ε 0.9
Reward discount, c 0.9
Learning rate, α 0.01
Target update frequency 100
Batch size 256
Memory capacity 5000
Actions 12
States 13
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millisecond, and the sum of historical data is calculated and
the average value is taken as the data transmission speed at
each moment. )e period from the UE sending the request
to the beginning of data transmission is defined as the
waiting time of the UE, and the average value of the sum of
the historical waiting time of the UE is taken as the average
waiting time of the UE at each moment.

When the number of iterations is before 10,000, the re-
source utilization rate fluctuates drastically, the corresponding
data transmission speed also fluctuates drastically, and the
average waiting time of the UE is longer. When the number of
iterations is between 10,000 and 20,000, the data transmission
speed increases exponentially due to the increase in resource
utilization and finally stabilizes at about 65, which is a 5%
increase compared to traditional resource allocation algo-
rithms. After the DDQN resource allocation algorithm is stable
after 60,000 iterations, the average waiting time of the UE is less
than 1, which is a 66% improvement compared to the tradi-
tional resource allocation algorithm.

In this simulation, we compared the DDQN dynamic
resource allocation algorithm and the traditional resource
allocation algorithm from the three dimensions of average
resource utilization, average transmission speed, and aver-
age waiting time. In the simulation results, the DDQN al-
gorithm is better than the traditional resource allocation
algorithm in three aspects. DDQN improves the resource
utilization of NB-IoT, reduces resource fragmentation, and
increases the transmission speed and greatly shortens the
average waiting time of the UE.

6. Conclusion

In this paper, we propose an NB-IoTuplink data transmission
optimization algorithm based on deep reinforcement learning.
)e algorithm considers the time-frequency domain resources
of NB-IoTas the state space, the frequency domain position as
the action, the neural network as the error function, and the
resource utilization as the reward and punishment value.
DDQN is designed to interact with the environment and it-
eratively train the algorithm model. Compared with the tra-
ditional algorithm, the simulation results have improved the
resource utilization and the data transmission rate. Meanwhile,
the average waiting time of the UE has also been greatly
shortened.)erefore, this algorithmmodel can effectively solve
the dynamic scheduling problem of NB-IoT under the cir-
cumstance of the data transmission for massive devices. In the
future, we will introduce a software radio platform and embed
algorithms into the platform. Use the combination of software
and hardware to further verify the performance of the
algorithm.
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