
Research Article
SSGD: A Safe and Efficient Method of Gradient Descent

Jinhuan Duan,1 Xianxian Li ,1,2 Shiqi Gao,2 Zili Zhong,2 and Jinyan Wang 1,2

1Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, China
2College of Computer Science and Engineering, Guangxi Normal University, Guilin, China

Correspondence should be addressed to Xianxian Li; lixx@gxnu.edu.cn and Jinyan Wang; wangjy612@gxnu.edu.cn

Received 30 May 2021; Revised 13 July 2021; Accepted 27 July 2021; Published 10 August 2021

Academic Editor: Lu Liu

Copyright © 2021 Jinhuan Duan et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the vigorous development of artificial intelligence technology, various engineering technology applications have been
implemented one after another. ,e gradient descent method plays an important role in solving various optimization problems,
due to its simple structure, good stability, and easy implementation. However, in multinode machine learning system, the
gradients usually need to be shared, which will cause privacy leakage, because attackers can infer training data with the gradient
information. In this paper, to prevent gradient leakage while keeping the accuracy of the model, we propose the super stochastic
gradient descent approach to update parameters by concealing the modulus length of gradient vectors and converting it or them
into a unit vector. Furthermore, we analyze the security of super stochastic gradient descent approach and demonstrate that our
algorithm can defend against the attacks on the gradient. Experiment results show that our approach is obviously superior to
prevalent gradient descent approaches in terms of accuracy, robustness, and adaptability to large-scale batches. Interestingly, our
algorithm can also resist model poisoning attacks to a certain extent.

1. Introduction

Gradient descent (GD) is a technique to minimize an ob-
jective function, which is parameterized by the parameters of
a model, by updating the parameters with the opposite
direction of the gradient of the objective function about the
parameters [1]. It has widely been applied in solving various
optimization problems because of its simplicity and im-
pressive generalization ability [2], but it is born with a heart
of revealing privacy. Mathematically, the gradient is the
parametric derivative of the loss function, which is explicitly
calculated from the given training data and its true label.
,erefore, the attacker may extract the sensitive information
of the original training data from the captured gradients.
Recently, researches have shown that the attacker, which
captures the gradient of a training sample, can successfully
infer its attributes [3], label [4], class representation [5, 6], or
the data input itself [4, 7–9], with high accuracy. In the actual
deep learning system, the gradient of multiple samples is
widely used to improve efficiency and performance, which
can also be viewed as the per-coordinate average of the
single-sample gradients. Is multisample gradient safer for

the privacy of training data? Unfortunately, Pan et al. [9]
gave the theoretical analysis to indicate that multisample
gradient still leaks samples and labels under certain cir-
cumstances. Since the work of Zhu et al. [7] was proposed,
there is a branch of research [4, 7–9] to explore a violent but
universal method for successful data reconstruction attacks,
and some meaningful empirical results are given on CIFAR-
10 and ImageNet. ,ese works are based on the same
learning-based framework. First, a batch of unknown
training samples are used as variables, and then the optimal
training samples are searched by minimizing the distance
between the ground-truth gradient and the gradient cal-
culated by the variables. ,e main difference between them
is the choice of minimizing distance function. L2 and cosine
distances are used in [4, 7, 8], respectively. Although Zhao
et al. [4] used the properties of neural networks to recover
the label of a single sample before the learning-based attack,
this technique is only suitable to single-point gradient. It is
the same as [7] in the multisample case. Pan et al. [9] gave a
theoretical explanation for information leakage of single
sample in a fully connected neural network with ReLu ac-
tivation function. Furthermore, they used the internal

Hindawi
Security and Communication Networks
Volume 2021, Article ID 5404061, 11 pages
https://doi.org/10.1155/2021/5404061

mailto:lixx@gxnu.edu.cn
mailto:wangjy612@gxnu.edu.cn
https://orcid.org/0000-0002-7083-3847
https://orcid.org/0000-0002-2462-1499
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5404061

information between neurons to show that in some cases
there is sample and label leakage in multiple samples and
extended the model to ResNet-18 [10], VGG-11 [11],
DenseNet-121 [12], AlexNet [13], ShuffleNet v2-x0-5 [14],
InceptionV3 [15], GoogLeNet [16], and MobileNet-V2 [17].

To solve the gradient safety problem, Bonawitz et al. [18]
designed a secure aggregation protocol, which is a four-
round interactive protocol. Xu et al. proposed VerifyNet [19]
and VeriFL [20] by adding verifiability to [18] for ensuring
the correctness of aggregation. Bell et al. [21, 22] introduced
a secure aggregation protocol with multilogarithmic com-
munication and computational complexity, which reduces
one round of interaction compared with [18]. Fereidooni
et al. [23] showed that only two rounds of communication
can be safely aggregated. All of the above works use en-
cryption algorithms to encrypt the entire data set or in-
termediate values during the training process. Different
from them, Ma et al. [24] used secure verifiable computing
delegation to privately label a public data set from locally
trained model aggregation and then utilized public data sets
to train local models. Phong et al. [25] used homomorphic
encryption technology to encrypt the gradient before
sending it. Abadi et al. [26] employed differential privacy to
protect gradients. Yadav et al. [27] applied differential
privacy to federated machine learning by directly adding
noise to the gradient. In PrivateDL [28], it is allowed to
effectively transfer relational knowledge from sensitive data
to public data in a way of privacy protection and enables
participants to jointly learn local models based on public
data with noise protection labels. However, these methods
also have their limitations. ,e main problem of the secure
aggregation protocol is communication overhead and
computational efficiency. For differential privacy technol-
ogy, it needs to consider the tradeoff between privacy and
utility. More noise will lead to poor performance, and less
noise will not be enough to protect the gradient. PrivateDL
[28] requires a public data set and reduces the performance
of the algorithm.

,erefore, this paper proposes a new gradient descent
method, super stochastic gradient descent (SSGD), for
achieving neuron-level security while maintaining the ac-
curacy of model. Moreover, SSGD has stronger robustness.
Phong et al. [25] analyzed the leakage of single-sample
single-neuron input data in the single-layer perceptron by
using the sigmoid activation function. Pan et al. [9] used the
ReLu activation function to analyze the sample data leakage
from the multilayer fully connected neural network gradient
and indicated that multiple samples also reveal privacy.
,ere are two neurons in the last layer which are only ac-
tivated by the same single sample. Essentially, the leakage is
caused by attacking the single-sample gradient. SSGD
converts the neuron gradient into a unit vector, whichmakes
that the gradient aggregation of neurons has super-
randomness. Superrandomness may significantly worsen the
performance of the algorithm and make it difficult to
converge. We select multiple-sample gradient composition
updates to increase stability. At the same time, the super-
randomness also brings strong robustness because the at-
tacker cannot know the true gradient. SSGD invalidates

these attacks on the gradient model, including the attack by
searching for the optimal training sample [4, 7, 8] based on
minimizing the distance between the ground-truth gradient
and the gradient calculated by the variable, and the attack by
solving the equation system [9] to obtain the training data.
Our contributions are summarized as follows.

(1) We propose a gradient descent algorithm, called
super stochastic gradient descent.,emain idea is to
update the parameters by using the unit gradient
vector. In neural networks, neuron parameters are
updated by using the unit gradient vector of neurons.

(2) We analyze theoretically that SSGD can realize
neuron-level security and defend against attacks on
the gradient.

(3) Experimental results show our approach has better
accuracy and robustness than prevalent gradient
descent approaches. And it can resist model poi-
soning attacks to a certain extent.

,e rest of this paper is organized as follows. In Section
2, we review the basic gradient descent methods and the data
leakage by gradients. In Section 3, we describe the super
stochastic gradient descent and analyze the safety of our
approach. ,e experimental results are shown in Section 4.
Finally, we conclude this paper and give the further work.

2. Preliminaries

In this section, we review some basic gradient descent al-
gorithms [1], including batch gradient descent (BGD),
stochastic gradient descent (SGD), and mini-batch gradient
descent (MBGD). ,e difference among them is that how
much data is used to calculate the gradient of the objective
function. ,en, we describe the information leakage caused
by gradients [19].

2.1. Basic Gradient Descent Algorithms. ,e BGD is an or-
dinary form of gradient descent, which takes the entire
training samples into account to calculate the gradient of the
cost function ℓ(θ) about the parameters θ and then update
the parameters by

θ � θ − η · ∇θℓ(θ), (1)

where η is the learning rate and ∇θℓ(θ) represents the
gradient of function ℓ(θ) with respect to the parameters θ.
,e BGD uses the entire training set in each iteration.
,erefore, the update is proceeded in the right direction, and
finally BGD is guaranteed to converge to the extreme point.
On the contrary, the SGD considers a training sample xi and
label yi randomly selected from the training set in each it-
eration to perform the update of parameters by

θ � θ − η · ∇θℓ θ; xi; yi(􏼁. (2)

,e BGD and SGD are two extremes: one uses all
training samples and the other uses one sample for gradient
descent. Naturally, their advantages and disadvantages are
very prominent. For the training speed, the SGD is very fast,

2 Security and Communication Networks

and the BGD cannot be satisfactory when the size of training
sample set is large. For accuracy, the SGD determines the
direction of the gradient with only one sample, resulting in a
solution which may not be optimal. For the convergence
rate, because the SGD considers one sample in each iteration
and the gradient direction changes greatly, it cannot quickly
converge to the local optimal solution.

,e MBGD is a compromise between BGD and SGD,
which performs an update with a randomly sampled mini-
batch of N training samples by

θ � θ − η · ∇θℓ θ; x(i;i+N) ; y(i;i+N)(􏼁, (3)

where N is the number of batches. MBGD decreases the
variance of the updates for parameter, so it has more stable
convergence. Moreover, the computing of gradient about a
mini-batch is very efficient by using highly optimized matrix
optimizations that existed in advanced deep learning
libraries.

2.2. Analysis of Gradient Information Leakage. Phong et al.
[25] illustrated that how gradients leak the data information
based on a single neuron shown in Figure 1. Assume that
􏽢x ∈ Rd represents data input with a label value y ∈ R. w ∈ Rd

is the weight parameter and b ∈ R is the bias, represented
uniformly by θ � (w, b) ∈ R(d+1). g ∈ R(d+1) is the gradient
vector of the parameter θ, f is an activation function, and the
loss function isℓ(f(􏽢x, w, b), y) � (hw,b(􏽢x) − y)2, where
hw,b(􏽢x) � f(􏽐

d
i�1 wi􏽢xi + b). Let g � (σ1, . . . , σk, . . . , σd, σ)

and k ∈ 1, . . . , d{ }. We have

σk �
zℓ(f(􏽢x, w, b), y)

zwk

� 2 hw,b(􏽢x) − y􏼐 􏼑f′ 􏽘

d

i�1
wi􏽢xi + b⎛⎝ ⎞⎠ · 􏽢xk,

σ �
zℓ(f(􏽢x, w, b), y)

zb
� 2 hw,b(􏽢x) − y􏼐 􏼑f′ 􏽘

d

i�1
wi􏽢xi + b⎛⎝ ⎞⎠.

(4)

,erefore, we obtain σk � σ · 􏽢xk. By solving the system of
equations, we can easily get 􏽢x and y. Also, we know that g is
determined by (􏽢x, y). ,erefore, g and (􏽢x, y) are bijective.
In distributed training, w and b usually are the parameters
that need to be updated and known. ,en, it can infer (􏽢x, y)

from g.
Based on [9], the single-sample analysis of multilayer

neural networks by using ReLu activation function, there is
also data leakage problem. Although there is no such simple
and intuitive leakage of data in a multilayer neural network,
we can still know 􏽢x and y by analyzing the internal rela-
tionship of the neural network and find that (􏽢x, y) and g are
still bijective.

3. Super Stochastic Gradient Descent

In this section, we propose our super stochastic gradient
descent approach for preventing gradient leakage while
keeping the accuracy and then analyze in detail the safety of
our approach.

3.1. Approach. It was confirmed that the gradient leaks
privacy [7, 25]. For solving the security problem caused by
the exchange gradient in stochastic gradient descent or mini-
batch gradient descent, we propose the super stochastic
gradient descent approach, which can protect the gradient
information without losing accuracy by hiding part of the
gradient information. ,e gradient is the first-order partial
derivative of the objective function, so it is a vector with both
magnitude and direction. We seek the gradient of the ob-
jective function to find the fastest descent direction. But it is
a little related to the modulus length of the gradient vector.
,erefore, we hide the modulus length of the gradient vector
and convert the gradient vector into a unit vector.

,e superrandomness, caused by the aggregation of
multiple unit gradient vectors, may lead to poor results. To
guarantee that this kind of randomness is friendly, we utilize
the following approaches to reduce the uncertainty caused
by superrandomness.

For single-sample training sample xi and label yi, we use
unit gradient vector to update parameter θ:

θ � θ − η ·
∇θℓ θ; xi; yi(􏼁

∇θℓ θ; xi; yi(􏼁
����

����
. (5)

For multiple samples, the parameter is updated to

θ � θ −
η
m

· 􏽘
m

j�1

∇θℓ θ; x(i;i+n); y(i;i+n)􏼐 􏼑
j

∇θℓ θ; x(i;i+n); y(i;i+n)􏼐 􏼑
j

������

������

, (6)

where x(i+n) represents n samples and y(i+n) denotes their
labels. ,e gradient ∇ℓ(θ; x(i;i+n); y(i;i+n)) of n samples is
considered as a basic gradient, and m is the number of basic
gradients. Aggregating the unit gradient vectors of m basic
gradients on average is to further enhance the stability of the
algorithm. ,e algorithm has higher performance with
strong randomness. It is secure to share this unit basic
gradient in a distributed environment.

Neuron is the smallest information carrier in the neural
network structure. In the neural network, we choose to
convert each neuron parameter gradient vector into a unit
vector. ,erefore, the single-layer neural network parameter
is updated to

θr � θr −
η
m

· 􏽘
m

j�1

∇θℓ θ; x(i;i+n); y(i;i+n)􏼐 􏼑
rj

∇θℓ θ; x(i;i+n); y(i;i+n)􏼐 􏼑
rj

������

������

, (7)

+1

xd  

x1

fwd

w1

b

hw,b (x) = f (wixi + b)
d

i=1

Figure 1: Single neuron structure.

Security and Communication Networks 3

where θr represents the rth column or rth row of the pa-
rameter matrix in the fully connected layer or convolutional
layer (the convolution kernel is regarded as a neuron). In the
fully connected layer, ∇θℓ(θ; x(i;i+n); y(i;i+n))r is expressed as
the rth column of the gradient matrix. And in the con-
volutional layer, it represents the rth row of the gradient
matrix of the convolution kernel. ,erefore, each row or
column of the gradient matrix is a unit vector. ,en, we
obtain an average gradient matrix by using m such gradient
matrices to update the parameters.

3.2. /e Safety of SSGD. By analyzing the multilayer neural
network with ReLu activation function on a training sample,
the following relationship is obtained in [9]:

G
i

� 􏽘
c

gc D
i
W

i− 1
· · · W

0
X􏼐 􏼑 W

H
􏽨 􏽩

T

c
D

H
· · · W

(i+1)
D

(i+1)
􏼒 􏼓,

(8)

in which X � x1, x2, . . . , xn􏼈 􏼉 is the input data, where
xi ∈ Rd and X ∈ Rd×n. gc represents the cth dimension of the
loss vector g, T is the number of layers of neural network, Di

is the activation pattern of the ith layer of neural network,
andG

i andWi denote the gradients and parameters of the ith
layer of neural network, respectively. In fact, the attack
gradient models are all solutions to the above equations. In
the distributed training model that needs to share the
gradient, the participants know G

i, Wi, and Di. For data
reconstruction attacks, it can infer gc and solve X by
equation (8).

,e left side of equation (8) is the ith layer gradient
matrix:

G
i

�

σi
1,1 σi

1,2 · · · σi
1,wi

σi
2,1 σi

2,2 · · · σi
2,wi

⋮ ⋮ ⋱ ⋮

σi
wi− 1 ,1 σi

wi− 1 ,2 · · · σi
wi− 1 ,wi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wi−1×wi

, (9)

where wi is the number of neurons in the ith layer. ,e
gradient matrix of our SSGD is

􏽢G
i

�

σi
1,1 σi

1,2 · · · σi
1,wi

σi
2,1 σi

2,2 · · · σi
2,wi

⋮ ⋮ ⋱ ⋮

σi
wi− 1 ,1 σi

wi− 1,2 · · · σi
wi− 1 ,wi

⎡⎢⎢⎣

⎤⎥⎥⎦

wi−1×wi

1
μi
1

0 · · · 0

0
1
μi
2

· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · ·
1
μi

wi

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

wi×wi

.

(10)

Each column of 􏽢G
i is a unit vector, and μi

1 is the modulus
length of the 1st column vector of the ith layer gradient
matrix, i.e., the modulus length of the 1st neuron gradient of
the ith layer neural network. Essentially, the parameter
matrix of a layer of neural network is multiplied by a

diagonal matrix Ui on the right, and the value of the diagonal
matrix is the reciprocal of the modulus length of the gradient
vector of each neuron. By using our SSGD, equation (8) is
represented as

􏽢G
i

� 􏽘
c

gc D
i
W

i− 1
· · · W

0
X􏼐 􏼑 W

H
􏽨 􏽩

T

c
D

H
· · · W

i+1
D

i+1
􏼒 􏼓U

i
,

(11)

where Ui is unknown and is not uniquely determined when
the loss functions are nonconvex and nonconcave functions.
According to [29], we know that the loss function of
multilayer neural networks are nonconvex and nonconcave
functions. Due to the dynamicity of Ui, even if gc, 􏽢G

i, Wi,
and Di are known, X is not obtained.

Our method hides the correlation between the gradient
and the sample, eliminates the information between neu-
rons, and achieves neuron-level security. SSGD is a multi-
sample training; there is no information leakage problem
like in [19], which is a single-sample leakage of privacy.
SSGD can defend against attacks on the gradient.

Since training a model requires rounds of iterations, is it
safe to use multiple rounds of iterations? We previously
analyzed that the gradient g and the training data (􏽢x, y) are
bijective in terms of parameter θ, i.e., g � ∇θf(θ|(􏽢x, y)),
where f is a functional relationship. We use θi and θi+1

to denote the training parameters of the ith and i+ 1st
rounds, respectively. ,en, we haveθ(i+1) � θi − η · gi. ,e
ith gradient gi � ∇θf(θi|(􏽢x, y)). ,erefore, we have
θ(i+1) � θi − η · ∇θf(θi|(􏽢x, y)). Furthermore, we obtain
g(i+1) � ∇θf(θi − η · ∇f(θi|(􏽢x, y))|(􏽢x, y)). By comparing
g(i+1) with gi, we can see that there is not additional in-
formation in g(i+1). ,e information of the model is only
related to the training samples, initial parameters, and
learning rate. ,erefore, the iteration operation does not
cause the information leakage.

4. Experiments

Data. We use MNIST (https://yann.lecun.com/exdb/mnist)
and Fashion-MNIST (https://fashion-mnist.s3-website.eu-
central-1.amazonaws.com) datasets to assess the perfor-
mance of our algorithm.,eMNISTcontains 60000 training
images and 10000 test images, where every image is a 28× 28
grayscale image, and each pixel is an octet. ,e Fashion-
MNIST [30] is composed of 28× 28 grayscale images of
70,000 fashion products from 10 categories, with 7,000
images per category. ,e training set and test set contain
60,000 images and 10,000 images, respectively.

Model. ,e lenet-5 [31] contains two convolutional layers,
two pooling layers, and three fully connected layers. ,e
activation function is ReLu. ,e input dimensions are 784,
and output dimensions are 10.
Evaluation Index (/e Test Accuracy).We use 60000 training
images to train model. ,e test accuracy is the average value
of ten experimental results, and every experiment obtains

4 Security and Communication Networks

https://yann.lecun.com/exdb/mnist
https://fashion-mnist.s3-website.eu-central-1.amazonaws.com
https://fashion-mnist.s3-website.eu-central-1.amazonaws.com

the average test accuracy of randomly selecting 1000 samples
from the test set. ,e number of iterations is 10,000. ,e
highest test accuracy of these compared algorithms in the
same experimental environment is shown in bold.

4.1. Accuracy and Efficiency. We compare SSGD with SGD,
SGDm [32], and Adam [33], which are widely used gradient
descent algorithms. ,e batch size (N � m × n) is set to 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192, where n is
set to 1, 4, 8, 16, 32, 64, and 128 and m is set to 4, 8, 16, 32,
and 64. When m� 1, it is the MBGD. ,ere is not set same
learning rate as a good experimental result, because SGD and
SGDm have poor adaptability in large batches.

For MNIST data set, the momentum of SGDm is set to
0.999. For the experimental parameters of Adam, the
learning rate is set to 5 × 10− 4, and β1 and β2 are set to 0.9
and 0.999, respectively. For SSGD, the learning rate in this
experiment is set to 10− 1. For Fashion-MNIST data set, the
momentum of SGDm is set to 0.99. For the experimental
parameters of Adam, the learning rate is set to 10− 3, and β1
and β2 are set to 0.9 and 0.999, respectively. For SSGD, the
learning rate in this experiment is set to 10− 2/1.50.002j, where
j is the number of iterations.

,e comparative experimental results of SGD, SGDm,
Adam, and SSGD are shown in Tables 1 and 2, where the
numbers in bracket in the second and third columns denote the
learning rates of SGD and SGDm, respectively, and the number
in bracket in the fifth column is the value of m. From Tables 1
and 2, we can see that the performance of our algorithm is
better than that of SGD, SGDm, and Adam for large batches of
data. In this case, SGD and SGDm need to reduce the learning
rate to adapt to it. And Adam also has obvious overfitting in
large batches of data. SSGD has always maintained high
precision. On the whole, our algorithm on test accuracy is
better and more stable than SGD, SGDm, and Adam.

Tables 3 and 4 show the running results of our SSGD
approach in different numbers of training batches. We can
see that the larger the number of training batches
(N� m × n) is, the better the test accuracy is. When the
number of training batches is too small, the effect of n on
performance is greater than that of m. ,e distribution of m
values in Tables 1 and 2 also shows this point.

,e convergence rate graphs on MNIST and Fashion-
MNISTare shown in Figures 2(a) and 2(b), respectively. ,e
value in longitudinal axis is the average accuracy of every 10
iterations. ,e SSGDm is SSGD with momentum. We
choose the intermediate value 256 as the batch number in
the convergence experiment, where n� 16 and m� 16 for
SSGD and SSGDm. In Figure 2(a), the learning rates of SGD
and SGDm are 10− 4 and 5 × 10− 4, respectively. ,e mo-
mentum of SGDm is set to 0.999. ,e learning rate of
SSGDm is 10/1.0002j, where j is the number of iterations,
and its momentum is 0.99. ,e other parameters are con-
sistent with the above experiment onMNIST. In Figure 2(b),
we choose the larger batch number 1024 as the batch
number in the convergence experiment, where n� 64 and
m� 16 for SSGD and SSGDm.,e learning rates of SGD and
SGDm are 10− 5 and 10− 3, respectively. ,e momentum of

SGDm is set to 0.99. ,e other parameters are consistent
with the above experiment on Fashion-MNIST.,e learning
rate of SSGDm is 1/1.50.002j, where j is the number of it-
erations, and its momentum is 0.9. From Figure 2, we can see

Table 1: ,e test accuracy of compared algorithms on MNIST.

N � m × n SGD (η) SGDm (η) Adam SSGD (m)

16 0.9781
(5 × 10− 4)

0.9778
(5 × 10− 4) 0.9767 0.9832 (4)

32 0.9702
(5 × 10− 4)

0.9768
(5 × 10− 4) 0.9850 0.9876 (8)

64 0.9794
(5 × 10− 4)

0.9792
(5 × 10− 4) 0.9842 0.9900 (8)

128 0.9676
(5 × 10− 4)

0.9780
(5 × 10− 4) 0.9896 0.9901

(16)

256 0.9755 (10− 4) 0.9804
(5 × 10− 4) 0.9855 0.9877

(16)

512 0.9665 (10− 4) 0.9789
(5 × 10− 4) 0.9814 0.9861

(16)

1024 0.9738 (10− 5) 0.9749 (10− 4) 0.9778 0.9869
(16)

2048 0.9763 (10− 5) 0.9717 (10− 4) 0.9894 0.9886
(64)

4096 0.9703 (10− 5) 0.9806 (10− 4) 0.9788 0.9878
(64)

8192 0.9785
(2 × 10− 6) 0.8994 (10− 4) 0.9753 0.9855

(64)

Table 2: ,e test accuracy of compared algorithms on fashion-
MNIST.

N � m × n SGD (η) SGDm (η) Adam SSGD (m)
16 0.8253 (10− 4) 0.7795 (10− 3) 0.7175 0.8035 (4)
32 0.8241 (10− 4) 0.8031 (10− 3) 0.7513 0.8046 (4)
64 0.8468 (10− 4) 0.8163 (10− 3) 0.7674 0.8344 (4)
128 0.8629 (10− 4) 0.8331 (10− 3) 0.7835 0.8437 (4)
256 0.8527 (10− 4) 0.8511 (10− 3) 0.8252 0.8602 (4)
512 0.8682 (10− 4) 0.8569 (10− 3) 0.8566 0.8590 (4)
1024 0.8569 (10− 5) 0.8612 (10− 3) 0.8547 0.8668 (16)
2048 0.8457 (10− 5) 0.8351 (10− 4) 0.8511 0.8652 (32)
4096 0.8629 (10− 6) 0.8518 (10− 4) 0.8321 0.8704 (32)
8192 0.8325 (10− 6) 0.8278 (10− 4) 0.8144 0.8648 (64)

Table 3: Test accuracy of SSGD on MNIST.

n� 1 n� 4 n� 8 n� 16 n� 32 n� 64 n� 128
m� 4 0.9717 0.9832 0.9842 0.9846 0.9895 0.9886 0.9888
m� 8 0.9815 0.9876 0.9900 0.9884 0.9855 0.9861 0.9849
m� 16 0.9801 0.9854 0.9901 0.9877 0.9861 0.9869 0.9832
m� 32 0.9851 0.9804 0.9901 0.9833 0.9819 0.9867 0.9828
m� 64 0.9830 0.9849 0.9831 0.9833 0.9886 0.9878 0.9855

Table 4: Test accuracy of SSGD on Fashion-MNIST.

n� 1 n� 4 n� 8 n� 16 n� 32 n� 64 n� 128
m� 4 0.7739 0.8035 0.8046 0.8344 0.8437 0.8602 0.8590
m� 8 0.8152 0.8136 0.8150 0.8271 0.8401 0.8564 0.8655
m� 16 0.8137 0.8176 0.8246 0.8446 0.8446 0.8668 0.8663
m� 32 0.8189 0.8125 0.8198 0.8353 0.8574 0.8652 0.8704
m� 64 0.8215 0.8196 0.8238 0.8289 0.8577 0.8655 0.8648

Security and Communication Networks 5

that the convergence speed of our algorithm is faster and
more stable than SGD, SGDm, and Adam.

4.2. Robustness. Robustness is the robustness of the system,
which refers to the characteristic that the systemmaintains a
certain performance under certain parameter perturbations.
To check the robustness of our algorithm, we add random
noise to the gradient. At the same time, we noticed that
differential privacy is a way to protect gradient information
by adding random noise that meets a certain distribution. To
compare the performances of our algorithm and the model
with differential privacy, we choose the model in the ro-
bustness experiment to add noise that satisfies differential
privacy. In this section, we compare the performances of the
traditional gradient descent algorithm and SSGD with
noises. In [20], the large gradient does not participate in the
update, which will seriously affect the gradient descent
performance. However, the large gradient participating in
the update will cause the noise scale to be too large, which
makes the algorithm effect extremely poor or even unable to
converge. Different from cutting gradient value in [20], we
strictly define sensitivity as the maximum value minus the
minimum value in the gradient matrix. We add Laplacian
noises of the same scale on comparing algorithms and set
privacy budget ε� 4 and ε� 2 on MNIST and Fashion-
MNIST, respectively.

We use SGDm and Adam as the compared algorithms.
Also, we have tested SGD algorithm. When noise or the
number of batches is large, the gradient explosion will
occur and the SGD cannot converge on MNIST. SGDm
and Adam algorithms have better robustness. Because
both SGDm and Adam have momentum, SSGDm is
chosen as our comparison algorithm. We adjust hyper
parameters to get more performance for SGDm and Adam
with noises. To make SGDm, Adam, and SSGDm ex-
periments in the same environment, the batch number is
N � n × m, where n is set to 4, 8, 16, 32, and 64, andm is set

to 4, 8, 16, 32, and 64. For each iteration, after the n vectors
are added, the Laplace noises of ε� 4 or ε� 2 that strictly
meet the differential privacy are added. ,e sensitivity is
set to the maximum value minus the minimum value of
the gradient matrix of the same batch. ,en, we use
SGDm, Adam, and SSGDm algorithms to update their
parameters, respectively. For SGDm, the momentum is
0.99. ,e learning rate is 10− 2 and 10− 3 on MNIST and
Fashion-MNIST, respectively. For Adam, the learning rate
is 10− 3 on MNIST and Fashion-MNIST, β1 � 0.9 and
β2 � 0.999. For SSGDm, we use the average of multiple-
unit gradient vectors to update the gradient. ,erefore,
the module length of the update gradient vector decreases
very slowly, and dynamic learning rates need to be set. ,e
learning rate of SSGDm is set to 10/1.0002j and
1/1.50.002jon MNIST and Fashion-MNIST, respectively.
,e momentum � 0.9.

From Tables 5 and 6, all three algorithms comply with
the law of acquaintance; that is, the larger the batch size is,
the better the accuracy is. We can see that SSGDm is more
robust than the SGDm and Adam algorithms when the
noises of the same scale are added in gradients on test ac-
curacy. On MNIST, compared with SGDm and Adam, the
average test accuracy of SSGDm is increased by 4.12% and
1.60%, respectively. On Fashion-MNIST, compared with
SGDm and Adam, the average test accuracy of SSGDm is
increased by 5.24% and 1.64%, respectively.

Where is the limit of the robustness of our algorithm?On
MINST, we try to increase the scale of noises and make ε
be 0.2, 0.5, 1, 2, and 4. ,e experimental environment is
the same as the robustness experiment above, and the
parameter settings are also the same. ,e batch number is
set to n � 16 andm � 16. On Fashion-MNIST, we make ε be
0.5, 1, 2, and 4. ,e batch number is set to n � 64 and
m � 16. From Tables 7 and 8, it is clear that our SSGDm has
obvious advantages in robustness. ,e greater the scale of
noises is, the more obvious the advantage of our algorithm
is.

1.0

0.8

0.6

0.4

0.2

0.0

Te
st_

ac
c

0 20 40 60 80 100
Iteration

SGD
SSGD
SGDm

Adam
SSGDm

(a)

0.9

0.7

0.8

0.6

0.5

0.4

0.3

0.2

0.1

Te
st_

ac
c

0 20 40 60 80 100
Iteration

SGD
SSGD
SGDm

Adam
SSGDm

(b)

Figure 2: ,e convergence speed of test accuracy (a) on MNIST and (b) on Fashion-MNIST.

6 Security and Communication Networks

Table 5: Test accuracy with ε� 4 on MINST.

SGDm\Adam\SSGDm n� 4 n� 8 n� 16 n� 32 n� 64
m� 4 0.8714\0.9321\0.9730 0.9299\0.9515\0.9816 0.9508\0.95920.9822 0.9559\0.9567\0.9774 0.9518\0.97150.9851
m� 8 0.9242\0.9570\0.9785 0.9337\0.9657\0.9829 0.9582\0.9737\0.9790 0.9569\0.95690.9832 0.9625\0.9797\0.9802
m� 16 0.9471\0.9607\0.9684 0.9390\0.9606\0.9839 0.9662\0.97230.9833 0.9674\0.9726\0.9844 0.9699\0.97960.9860
m� 32 0.9203\0.9580\0.9780 0.9333\0.9693\0.9805 0.9594\0.9658\0.9859 0.9647\0.97630.9838 0.9758\0.9806\0.9837
m� 64 0.9163\0.9545\0.9772 0.9514\0.9771\0.9861 0.9560\0.97150.987 0.9710\0.9702\0.9853 0.9678\0.98330.9885

Table 6: Test accuracy with ε� 2 on Fashion-MNIST.

SGDm\Adam\SSGDm n� 4 n� 8 n� 16 n� 32 n� 64
m� 4 0.7089\0.7177\0.7732 0.7623\0.7729\0.7875 0.7894\0.7813\0.7947 0.7941\0.81800.8233 0.8108\0.8192\0.8343
m� 8 0.7123\0.7402\0.7885 0.7658\0.7548\0.8040 0.7806\0.80220.8175 0.8044\0.8242\0.8412 0.8159\0.83730.8459
m� 16 0.7127\0.7723\0.7903 0.7763\0.8052\0.8139 0.7724\0.8173\0.8389 0.7993\0.82910.8474 0.8199\0.8386\0.8455
m� 32 0.7159\0.8013\0.8177 0.7669\0.8066\0.8333 0.7735\0.83390.8467 0.8103\0.8540\0.8611 0.8299\0.85530.8597
m� 64 0.7158\0.8140\0.8235 0.7432\0.8309\0.8412 0.7853\0.8497\0.8524 0.8064\0.85860.8647 0.8283\0.8663\0.8655

Table 7: ,e test accuracy by varying ε on MINST.

ε� 0.2 ε� 0.5 ε� 1 ε� 2 ε� 4
SGDm 0.0970 0.3745 0.8166 0.9344 0.9662
Adam 0.8074 0.8813 0.9140 0.9416 0.9723
SSGDm 0.8481 0.9395 0.9671 0.9719 0.9833

Table 8: ,e test accuracy by varying ε on fashion-MNIST.

ε� 0.5 ε� 1 ε� 2 ε� 4
SGDm 0.0995 0.5921 0.8199 0.8363
Adam 0.6474 0.7934 0.8386 0.8524
SSGDm 0.7587 0.8106 0.8455 0.8618

(a) (b)

Figure 3: Training sample image of MNIST. (a) ,e original image. (b) From left to right are the poisoned images with ε� 5, 2, and 1,
respectively.

Table 9: Test accuracy by varying ε on MNIST.

ε� 1 ε� 2 ε� 5
SGD 0.1095 0.9171 0.9679
Adam 0.4859 0.8160 0.8890
SSGD 0.9446 0.9621 0.9827

Table 10: Test accuracy by varying ε on Fashion-MNIST.

ε� 1 ε� 2 ε� 5
SGD 0.1012 0.5813 0.7969
Adam 0.2888 0.3452 0.6296
SSGD 0.4638 0.7651 0.8290

Security and Communication Networks 7

4.3. Poisoning Attack. ,e goal of poisoning attack is to
destroy the integrity and availability of data. ,e robustness
experiment results show that our algorithm can resist the

poisoning attack added to the gradient to a certain extent.
According to the previous analysis, the gradient is a kind of
mapping of the training data. ,en, our algorithm should be

0

0

20

25

Iter = 0 Iter = 10 Iter = 20 Iter = 30

(a)

Iter = 0 Iter = 10 Iter = 20
0

0

20

25

(b)

Figure 4: DLG attacks SGD (a) on MINST dataset and (b) on Fashion-MNIST dataset.

Iter = 0 Iter = 10 Iter = 20
0

0

20

25

(a)

Iter = 0 Iter = 10 Iter = 20
0

0

20

25

(b)

Figure 5: iDLG attacks SGD (a) on MINST dataset and (b) on Fashion-MNIST dataset.

Iter = 0

Iter = 90 Iter = 100 Iter = 110 Iter = 120 Iter = 130 Iter = 140 Iter = 150 Iter = 160 Iter = 170 Iter = 180

Iter = 190 Iter = 200 Iter = 210 Iter = 220 Iter = 230 Iter = 240 Iter = 250 Iter = 260 Iter = 270 Iter = 280

Iter = 10 Iter = 20 Iter = 30 Iter = 40 Iter = 50 Iter = 60 Iter = 70 Iter = 80
0

20

0 25

(a)

Iter = 0

Iter = 90 Iter = 100 Iter = 110 Iter = 120 Iter = 130 Iter = 140 Iter = 150 Iter = 160 Iter = 170 Iter = 180

Iter = 190 Iter = 200 Iter = 210 Iter = 220 Iter = 230 Iter = 240 Iter = 250 Iter = 260 Iter = 270 Iter = 280

Iter = 10 Iter = 20 Iter = 30 Iter = 40 Iter = 50 Iter = 60 Iter = 70 Iter = 80
0

20

0 25

(b)

Figure 6: DLG attacks SSGD (a) on MINST dataset and (b) on Fashion-MNIST dataset.

8 Security and Communication Networks

effective against data poisoning attacks. ,is part of the
experiment is to verify the performance of our algorithm in
data poisoning attacks.

SGD is a more basic gradient descent method. In this
experiment, we chose SGD as compared algorithm. ,is
experiment compares the performance of SGD, Adam, and
SSGD on the same data set with noises. To determine the
scale of added noises, the differential privacy mechanisms
still are used to add noises with the same methods as the
robustness experiment. We add Laplacian noises of different
scales to 60,000 training samples. ,e evaluation method of
the experiment result is the same as the above experiment.
On MNIST, the batch number is set to n� 64 andm� 4. ,e
learning rate of SGD, Adam, and SSGD is 10− 4, 10− 4, and
10− 2, respectively. On Fashion-MNIST, the batch number is
set to n� 64 and m� 16. ,e learning rate of SGD, Adam,
and SSGD is 10− 4, 10− 4, and 10− 2/1.50.002j, respectively. ,e
other settings are the same as the above experiment.

Figure 3 is the effect picture after adding different noise
scales. From Tables 9 and 10, we can see that SSGD is
significantly better than SGD and Adam in test accuracy.
Also, our algorithm still maintains a higher test accuracy
while continuously increasing the scale of noises. ,erefore,

SSGD can resist gradient poisoning attacks and parametric
poisoning attacks to a certain extent.

4.4. Data Reconstruction Attack. Zhu et al. [7] presented an
approach which shows the possibility of obtaining private
training data from the publicly shared gradients. In their
deep leakage from gradient (DLG) method, they synthesized
the dummy data and corresponding labels with the super-
vision of shared gradients. Specifically, they start with
random initialization of pseudodata and labels. Virtual
gradients are computed on the current shared model in the
distributed setup. By minimizing the difference between the
virtual gradient and the shared real gradient, they iteratively
update the virtual data and labels simultaneously. iDLG [4]
is an improvement based on DLG. ,e following experi-
mental diagrams include the experimental results of DLG [7]
and iDLG [4] attacking SGD and SSGD algorithms on
MINST datasets and Fashion-MNIST datasets. Figures 4
and 5 are the experimental results of DLG and iDLG
attacking SGD. Figures 6 and 7 are about the experimental
results of DLG and iDLG attacking SSGD. ,e number of
iterations is 300, and the iteration is stopped if the

Iter = 0

Iter = 90 Iter = 100 Iter = 110 Iter = 120 Iter = 130 Iter = 140 Iter = 150 Iter = 160 Iter = 170 Iter = 180

Iter = 190 Iter = 200 Iter = 210 Iter = 220 Iter = 230 Iter = 240 Iter = 250 Iter = 260 Iter = 270 Iter = 280

Iter = 10 Iter = 20 Iter = 30 Iter = 40 Iter = 50 Iter = 60 Iter = 70 Iter = 80
0

20

0 25

(a)

Iter = 0

Iter = 90 Iter = 100 Iter = 110 Iter = 120 Iter = 130 Iter = 140 Iter = 150 Iter = 160 Iter = 170 Iter = 180

Iter = 190 Iter = 200 Iter = 210 Iter = 220 Iter = 230 Iter = 240 Iter = 250 Iter = 260 Iter = 270 Iter = 280

Iter = 10 Iter = 20 Iter = 30 Iter = 40 Iter = 50 Iter = 60 Iter = 70 Iter = 80
0

20

0 25

(b)

Figure 7: iDLG attacks SSGD (a) on MINST dataset and (b) on Fashion-MNIST dataset.

Security and Communication Networks 9

predetermined accuracy is reached. We can see that our
algorithm can defend against DLG and iDLG.

5. Conclusions

In this paper, we propose a new gradient descent approach,
called super stochastic gradient descent.,e SSGD enhances
the randomness of gradients to protect against gradient-
based attacks. Simultaneously, we use multisample aggre-
gation to enhance stability and eliminate the uncertainty
brought about by superrandomness. Our approach achieves
neuron-level security and can defend against attacks on the
gradient. Experimental results demonstrate that SSGD has
good accuracy and strong robustness because its stability
and randomness are enhanced. SSGD can also resist model
poisoning attacks to a certain extent. But for attacks with the
same degree of poisoning, data poisoning has a greater
impact on performance. In the future, we will continue to
find a more suitable method for resisting data poisoning
attacks.

Data Availability

All the experimental data used to support the findings of this
study are included within the article.

Disclosure

An earlier version of this study’s preprint is given in the
following link: https://arxiv.org/abs/2012.02076.

Conflicts of Interest

,e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China (nos. 61672176 and 61763003), Re-
search Fund of Guangxi Key Lab of Multi-Source Infor-
mation Mining and Security (no. 19-A-02-01), Guangxi
1000-Plan of Training Middle-Aged/Young Teachers in
Higher Education Institutions, Guangxi “Bagui Scholar”
Teams for Innovation and Research Project, Guangxi Talent
Highland Project of Big Data Intelligence and Application,
and Guangxi Collaborative Innovation Center of Multi-
source Information Integration and Intelligent Processing.

References

[1] S. Ruder, “An overview of gradient descent optimization
algorithms,” 2016, https://arxiv.org/abs/1609.04747.

[2] L. Yang and D. Cai, “AdaDB: an adaptive gradient method
with data-dependent bound,” Neurocomputing, vol. 419,
pp. 183–189, 2021.

[3] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov,
“Exploiting unintended feature leakage in collaborative
learning,” in Proceedings of the IEEE Symposium on Security

and Privacy (SP), pp. 691–706, San Francisco, CA, USA, May
2019.

[4] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: improved deep
leakage from gradients,” 2020, https://arxiv.org/abs/2001.
02610.

[5] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under
the GAN: Information leakage from collaborative deep
learning,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pp. 603–618,
Dallas, TX, USA, November 2017.

[6] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi,
“Beyond inferring class representatives: user-level privacy
leakage from federated learning,” in Proceedings of the IEEE
Conference on Computer Communications (INFOCOM),
pp. 2512–2520, Paris, France, April 2019.

[7] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in
Proceedings of the Annual Conference on Neural Information
Processing Systems 2019 (NeurIPS), pp. 14747–14756, Van-
couver, Canada, December 2019.

[8] J. Geiping, H. Bauermeister, H. Droge, and M. Moeller,
“Inverting gradients-how easy is it to break privacy in fed-
erated learning?” in Proceedings of the Annual Conference on
Neural Information Processing Systems 2020 (NeurIPS) Virtual
Event, December 2020.

[9] X. Pan, M. Zhang, Y. Yan, J. Zhu, and M. Yang, “,eory-
oriented deep leakage from gradients via linear equation
solver,” 2020, https://arxiv.org/abs/2010.13356.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, Las Vegas, NV, USA, June 2016.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the International Conference on Learning Representations
(ICLR), San Diego, CA, USA, May 2015.

[12] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 2261–2269, Honolulu, HI, USA, July 2017.

[13] A. Krizhevsky, “One weird trick for parallelizing convolu-
tional neural networks,” 2014, https://arxiv.org/abs/1404.
5997.

[14] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2:
practical guidelines for efficient CNN architecture design,” in
Proceedings of the 15th European Conference on Computer
Vision (ECCV), pp. 122–138, Munich, Germany, September
2018.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2826, Las Vegas, NV,
USA, June 2016.

[16] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with con-
volutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–9, Boston, MA,
USA, June 2015.

[17] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “Mobilenetv2: inverted residuals and linear bottle-
necks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4510–4520, Salt
Lake City, UT, USA, June 2018.

[18] K. Bonawitz, V. Ivanov, B. Kreuter et al., “Practical secure
aggregation for privacy-preserving machine learning,” in
Proceedinegs of the ACM SIGSAC Conference on Computer

10 Security and Communication Networks

https://arxiv.org/abs/2012.02076
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/2001.02610
https://arxiv.org/abs/2001.02610
https://arxiv.org/abs/2010.13356
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1404.5997

and Communications Security (CCS), pp. 1175–1191, Dallas,
TX, USA, October 2017.

[19] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: secure
and verifiable federated learning,” IEEE Transactions on In-
formation Forensics and Security, vol. 15, pp. 911–926, 2020.

[20] X. Guo, Z. Liu, J. Li et al., “VeriFL: communication-efficient
and fast verifiable aggregation for federated learning,” IEEE
Transactions on Information Forensics and Security, vol. 16,
pp. 1736–1751, 2021.

[21] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and
M. Raykova, “Secure single-server aggregation with (Poly)
logarithmic overhead,” in Proceedings of the ACM SIGSAC
Conference on Computer and communications security (CCS),
pp. 1253–1269, Virtual Event, USA, November 2020.

[22] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon, “Communication
computation efficient secure aggregation for federated
learning,” 2020, https://arxiv.org/abs/2012.05433.

[23] H. Fereidooni, S. Marchal, M. Miettinen et al., “SAFELearn:
Secure aggregation for private FEderated learning,” in Pro-
ceedings of the 2021 IEEE Security and Privacy Workshops
(SPW), pp. 56–62, Virtual Event, May 2021.

[24] X. Ma, C. Ji, X. Zhang et al., “Secure multiparty learning from
the aggregation of locally trained models,” Journal of Network
and Computer Applications, vol. 167, Article ID 102754, 2020.

[25] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-Preserving deep learning via additively homomor-
phic encryption,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 5, pp. 1333–1345, 2018.

[26] M. Abadi, A. Chu, I. J. Goodfellow et al., “Deep Learning with
Differential Privacy,” in Proceedings Of the ACM SIGSAC
Conference on Computer and communications security (CCS),
pp. 308–318, Vienna, Austria, October 2016.

[27] K. Yadav, B. B. Gupta, K. T. Chui, and K. E. Psannis, “Dif-
ferential privacy approach to solve gradient leakage attack in a
federated machine learning environment,” in Proceedings of
the International Conference on Computational Data and
Social Network (CSoNet), pp. 378–385, Dallas, TX, USA,
December 2020.

[28] Q. Zhao, C. Zhao, S. Cui, S. Jing, and Z. Chen, “PrivateDL:
privacy-preserving collaborative deep learning against leakage
from gradient sharing,” International Journal of Intelligent
Systems, vol. 35, no. 8, pp. 1262–1279, 2020.

[29] K. Kawaguchi, “Deep learning without poor local minima,” in
Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS), pp. 586–594, Barcelona, Spain,
May 2016.

[30] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel
image dataset for benchmarking machine learning algo-
rithms,” 2017, https://arxiv.org/abs/1708.07747.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[32] N. Qian, “On the momentum term in gradient descent
learning algorithms,” Neural Networks, vol. 12, no. 1,
pp. 145–151, 1999.

[33] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” in Proceedings of the International Conference
On Learning Representations (ICLR), San Diego, CA, USA,
May 2015.

Security and Communication Networks 11

https://arxiv.org/abs/2012.05433
https://arxiv.org/abs/1708.07747

