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*e rapid evolution of the Internet of *ings (IoT) and the development of cloud computing have endorsed a new computing
paradigm called edge computing, which brings the computing resources to the edge of the network. Due to low computing power and
small data storage at the edge nodes, the task must be assigned to the computing nodes, where their associated data is available, to
reduce overheads caused by data transmissions in the network. *e proposed scheme named task priority-based data-prefetching
scheduler (TPDS) tries to improve the data locality through available cached and prefetching data for offloading tasks to the edge
computing nodes. *e proposed TPDS prioritizes the tasks in the queue based on the available cached data in the edge computing
nodes. Consequently, it increases the utilization of cached data and reduces the overhead caused by data eviction. *e simulation
results show that the proposed TPDS can be effective in terms of task scheduling and data locality.

1. Introduction

Edge computing is a paradigm to extend cloud computing
services to those at edge nodes in networks. *us, it brings
the computing services near to Internet of things (IoT)
devices [1]. Putting resources at the edge of the network
enables achieving low latency processing. However, since
the enormous number of IoT devices generates a high
volume of data, transmitting them to the cloud yields high
computational processing. In general, the cloud contains
distributed computing resources and processes the data
using a group of servers in parallel and distributed way.
Sending all the data and tasks to the cloud for processing
makes the core network congested and yields a huge load to
the cloud servers. To minimize the workload of the core
network and the cloud, novel paradigms such as edge

computing and fog computing are developed [2–7] to bring
computational resources to the edge of the network and
offer services near to each IoT device as shown in Figure 1.
Due to low computing power and limited data storage, the
edge nodes are clustered to perform computation and the
huge tasks are distributed to the edge nodes. To distribute
the tasks resourcefully and efficiently to the edge nodes
based on task-associated data, an efficient task scheduling
strategy is required. In other words, a cost-effective task
scheduler is needed to assign the tasks closer to the data on a
cluster node and bring the resources near to computation
nodes while improving the overall system performance.

In cloud computing systems, complicated tasks and data
are collected to the cloud for computing processes [8, 9]. All
these data and tasks are generated by IoT devices which are
connected to the cloud by a middle layer, i.e., IoT edge
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nodes. *ousands of IoT devices are connected to the cloud
which can yield a heavy load to the core network and the
cloud system. *is increases the frequency of communica-
tion exchanges and causes a long latency to the end-users.
Consequently, there are resource limitations in a cloud
computing layer to incline many researchers toward the
computation at edge devices. Data generated by IoT devices
can be processed by middle layer devices such as IoT nodes
and base stations. *e nodes at the edge level retain low
processing power and limited resources and, thus, they
cannot handle such heavy and complicated tasks. *erefore,
a cost-effective task management strategy is needed to
distribute the complicated tasks to the edge nodes in an
efficient way.

In a cloud computing cluster, a task manager predicts the
amount of data at the computing node and assigns the tasks
to appropriate targeted nodes to guarantee data locality [10].
Based on this prediction, each node tries to bring and
preload the data from other locations. How much the
preloaded data match the task depends on the result of the
prediction. *e wrong prediction will yield the preloaded
data, which is not useful for running the task. It implies the
wastes of communication bandwidth and system resources.
Yet, the preloaded data can be exploited by fetching the
associated task from the queue. So far, several scheduling
schemes have been proposed to balance the workload in the
network based on the amount of available resource and data
[11–20]. All these schemes are prefetching the data but they
do not consider tasks’ priorities concerning the available
cached or stored data. On the contrary, our approach in this
paper assigns a priority to a task according to availability if
the required data can be obtained from the cached-data
queue. Consequently, it can reduce the overhead required
for task eviction.

On the other hand, in distributed systems [21, 22],
fetching a computation task near to data is cheaper than
fetching the data near to the computation task. Bringing the

computation task close to the required data is called data
locality in cloud computing environments. It is impossible to
guarantee 100% data locality but it somehow can be im-
proved with the existing data at the edge level by minimizing
unnecessary data transmissions. For quick access, used data
are kept in the cache memory for iterative processes. *e
cache memory contains two different types of data: static
data, which is not changeable and can be used in the next
round of task execution, and dynamic data, which is
changeable and useable in the next round. Due to limited
memory capacity, it is impossible to keep all the data needed
for the task in the cache memory of the computing node,
since data swap-out and swap-in require frequent processes
in the cache and storage memories. Loading data from the
storage memory to the cache memory is an expensive
process in terms of data processing and transferring. If the
cache memory becomes full and the system cannot store
more data in the cache memory, least recently used (LRU)
and first-in-first-out (FIFO) eviction techniques [23] can be
applied to swap out unnecessary old data from the cache
memory.

In this paper, we extend the idea from our earlier work
[11] to utilize the existing preloaded data effectively based
on a cost-effective scheduling strategy, named task pri-
ority-based data-prefetching scheduler (TPDS), which
distributes the tasks to the computing nodes logically. *e
proposed TPDS tries to match the task in the queue with
the cached-data at the computing node. It generates a
priority for a task and allocates the task to a proper edge
node based on task-associated data in the cache. With this
technique, the frequency of data swapping in the cache
can be significantly reduced and the data utilization can
be improved for available tasks. If there is no task in the
queue for the cached-data, the data is swapped out and
replaced by the required new data. In this paper, we
employ the multi-server queuing theory [24] to evaluate
the performance of the proposed scheduling strategy. *e
proposed TPDS achieves better performance in terms of
data locality, task distribution, and reduction of system
overheads caused by unnecessary evictions and data
exchanges. *e main contributions of this paper are
summarized as follows:

(i) Dynamic workload scheduling considering queue-wise
job priorities is proposed based on data locality of the
cache memory in order to maximize the resource ef-
ficiency and the data utilization of a cloud cluster.

(ii) In the cloud cluster, our proposed scheme pre-
fetches and evicts the cached-data from the com-
puting node based on task priority. It is able to avoid
blind eviction of the cached-data and reduce the
system overhead. Hence, it improves the resource
efficiency at each node.

(iii) *rough assigning a task to the computing node
based on the data locality, we can minimize the
average completion and waiting time for each task.

(iv) A multi-server queuing model applicable to the
proposed TPDS scheme is developed in order to
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(users, mobiles, smartphone, wearable devices, etc.)
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(servers, data centers)

Edge computing
(routers, switches)

Figure 1: *e structure of edge computing network.
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improve schedulability of the tasks under different
constraints and requirements.

*e rest of the paper is organized as follows. In Section 2,
we review the related previous work concerning scheduling
considering prefetching and data locality. We propose a
scheduling strategy based on priority-based data-prefetching
in Section 3. In Section 4, we evaluate the performance of the
proposed strategy, compared to the conventional ones. Fi-
nally, this paper is concluded in Section 5.

2. Related Work

Many data locality schemes for task scheduling have been
developed to improve the performance of the computing
system regarding task execution. *e data locality enables
avoiding unnecessary data transmissions for the task in
cloud computing. In distributed cloud system, tasks are
assigned to the nodes in the network based on the prediction
of associated data [25].

In [26], a new caching algorithm, called similarity-aware
popularity-based caching (SAPoC), is proposed to promote
the performance of wireless edge-caching by utilizing the
similarity among contents in dynamic scenarios. It is de-
veloped for dynamic wireless edge-caching scenarios, where
both mobile devices and contents arrive and leave dy-
namically. In SAPoC, a content’s popularity is determined
by not only its history of the requests but also its similarity
with existing ones to enable a quick-start of newly arrived
contents. It aims to devise an efficient edge-caching strategy
considering the dynamic nature of wireless edge computing
systems.

In [10], data locality awareworkflow scheduling (D-LAWS),
which focuses on data locality, data transfer time based on
network bandwidth, virtual machine (VM) consolidation, and
fairness of workflow scheduling at the node level, is proposed.
*e D-LAWSmaximizes resource utilization and parallelism of
tasks and analytically formulates data transfer time between
VMs. It combines VMs and considers task parallelism by using
data flow while planning task executions for a data-intensive
scientific workflow. Moreover, it reflects more complex
workflow models and the data locality regarding data transfer
before task executions. In [27], the authors proposed a novel
scheduling scheme for real-time bag-of-tasks jobs that arrive
dynamically at a hybrid cloud. It takes into account end-to-end
deadlines of the jobs, as well asmonetary cost required for use of
the complementary public cloud resources. In [28], a novel
hierarchical architecture for multiple cloudlets is proposed for
mobile edge clouds. In this work, the authors target improving
the efficiency of cloud resource utilization by organizing the
edge cloud servers into a hierarchical architecture. Instead of
servingmobile users directly using a flat collection of edge cloud
servers, the basic idea of the proposed scheme is to opportu-
nistically aggregate the mobile loads and send the peak loads
exceeding the capacities of edge cloud servers at lower tiers to
other servers at higher tiers in the edge cloud hierarchy. *ey
developed analytical models to compare the performance be-
tween flat and hierarchical designs of edge computing in terms
of resource utilization efficiency. Also, they provided theoretical

results that show the advantages of the proposed hierarchical
edge cloud architecture.

In [29], Raicu et al. implemented regulating data locality
and resource utilization. In [30], the authors proposed a
cache-aware task scheduling (CATS) technique that finds
suitable resources for executing the data-intensive workload.
*e proposed model minimizes energy consumptions for
both core network and cache accesses. *e CATS model
brings good tradeoffs between energy minimization and
execution time reduction by employing accurate analytical
models. Similarly, to enhance the data locality and repli-
cation technique, a delay scheduling scheme, called delay
scheduling based replication algorithm (DSBRA), is pre-
sented in [31]. *e DSBRA tries to replicate and de-replicate
blocks of the data based on prior information taken from the
scheduler. *is algorithm focuses on block-level replication
but some blocks are stored on the least loaded nodes and
some blocks are stored on the heavily loaded nodes. In [32], a
locality-based data scheduling algorithm 1 is proposed. It
allocates the input data blocks to proper nodes based on their
processing capacity in order to enhance the performance of
MapReduce in heterogeneous Hadoop clusters.

*e prefetching technique is a smart approach for re-
ducing the extra-overhead of data traffic in distributed
computing systems. By applying this technique, the delay
consumed for task execution can be reduced due to the
presence of preloaded data for the task. However, pre-
fetching and predicting data to be preloaded based on the
scheduled tasks become a great challenge. In [31, 32], the
authors present how to enhance the prefetching techniques
and also focus on task scheduling for TaskTracker based on
the data. *e above-mentioned prefetching strategy maxi-
mizes the data locality in distributed computing
environments.

Our approach in this paper is based on these previous
studies which take into account prefetching to efficiently
reuse existing cache data. *e main focus in the proposed
approach is data eviction and confirmation before task
assignment. Our goal is to improve the data locality and
to guarantee the resourceful task scheduling in edge
computing environments. In the next section, we present
the proposed scheduling strategy which enhances the
performance of data preloading for tasks and reduces the
frequency of cached-data removal blindly. According to
our proposed approach, the task scheduler tries to select
the most appropriate node in the edge computing cluster
from the perspective of the data locality and to assign the
task to the selected node. It is able to increase the cached-
data utilization and enhance the swapping process for
minimizing the overall system overhead.

3. Proposed Task Priority-Based
Data-Prefetching Scheduler (TPDS)

In this section, the proposed TPDS is presented for edge
computing clusters. *e TPDS tries to avoid unnecessary
eviction of data in order to improve the operation process of
task scheduling and data caching. Since the costs of data
transfer and eviction result in a great impact on system
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performance, the proposed TPDS attempts to reduce the
costs for data transfer and eviction, while it tries to improve
the task execution procedure.

3.1. Design Goals. *e design goals of the proposed
strategy are (i) prioritization of tasks based on the existing
data in the cache memory of the computing node, (ii)
improvement of awareness between the computing nodes
and a task manager regarding data and task to increase hit
ratio of the cached-data, and (iii) speeding up the exe-
cution of tasks by reducing the waiting time of jobs and
increasing the utilization of the cached-data. Let us
consider a set of tasks T � t1, t2, t3, . . . , tn􏼈 􏼉 with the as-
sociated data set D � d1, d2, d3, . . . , dn􏼈 􏼉 and edge com-
puting nodes E � e1, e2, e3, . . . , en􏼈 􏼉, which contain
different data blocks dn in the cache memory, C, or
storage, S. Based on the traditional data locality scheme,
the task tn ∈ T will be assigned to the computing node
en ∈ E which contains its required data, dn. *en, task
allocation to the node can be expressed as

tn⟶ en

Sen∈E∃dn,

or

Sen∈E←RLn
∃dn,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where RLn
denotes any remote location, which contains

data dn near to node en.
We assume that five tasks arrive in the system as shown

in Figure 2. *e details of task allocation to the computing
node, en ∈ E, are given in Table 1. *e task t1 is assigned to
the computing node e1 since the cached-data of the node,
Ce1∈E, have the data block d8 that is needed for the pro-
cessing of t1. Similarly, the task t2 needs d2 which is un-
available in the cache of the n-th node, Cen∈E, but available
in the storage Se2∈E of the node e2. By the LRU cache re-
placement policy, d0, which is the old data block, is
swapped with d2. Similarly, the task t3 needs the data block
d3, which considers an old data block is replaced with d1 as
shown in Figure 2.

In Figure 2, it is noted that there are two data blocks d0
and d3 which are replaced with d2 and d1 by the LRU
policy for the tasks t2 and t3, respectively, due to the
limited capacity of the cache memory. After finishing, the
tasks t2 and t3, and the data blocks d0 and d3 will shift
again to the cache Cen∈E for the tasks t4 and t5, which
require them. *erefore, the proposed scheduling strategy
avoids such unnecessary eviction and swapping of data by
prioritizing the tasks based on the available cached-data in
the computing node Cen

∃ dn as shown in Table 2 and
Figure 3. Equations (2) and (3) express the computing
node and task allocation based on the availability of
cached-data.

en ∈ E � ∀en Cen∈E, Sen∈E􏼐 􏼑, (2)

∀tn⟶∀en

Cen∈E∃dn,

Sen∈E∃dn,

Sen∈E←RLn
∃dn.

⎧⎪⎪⎨

⎪⎪⎩
(3)

4. Performance Evaluation Model

In this section, a theoretical model of the proposed TPDS is
formulated and derived. We employ an M/M/c queuing
model to evaluate the performance of the proposed TPDS.
Suppose that there are n number of tasks denoted by T �

t1, t2, t3, . . . , tn􏼈 􏼉 with a set of data blocks denoted by D �

d1, d2, d3, . . . , dn􏼈 􏼉 and a set of computing nodes denoted by
E � e1, e2, e3, . . . , em􏼈 􏼉. Here, e denotes the computing
nodes, m represents the total number of computing nodes, D
represents the set of data blocks, and dn denotes the specific
data block required for a task. If all tasks arrive in the system,
the total number of data blocks contained in the cache for all
computing nodes can be expressed as

T � 􏽘
n

i�1
ti, (4)

D � 􏽘
m

i�1
􏽘

n

j�1
dj. (5)

According to the proposed TPDS, before eviction of the
data dn ∈ D from the cache memory Cem∈E, the computing
node sends a request to the task manager in order to know if
there is any task tn ∈ T in the queue for this eviction of the
data dn ∈ D. If there is a task in the queue of the task
manager, then it gives a priority to the task and assigns that
task to the node em ∈ E. Otherwise, the data dn is evicted and
swapped in the cache memory. To estimate and optimize the
probabilistic performance of edge computing nodes, the
notations are defined in Table 3.

In this model, we consider two types of tasks: high
priority task and low priority task, based on the cached-data
as shown in Figure 3. *e high priority tasks are the tasks
whose required data are already available in the cache
memory and low priority tasks are the tasks whose required
data are not available in the cache memory of the edge node
en ∈ E as follows:

tn �

tn<Cen ∈ E∃dn > high priority,

or

tn<Cen ∈ E∄dn > low priority.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

We consider all tasks arriving at the edge computing
nodes with the rate of λ ∈ T. We assume that the arrival of a
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task follows a Poisson process and each arrival is transferred
to different nodes in the cluster of edge computing nodes.
Let ρ � λ/μ be the traffic strength regarding the tasks with
different priorities based on the available cached-data, where
λ and μ are the arrival rate and the service rate, respectively.

*e parameters for task requests in the queuing model are
Ns, WQ, and Ts. Among these three parameters, WQ affected
by the number of tasks being served plays the primary role in
the performance. As shown in Figure 4, the scheduling
policy is based on M/M/(en ∈ E). According to M/(en ∈ E)

Tasks queue

t4. . . t5 t3 t2 t1

d0 d3
d6

d1 d2 d8

Task manager

t1

t2

t3

e1

e2

e3

Ce1

Ce2

Ce3

Se1

Se2

Se3Old Eviction

Eviction
Old

d5 d8

d9 d7
d5 d9

d7 d6

d7 d3

d8 d0

d7 d4

d8 d2

d4 d6

d3 d11

d1 d2

d6 d8

Figure 2: Data prefetching and eviction process without task priority.

(1) Initialize the values
(2) QT: Queue of tasks in TaskManager.
(3) QD: Record of cached-data in edge node.
(4) QE: List of nodes
(5) Qtn.dn: List of data needed for task execution.
(6) Procedure:
(7) Check status of nodes
(8) en←I dl e

(9) en←busy

(10) While (QT is not empty) do
(11) if (enis idle) then
(12) for all tasks in queue do
(13) if tn.dn ∈ Cen∈E then
(14) en ∈ E← tn <h>
(15) else
(16) if (Cen∈E need eviction) then
(17) evcit←Cen∈E.old_data
(18) Cen∈E← Sen∈Edn
(19) en ∈ E← tn
(20) end if
(21) end if
(22) end for
(23) busy← en

(24) end if
(25) end while

ALGORITHM 1: Task priority-based data-prefetching.
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queueing model, remaining time, waiting time, and service
time of the tasks in edge computing are mathematically
evaluated.

As the requests to edge nodes come from the end devices
like smartphones, tablets, and wearable devices, the pool of
the tasks and the size of the queue are considered to be
limitless in the task manager at the cluster of edge nodes.*e
state transition diagram of M/M/(en ∈ E), which can be
denoted through balance equations, is shown in Figure 5.
When the number of tasks tn ∈ T is less than the number of
computing nodes en∃ dn, only n out of the nodes en are busy
and the mean service rate is equal to n?. From (4), we can
obtain

Pn � P0
en ∃ dnρ( 􏼁

n

(n)!
􏼢 􏼣 1≤ n≤ en( 􏼁. (7)

If the number of tasks is greater than or equal to en∃ dn,
i.e., n≥ en∃ dn, all the nodes are busy and the effective service
rate is equal to μ(en∃ dn). *us,

Pn � P0
en ∃ dnρ( 􏼁

n

en ∃ dn( 􏼁
n−P

en ∃ dn( 􏼁!
⎡⎣ ⎤⎦ for n> en∃ dn( 􏼁. (8)

d6

Records of cache data in nodes

d7 d2 d3 d9 d8 d0

d1

t3 t2 t5 t4 t1

d2 d3
d6

d0 d8

t1

t4

t5

e2

e1

e3
Se3

Ce3

d4 d6

d3 d11

d1 d2

d6 d8

Task manager

d7 d3

Ce2

d8 d0

Se1

Se2

d7 d4

d8 d2

d5 d9

d7 d6

d5 d8

d9 d7

Ce1

Task queue

Figure 3: Data prefetching and eviction process based on task priority.

Table 1: An example of assigning tasks without considerations of priority and data locality.

Arrival of tasks Required data Computing nodes
t1 d8 e1 ∃ d8
t2 d2 e2 ∃ d2
t3 d1 e3 ∃ d1
t4 d0 e2 ∃ d0
t5 d3 + d6 e2 ∃ d3+6

Table 2: An example of assigning tasks based on priority and data
locality.

Arrival of
tasks

Prioritized
tasks

Required
data

Computing
nodes

t1 t1 d8 e1 ∃ d8
t2 t4 d0 e2 ∃ d0
t3 t5 d3 + d6 e2 ∃ d3+6
t4 t2 d2 e2 ∃ d2
t5 t3 d1 e3 ∃ d1

λ ∈ T
Tasks

Queue

Scheduler

e1

E

e1

en

μ1

μ2

μc

...

Figure 4: Edge computing queue model M/M/(en ∈ E).
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Here, ρ � λ/μ(en ∃ dn) where ρ must be less than 1 for
system stability. Note that the expected number of busy
nodes is equal to ρ(en ∃ dn) � λ/μ. To obtain P0, both sides of
(7) and (8) are summed up. Since 􏽐

∞
n�0 Pn � 1, P0 is derived

as

P0 � 􏽘

en− 1

n�1

en ∃ dnρ( 􏼁

n!

n

+
ρen

en ∃ dn( 􏼁!(1 − ρ)
⎡⎣ ⎤⎦

− 1

. (9)

*e proposed TPDS is an efficient scheduling strategy
that minimizes the costs of data transfer and execution
latency. For evaluation of the system performance, it is
necessary to calculate the total number of tasks in the queue,
the total waiting time, the service time of the jobs, and the
total number of tasks in the system. If the number of in-
coming tasks is less than the number of nodes in the cluster
as represented in (7), the system is under the stable con-
dition. *us, it is expected that all tasks can be completed on
time with no extra waiting in the queue. Otherwise, as in (8),
it is highly probable that some tasks wait for long time and
never get a service. *e proposed TPDS tries to optimally
minimize unnecessary eviction and improve the data locality
for the tasks. As discussed earlier, when n> en∃dn, some
tasks must wait in the queue. *us, the estimated number of
tasks in the queue is given by

NQ � P0
(ρ)

en∃dn

en ∃ dn − 1( 􏼁! μen ∃ dn − λ( 􏼁
2. (10)

To evaluate the system performance by applying Little’s
law, it is necessary to obtain the total waiting time of tasks
before service, the total number of tasks in the queue, and the
total time spent by a single task in the cluster of edge
computing nodes.

WQ � P0
μ(ρ)

en∃dn

en ∃ dn − 1( 􏼁! μen ∃ dn − λ( 􏼁
2, (11)

Ts � P0
μ(ρ)

μen∃dn

en ∃ dn − 1( 􏼁! μen ∃ dn − λ( 􏼁
2

⎡⎣ ⎤⎦ +
1
μ

, (12)

Ns � P0
λμ(ρ)

en∃dn

μen ∃ dn − 1( 􏼁! μen ∃ dn − λ( 􏼁
2

⎡⎣ ⎤⎦ +
λ
μ

. (13)

*e probability that all nodes are busy in edge com-
puting clusters can be derived from (14) and (15).

PB � P0 􏽘

∞

n�en

ρn en ∃dn( 􏼁
en

en ∃ dn( 􏼁!
􏼠 􏼡, (14)

PB � P0
en ∃ dn( 􏼁

en

en ∃ dn − 1( 􏼁! μen ∃ dn − λ( 􏼁
. (15)

5. Performance Evaluation

In this section, the proposed TPDS is evaluated through
computer simulations. *e job completion time and node
utilization under data locality in the cache memory are es-
timated by Cloudsim [33]. Cloudsim includes a broker (task
manager node) and client nodes (number of machines) en-
tities. *e results of the proposed TPDS are compared with
the existing scheduling and eviction schemes: FIFO, LRU, and
HPSO [23, 34]. *e efficiency of the proposed TPDS strategy
is evaluated in terms of hit ratio of cached-data, task execution
time, task waiting time, and data locality. *e parameter
details for the Cloudsim simulator are given in Table 4.

Figure 6 shows the used ratio of data for the proposed
TPDS, compared with the three conventional schemes. *e
proposed TPDS maximizes utilization of the cached-data by
using it for the incoming task in the queue.*e proposed TPDS
is not blindly swapping out the old data without knowing the
incoming task in the queue.*us, it is noted that the hit ratio is
higher in the proposed TPDS than the conventional FIFO,
LRU, and HPSO schemes. Particularly, when the number of
data blocks increases, the time consumed for completing the
task for all the schemes also increases due to swapping out data
blocks from the cache memory without checking the queue of
the taskmanager.*is causes lower hit ratios in the cached-data
as the number of data blocks increases.

Figure 7 shows the execution times of tasks of the
proposed TPDS and three conventional schemes. As shown
in Figure 8, the execution time of the task for the proposed
TPDS is always smaller than those of the conventional FIFO,
LRU, and HPSO schemes. It is because the more swapping
out of data gives the longer waiting time to the task to update
the associated data for the incoming task. Pre-existing data
for tasks will execute the task quickly and there is no need to
wait to bring the related data.

Similarly, Figure 8 shows the average waiting time of
tasks. From the figure, it is observed that the waiting time of
the proposed TPDS is smaller than those of the conventional
FIFO, LRU, and HPSO schemes. Compared to the conven-
tional schemes, the proposed TPDS consistently allows
shorter average waiting time in the whole range of the
number of tasks. *e number of tasks is varying from 200 to
2200 and the same distribution of job sizes is maintained
throughout the simulation test. *e proposed TPDS signif-
icantly outperforms the other conventional schemes in terms
of average execution time as the number of tasks increases.

t1

1 (en ∃ dn) 2 (en ∃ dn) n – 1 (en ∃ dn)

. . .

n (en ∃ dn)

t2 t2 tn–1 tn

0 1 2 n – 1 n

Figure 5: State transition diagram of M/M/(en ∈ E).
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Another feature of the proposed TPDS is the priority
scheduling of tasks as shown in Figure 9. It is noted that, with
help of this scheduling strategy, the jobs achieve nearly the
best data locality, which is helpful to improve the perfor-
mance of distributed systems. *e proposed TPDS takes
advantage of cached-data locality to accelerate the com-
putation of the task and minimize the CPU usage and data
transfer load in terms of swapping out and swapping in data
from the cache memory. It significantly improves the per-
formance of the computing nodes and the execution of tasks.
It is shown that the proposed TPDS also always outperforms
the conventional schemes in terms of data locality.

In Figure 10, the average execution time of the proposed
TPDS is compared with the conventional schemes. We use
six different types of workloads as different numbers of data
blocks (200 to 2200). Compared to the conventional
schemes, the proposed TPDS reduces the average execution
time by 8.5% to 10.2% for six different workloads,

Table 3: *e variables used in the performance model.

Variable Description
NQ *e number of tasks waiting in the queue for service
Ns Total number of tasks in the edge computing system
Ts *e total time spent by the task in the edge computing system
WQ *e total time of the task waiting in the queue for service
Pn *e probability that the system has “n” number of tasks
Pb *e probability that all nodes are busy in the edge computing system
en ∃ dn *e computing node that contains the related data, dn, for the task
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Figure 7: *e comparison of task execution time.

Table 4: Cloudsim simulator parameters.

Entity Parameters Values

Cloudlets/task
Length of the task (expected number of instructions) 50–2000

Number of tasks for six times running 200 to 2200
*e priority of tasks based on the cached-data blocks High, medium, and low

Virtual machine

Number of VMs 50 in ache data center
VM memory 1GB to 2GB
Bandwidth 500–1000

Number of CPUs 1 to 3

Data center Number of data centers 5
Number of hosts 2 to 3
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Figure 8: *e comparison of average waiting time.
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respectively. *is demonstrates that the proposed TPDS
performs data locality more efficiently than the existing
schemes due to the availability of data blocks in the cache
memory.

6. Conclusion

As the number of IoT devices and the scale of cloud
computing grow in popularity, many edge computing and
distributed systems have emerged in recent years. In general
edge computing architecture, computing power, bandwidth,
and data at the edge are scarce resources. To improve system
performance, a task scheduling strategy must be efficient. In
this paper, we proposed a cache data locality scheduler for
edge-computing cluster environments. *e proposed
strategy schedules tasks by taking a broad view and adjusts
data for tasks dynamically according to data in cache
memory. Especially in an edge computing cluster envi-
ronment, where the number of resources is limited, our
proposed approach tries its best to enhance task execution
under limited resources and reduce the extra flow of data in
the cluster network. When the computing cluster is over-
loaded, the proposed strategy takes the advantage of data in
the cache and brings the task first which finds the needed
data in the cache of the node. *e simulation results show
that the proposed strategy exhibits some improvements

which can also work in a busy network and cluster. As future
work, we plan to improve the proposed task scheduling
strategy based on available resources. We will consider the
aspects that may affect the performance including data
distributions and replication in a heterogeneous system.
Edge computing and distributed technologies are growing
up due to massive data volume generated by a large number
of IoTdevices. Accordingly, it is essential to keep update and
development on scheduling strategies and efficient algo-
rithms for tasks to manage resources in edge computing
environments.
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