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With the emergence of tools for extracting CSI data from commercial WiFi devices, CSI-based device-free activity recognition
technology has developed rapidly and has been widely used in security monitoring, smart home, medical monitoring, and other
fields. However, the existing CSI-based activity recognition algorithms need a large number of training samples to obtain the ideal
recognition accuracy. To solve the problem, an attention-based bidirectional LSTM method using multidimensional features
(calledMF-ABLSTMmethod) is proposed. In this method, the signal preprocessing and continuous wavelet transform algorithms
are used to construct time-frequency matrix, the sample entropy is used to characterize the statistical feature of CSI amplitudes,
the energy difference at a fixed time interval is used to characterize the time-domain feature of activities, and the energy
distribution of different frequency components is used to characterize the frequency-domain feature of activities. By expanding
the training samples with the proposed tensor prediction algorithm, the accurate activity recognition can be realized with only a
few samples. A large number of experiments verify the good performance of MF-ABLSTM method.

1. Introduction

In recent years, the activity recognition technology has
developed rapidly and has been widely used in smart home,
medical care, safety monitoring, and other fields.+e activity
recognition can be divided into wearable device [1] and
device-free-based recognition technologies. +e former re-
quires the target to be equipped with wearable devices, which
is inconvenient and increases the cost. +e latter does not
require the target to carry any devices. +erefore, the device-
free activity recognition technology has become the main
research direction in this field.

+e device-free activity recognition can be divided into
video, RSS (Received Signal Strength), and CSI- (Channel
State Information-) based recognition methods. +e video-
based activity recognitionmethod is a popular method [2, 3],
which can recognize activity intuitively with high recogni-
tion accuracy. However, it has some inherent shortcomings
such as requiring a target within the line of sight, requiring

good lighting conditions, and invasion of privacy. +e RSS-
based activity recognition method recognizes the activities
according to the reflection, refraction, diffraction, and ab-
sorption law of radio frequency signal caused by human
body [4]. However, this kind of method needs too many
nodes, the cost is high, and RSS is vulnerable to environ-
mental interference and has poor stability, so it is gradually
replaced by CSI-based activity recognition method.With the
rapid development of the Internet of things (IOT) [5, 6] and
the emergence of tools for extracting CSI data from com-
mercial WiFi devices, the CSI-based activity recognition
method has become a research hotspot in this field and has
been widely used because of its advantages such as conve-
nient data acquisition, not requiring additional devices, not
requiring target to carry devices, no limitation of illumi-
nation and line of sight, no invasion of privacy, and good
data stability.

+e CSI-based activity recognition methods are mainly
divided into two categories: machine learning and deep
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learning-based methods. +e research on machine learning-
based methods started earlier, for example, Support Vector
Machine (SVM), K-means, and Naive Bayesian-based
methods. +ese methods all need to denoise, intercept, and
extract features for the original data and then input the
processed data into the corresponding machine learning
algorithms in order to recognize the activities. +e above-
mentioned common methods-based on machine learning
have the following problems: (i) SVM is a memory-intensive
algorithm, which needs complex operations to select the
correct kernel function, and is not suitable for large datasets.
(ii) K-means is an algorithm that needs to specify the
number of clusters, and the selection of K values is usually
complicated. If the clusters in the training data are not
spheroidal, the K-means algorithm will lead to some poor
clusters. (iii) Naive Bayesian algorithm is too simple, and the
accuracy of activity recognition is poor.

In recent years, with the deepening research of deep
learning technology by Stanford University and Google
Inc., the deep learning algorithms have achieved excellent
results in image recognition, speech recognition, and
natural language processing [7–9]. Long short-term
memory neural network (LSTM) is a special type of re-
current neural network (RNN) proposed by Hochreiter and
Schmidhuber in 1997, which is suitable for data processing
and prediction with relatively long interval and delay in
time series [10]. Some scholars have applied LSTM algo-
rithm to CSI-based device-free activity recognition
method. For example, Damodaran and Schäfer [11] and
Wang et al. [12] used LSTM algorithm to recognize human
activities and locations, respectively, and achieved high
recognition accuracy. However, the above methods only
used the simple single-layer one-way LSTM algorithm
which is too simple to recognize complex activities. +e
reason is that it is difficult to recognize the CSI changes
caused by complex activities only by using the forward a
priori information, so that the recognition accuracy is low.
For the problem, Chen et al. [13] proposed an attention-
based BLSTM method (called ABLSTM method in the
paper) for passive human activity recognition. In the
method, the representative features are learned bidirec-
tionally from the original CSI, and the attention mecha-
nism is used to assign different weights to the learned
features, so as to achieve better human activity recognition
performance. However, in the method, the denoised ex-
perimental data is directly input to ABLSTM network, and
the features are automatically extracted by ABLSTM al-
gorithm, which lacks feature directionality. Moreover, to
achieve higher recognition accuracy, more training samples
are needed, which will greatly increase the cost of collecting
training samples. When the number of training samples is
insufficient, overfitting problem will occur, which results in
poor generalization ability of ABLSTM network, so that the
accuracy of activity recognition decreases. When applying
the activity recognition system, most users are unwilling to
spend time on collecting training samples. For example,
when the elderly people use the nursing system, they are
generally unwilling to cooperate to collect a sufficient
number of training samples. +erefore, how to use a small

number of training sample sets (i.e., small samples) to
achieve high accuracy human target activity recognition is
an urgent problem to be solved in the deep learning
method. Metalearning is a common method to solve some
small sample problems and mainly uses the learned prior
knowledge and small samples to recognize new patterns.
However, the prior knowledge can only be achieved by
using a large number of training samples, so the metal-
earning method is not suitable for the problem of the small
samples in this paper.

For the problem of small sample activity recognition
proposed in this paper, firstly, we use the statistical features
of CSI amplitude and time-frequency domain features to
construct the feature matrix for the input of ABLSTM
network, based on the method of literature [13]. +us, our
multidimensional feature ABLSTM network can extract
human target activity features from the more directional
data and classify the activities more accurately. Secondly, in
order to further improve the recognition accuracy, we
propose a tensor prediction method, which expands a small
number of training samples to generate enough training
samples with similar characteristics as the existing samples.
Specifically, the main contributions of this paper are as
follows:

(1) To reduce the cost of collecting training samples, a
method to generate training samples by using tensor
prediction is proposed, which can generate a large
number of training samples with similar charac-
teristics as a small number of training samples and
improve the activity recognition accuracy of deep
learning methods.

(2) To further improve the accuracy of ABLSTM-based
human activity recognition method, an ABLSTM
deep learning method using multidimensional fea-
tures (MF-ABLSTM method) is proposed. In this
method, the sample entropy is used to characterize
the statistical feature of CSI amplitudes, the energy
difference at fixed time interval is used to charac-
terize the time domain feature of human activities,
and the energy distribution of different frequency
components is used to characterize the frequency
domain feature of human activities. +e feature
vector composed of these features is input to the
ABLSTM deep learning network.

(3) To verify the performance of the proposed method, a
large number of experiments are carried out. +e
experimental results show that MF-ABLSTM
method can still achieve more than 92% recognition
accuracy of human activities in the case of small CSI
samples.

+e rest of this paper is organized as follows. Section 2
introduces the related work on human activity recognition.
Section 3 introduces the tensor prediction algorithm for
sample expansion. Section 4 describes the proposed MF-
ABLSTM method in this paper. In Section 5, the perfor-
mance of the proposed method is verified by experiments
and discussed. Section 6 gives the conclusion of this paper.
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2. Related Work

At present, a large number of CSI-based human activity
recognition applications have emerged, including human
daily activity recognition, gesture recognition, fall detection,
and physiological index perception.

2.1. Daily Activity Recognition. Wang et al. [14] proposed an
activity recognition algorithm based on channel selection. In
the algorithm, theWiFi channel with good quality is actively
selected, the extended channel which jumps seamlessly
between adjacent channels is constructed, and then the time
and frequency features are input to LSTM network for
activity recognition. In the existing human activity recog-
nition methods, the temporal correlation of CSI in each
subcarrier is considered, but the spatial correlation is ig-
nored. To solve this problem, Cui et al. [15] proposed the
WiAReS system. In the system, not only the temporal
correlation is considered, but also the spatial correlation is
analyzed. While keeping the locality of temporal and spatial
pattern, Convolutional Neural Network (CNN) is used to
automatically extract features from CSI, and an integrated
structure that integrates Multilayer Perception (MLP),
Random Forest (RF), and Support Vector Machine (SVM) is
proposed. Sheng et al. [16] also considered spatial-temporal
information and used the CNN to automatically extract the
CSI features, but they used BLSTM to recognize the activities
and designed a transfer learning method. Wang et al. [17]
proposed a CSI velocity model which quantifies the rela-
tionship between CSI change and human motion speed and
also proposed a CSI activity model to quantify the rela-
tionship between human motion speed and human activity.
By combining the two models, they achieved the high hu-
man activity recognition accuracy. Fang et al. [18] proposed
a layered hybrid model based on directed statistical model
for the scenario where there are new activities that are not
predefined or trained in the environment. +e model can be
updated incrementally without collecting a large amount of
training data and storing historical perception data. For this
scenario, Zhang et al. [19] proposed a data augmentation
method for transforming and synthesizing CSI data and
designed a Dense-LSTM deep learning model to solve the
overfitting problem of small-size CSI dataset.

2.2.GestureRecognition. Abdelnasser et al. [20] used RSSI to
complete gesture recognition through three steps: primitive
extraction, motion recognition, and motion mapping. In the
primitive extraction step, discrete wavelet denoising, edge
extraction, and primitive detection are needed. In the mo-
tion recognition step, the primitive gesture is segmented and
recognized. Finally, the gesture composed of several motions
is determined in the motion mapping step. Ohara et al. [21]
recognized gestures by using CSI extracted from smart
phones. In the method, the component corresponding to the
user’s hand movement speed is extracted according to
Doppler frequency shift, and the human gestures are rec-
ognized without knowing the target localization. Bu et al.
[22] proposed a gesture recognition method based on deep

transfer learning. Firstly, the CSI stream representing ges-
tures are captured, and the gesture fragment data is extracted
by using the amplitude change of CSI. +en, the gesture
fragment data is expressed in the form of image matrix, and
CNN is used to extract features. Finally, deep transfer
learning technology is used to complete gesture recognition.
Zhang et al. [23] proposed a gesture recognition system,
WiNum, based on gradient boosting decision tree (GBDT).
In this system, the discrete wavelet transform is used to
eliminate the noise in the original CSI data, and the pro-
posed adaptive segmentation algorithm (AGS) based on
entropy difference is used to segment gestures. Experimental
results show that the average recognition accuracy of the
system for finger gestures reaches 91%. +ariq et al. [24]
proposed a sign language recognition method based on
wireless devices, which is used to recognize 30 static gestures
and 19 dynamic gestures. In the method, the SVM, KNN,
and neural network algorithms are used to evaluate the
accuracy of gesture recognition. Experimental results show
that SVM algorithm can achieve higher gesture recognition
accuracy in home and office environments.

2.3. Fall Detection. CSI-based human activity recognition
technology is not only applied to the human daily activity
and gesture recognition, but also applied to some specific
scenes, such as the fall detection of the elderly. Han et al. [25]
used CSI for the first time to detect the fall behavior of the
elderly, and a warning was issued when the elderly was in
danger. To reduce the influence of environment on fall
detection algorithm, Hu et al. [26] proposed a fall detection
system, DeFall, which is independent of environment. +e
system consists of an offline stage and an online stage. In the
offline stage, the system first models the speed and accel-
eration of human fall and then uses DTW to generate typical
human fall characteristics. In the online stage, the system
evaluates the similarity between CSI features and typical
features by analyzing the real-time speed and acceleration of
human body and then detects the fall behavior. To compare
the performance of different deep neural network algo-
rithms, Cheng et al. [27] evaluated the performance of fall
detection using CNN, GRU, and LSTM algorithms, re-
spectively. +e experimental results show that the GRU
algorithm has the best fall detection performance. However,
the commercial application of deep learning algorithm is
limited because of the long training time. To solve the
problem, Ding et al. [28] proposed a method to automati-
cally identify the fall state by RNN. In the method, the
collected data is uploaded to the proxy server which pro-
cesses the data and identifies the fall state, and the client
application obtains the processing result of the algorithm
from the proxy server.

2.4. Physiological Index Perception. Model-based CSI rec-
ognition method does not need offline training process and
can recognize the fine-grained breathing and other life
characteristics. Zhang et al. [29] proposed a method of
monitoring human respiration by using Fresnel diffraction
model. In this method, Fresnel diffraction model is used to
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accurately quantify the relationship between diffraction gain
and slight displacement of human chest, and the best
respiratory monitoring position is determined by ob-
serving heatmap. +e experimental results show that this
method can achieve more than 98% respiratory rate
monitoring accuracy. To study the influence of human
body position and direction on respiration detection,
Wang et al. [30] proposed the theory of the relationship
between the human body position and direction and the
detectability of respiration, which explains when and why
people’s respiration can be detected by WiFi devices. In
the practical application of respiratory detection, there
will inevitably be multiplayer scenarios. According to
Fresnel zone model, Yang et al. [31] carefully deployed the
locations of WiFi transceiver, so that the information
influenced by different people can be separated from the
received CSI, and the information can correspond to
people. In addition, they also considered the influence of
people’s sleep movement and sleep posture on the signal,
so as to improve the robustness of the system.

3. Training Sample Expansion

When using deep learning algorithm for activity recogni-
tion, the larger the number of CSI training samples, the
higher the recognition accuracy of the algorithm. However,
collecting a large number of training samples will greatly
increase the collection cost, and it is not suitable for the
transfer learning of the algorithm in different environments.
+erefore, the existing few training samples will be extended
by using the following tensor prediction algorithm in the
paper.

+e existing CSI training samples are expressed as three-
dimensional tensor S, where the three dimensions are the
number of samples u, the number of subcarriers v, and the
number of sampling points w, respectively. A tensor A with
twice the number of S samples is constructed, and the 2u-th
and (2u+1)-th initial samples of A are equal to the u-th
sample of S. +e following optimization problem is con-
structed [32].

min :
1
2
‖B − A‖

2
F,

s.t. ‖B‖tr ≤ c,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where B is also a three-dimensional tensor, B represents the
predicted tensor of the expanded sample, c is a constant, and
‖ · ‖F and ‖ · ‖tr indicate F norm and trace norm, respectively.
+e trace norm of B can be defined as follows:

‖B‖tr ≔
1
3
􏽘

3

i�1
B(i)

����
����tr

, (2)

where B(i) represents the matrix obtained by ‘unfold’
operation according to the i-th dimension of B. It can be
seen from (2) that the trace norm of B is the average of the
trace norms unfolded according to three dimensions of
tensor. +erefore, the optimization problem of (1) is
equivalent to
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2
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1
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(3)

where A(i) represents the matrix obtained by ‘unfold’ op-
eration according to the i-th dimension of A. To simplify the
optimization problem of (3), Liu et al. [32] transformed (3)
into the following:

min
B,A,Fi

:
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����
2
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1
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􏽘
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2
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+ 􏽘
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c(i) Fi

����
����tr

,

(4)

where Fi is the additional matrix and αi, βi, and ci represent
the weight coefficients of each item. In the tensor A, B, and
the matrix Fi, only one is set to change, and the others are set
to be fixed. Block coordinate descent method is used to
optimize each variable, and iterative method is used to
obtain the final prediction tensor.

Firstly, only Fi is set to change in the k-th iteration. +e
equation of optimizing matrix Fi is as follows:

min :
Fi

αi

2
Fi − B(i)

����
����
2
F

+
βi

2
Fi − A(i)

����
����
2
F

+ ci Fi

����
����tr

. (5)

Let Zi � Ui􏽐iV
T
i be the singular value decomposition of

matrix Zi, and 􏽐i be the diagonal matrix with diagonal
elements formed by the singular value λij of Zi in descending
order. Equation (5) can be solved as follows [32]:

Fi � Hτi
Zi( 􏼁 � Ui 􏽘

τi

V
T
i , (6)

where τi � ci/(αi + βi), Zi � (αiA(i) + βiA(i))/(αi + βi), and
􏽐τi

� diag(max(λij − τi, 0)).
+en, only A is set to change.+e equation of optimizing

tensor A is as follows:

min :
A

1
2

􏽘

3

i�1
βi Fi − A(i)

����
����
2
F
. (7)

Equation (7) can be solved as follows:

A �
􏽐

3
i�1 βifoldi Fi( 􏼁

􏽐
3
i�1 βi

, (8)

where fold(·) is the function of synthesizing tensor and
foldi(Fi) represents “fold” operation for Fi.

Finally, only B is set to change. +e equation of opti-
mizing tensor B is as follows:

min :
B

1
2

􏽘

3

i�1
αi Fi − B(i)

����
����
2
F
. (9)

Equation (9) can be solved as follows:
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B �
􏽐

3
i�1 αifoldi Fi( 􏼁

􏽐
3
i�1 αi

. (10)

After calculating the prediction tensor B, the k-th iter-
ation ends. +e root mean square error of the two round
prediction samples is less than the set threshold, or after
reaching a fixed number of iterations, the iteration ends.

4. MF-ABLSTM Method

4.1. System Framework. +e framework of MF-ABLSTM
method proposed in this paper is shown in Figure 1. +e
MF-ABLSTM method is divided into two stages: offline
training and online testing. Both stages need to preprocess
the collected CSI data, including antenna and subcarrier
selection, Gaussian filter denoising, and activity interval
interception. +en, feature extraction is needed. +e
extracted multidimensional features include energy differ-
ence at fixed time interval, energy distribution of different
frequency components, and sample entropy. In the offline
training stage, the extracted multidimensional features are
input into ABLSTM network for training. In the online
testing stage, the extracted multidimensional features are
also input into ABLSTM network, and the human activities
are recognized according to the parameters obtained in the
training stage.

4.2. System Implementation

4.2.1. Construction of Time-Frequency Matrix. +e time
domain or frequency domain features alone cannot fully
characterize the influence of human activities on CSI am-
plitude, so the time-frequency domain combination features
of samples are used. To extract the time-frequency domain
features of samples, the time-frequency matrix of samples is
constructed, and the specific methods are as follows: (i) +e
antenna data is selected for experiments according to the
overall fluctuation of CSI amplitude. (ii) For 30 subcarriers
of the selected antenna, the average value of CSI amplitude is
calculated as the subsequent data to be processed. (iii) +e
original CSI amplitude contains a lot of environmental
noise, so Gaussian filter is used to denoise the average value
of the CSI amplitude. (iv) Because the collected CSI am-
plitude includes the stationary interval when the human
body is still and the fluctuation interval when the human
body is moving, and only the fluctuation interval contains
the characteristics reflecting the human activities, the clas-
sical variance method [33] is used to intercept the filtered
CSI amplitude. (v) Morlet wavelet is used to carry out
continuous wavelet transform on the intercepted CSI am-
plitude in order to construct time-frequency matrix for
subsequent feature extraction.

4.2.2. Feature Extraction. To recognize human activities
more accurately, we fully explore the features that can
characterize human activities from two aspects: the statis-
tical feature and time-frequency features of CSI amplitude.
We use the sample entropy of CSI amplitude as the statistical

feature which can characterize the complexity of CSI am-
plitude. In order to characterize the change law of CSI
amplitude caused by human activities, we use wavelet
transform to transform CSI amplitude to time-frequency
domain and construct time-frequency matrix. +en, the
energy difference at fixed time interval and the energy
distribution of different frequency components are used to
characterize the change law of the time domain and the
frequency domain, respectively. +e above statistical feature
and time-frequency features are combined to form the
feature vector which is input to the ABLSTM network.

(1) Statistical Feature. Because different human activities
have different effects on CSI amplitude, the complexity of
CSI amplitude can be used as the characteristic of recog-
nizing human activities. Sample entropy is a statistic to
measure the complexity of time series. +e greater the
sample entropy, the higher the complexity of time series. In
this paper, the sample entropy of CSI amplitude is used to
characterize the complexity of CSI amplitude change caused
by different human activities.+e specific steps of calculating
sample entropy are as follows:

(1) Let the CSI amplitude after interval interception be
time series y(1), . . . , y(j), . . . , y(n)􏼈 􏼉, where J

represents the j-th time component, j � 1, . . . , n.
(2) Let q change from 1 to n − p + 1, and construct n −

p + 1 vectors Y(q), where Y(q) is continuous p CSI
amplitudes starting from Y(q), that is,
y(q), y(q + 1), . . . , y(q + p − 1)􏼈 􏼉.

(3) Let q be q1 and q2 (q1≠ q2), respectively, and define
the distance between Y(q1) and Y(q2) as follows:

d[Y(q1), Y(q2)] � max
w�0,...,p−1

|y(q1 + w) − y(q2 + w)|.

(11)

(4) Let the threshold value be r(r> 0). For each
Y(q1)(q1 � 1, . . . , n − p + 1), count the number of
Y(q2)(q2 � 1, . . . , n − p + 1, q1≠ q2) whose d[Y

(q1), Y(q2)] is less than r, calculate the ratio of this
number to n − p, and represent it as H

p
q1(r). +en,

calculate the average value of H
p
q1(r) as follows:

H
p
(r) �

1
n − p + 1

􏽘

n−p+1

q1�1
H

p
q1(r). (12)

(5) Let p � p + 1, repeat steps (2)–(4), and calculate
Hp+1(r). +en, the sample entropy of CSI amplitude
can be calculated as follows:

SampEn(p, r, n) � −ln
H

p+1
(r)

H
p
(r)

􏼢 􏼣. (13)

To further explain the reason for using sample entropy,
we randomly select ten samples from the five kinds of ac-
tivity samples of boxing, falling, running, walking, and
sitting, respectively, and then calculate the corresponding
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sample entropy. +e experimental results are shown in
Figure 2. Figure 2 shows the comparison results of sample
entropy of CSI amplitude influenced by the five activities,
where the abscissa is the sample serial number and the
ordinate is the value of sample entropy. It can be seen from
Figure 2 that CSI amplitudes corresponding to different
human activities have different sample entropy and the
sample entropy corresponding to different samples of the
same activity is relatively stable. +erefore, the sample en-
tropy of CSI amplitude is used as the statistical feature of
human activity recognition in the paper.

(2) Time-Frequency Features. In this paper, CSI samples are
constructed into time-frequency matrix, which contains
both time domain information and frequency domain in-
formation of CSI samples. +erefore, the features charac-
terizing different human activities are extracted from time
domain and frequency domain in the paper, respectively.

Wang et al. [17] have verified that the motion speed of
different human body parts is directly related to human body
activities and also has a quantitative relationship with the
energy of time-frequency components of CSI amplitude.
+erefore, the parameters related to the energy of time-
frequency components of CSI amplitude can be extracted as
the features of human activity recognition. In this paper, the
constructed time-frequency matrix is regarded as a time-
frequency image of CSI samples. As shown in Figure 3, the
time-frequency matrix can be expressed as follows:

TF �

x11 · · · x1j · · · x1n

⋮ · · · ⋮ · · · ⋮

xi1 · · · xij · · · xin

⋮ · · · ⋮ · · · ⋮

xm1 · · · xmj · · · xmn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (14)

where i represents the i-th frequency component
(i � 1, . . . , m),j represents the j-th time component
(j � 1, . . . , n), and xij is the energy value of time-frequency
component of CSI amplitude.
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To extract the time domain features in the samples that
can characterize human activities, in this paper, n time
components are divided into n/nstep fixed time intervals
with the step length nstep, the sum of energy values in each
time interval is calculated, and then the difference between
the sums of energy values in adjacent time intervals is
calculated as follows:

In SamTFk � 􏽘

nstep∗(k+1)

j�1+nstep∗ k

􏽘

m

i�1
xij − 􏽘

nstep∗k

j�1+nstep∗ (k−1)

􏽘

m

i�1
xij,

(15)

where k � 1, . . . , n/nstep − 1 and In SamTFk represent the
time domain features in the k-th sample extracted in this
paper. In SamTFk can characterize the changes of different
human activities with time and movement speed, as shown
in the upper right subpicture of Figure 3.

To extract the frequency domain features in the samples,
in this paper, m frequency components are divided into
m/mstep fixed frequency intervals with the step length
mstep, and the sum of energy values of each frequency
interval is calculated as follows:

In SamFFh � 􏽘

mstep∗h

i�1+mstep∗ (h−1)

􏽘

n

j�1
xij, (16)

where h � 1, . . . , m/mstep and In SamFFh represent the
frequency domain features in the h-th sample extracted in
this paper. In SamFFh can characterize the frequency do-
main energy distribution of different human activities, as
shown in the lower right subpicture of Figure 3.+e different
frequencies correspond to different human motion speeds,
so the different human activity has different frequency
domain energy distribution.

To sum up, In SamTFk and In SamFFh can better
characterize the changes of CSI amplitude caused by human
activities in time domain and frequency domain, so using the
two features canmore accurately recognize human activities.

4.3. MF-ABLSTM Algorithm

4.3.1. Attention Mechanism. When people observe a scene,
they will focus on specific parts according to their interest. If
the specific part appears repeatedly in similar scenes, people
will pay special attention to the specific part when observing.
Inspired by this phenomenon, the attention mechanism of
neural network came into being and is also called resource
allocation method [34]. In the attention mechanism, a
weight coefficient δgl is automatically generated to charac-
terize the correlation between the hidden state
Gg(g � 1, 2, . . . , K) of neural network encoder and the
hidden state Ml(l � 1, 2, . . . L) of the decoder. +e Ml is
expressed as follows:

Ml � f Ml−1,Outpl−1, el( 􏼁, (17)

where Outpl−1 is the (l − 1)-th output of neural network and
el is the weighted sum of hidden state Gg, which is calculated
as follows:

el � 􏽘
K

g�1
δglGg, (18)

where el provides a mechanism for the output of decoder to
pay attention to important input features. Different atten-
tion mechanisms use different methods to generate weight
coefficients δgl. In this paper, the soft attention method is
used [35].

4.3.2. BLSTMAlgorithm. RNN is widely used inmany fields,
such as speech recognition [36] and image processing [37],
because of its ability to process variable length sequence
data. However, when processing long series data, the RNN
has some problems such as gradient disappearance and
gradient explosion [38]. LSTM neural network is a special
kind of RNN, which solves the problems of RNNwell. LSTM
can retain the information that needs to be memorized for a
long time and forget the unimportant information by
controlling multiple gates. +erefore, LSTM has a good
classification effect for long series data with correlation
among data. +e structure unit of LSTM is shown in Fig-
ure 4. In Figure 4, ht − 1 and ht are the outputs of the
previous and current LSTM structure units, respectively;
Ct − 1 and Ct are the memories of the previous and current
LSTM structure units, respectively; ct′ is the input modu-
lation gate; it and ot are input and output gate, respectively;
and ft is the forgetting gate [39].

However, the output of LSTM structure unit is only
related to the previous data and has nothing to do with the
following data. In the human activity recognition, both
forward and backward directions of CSI amplitude features
have strong correlation. +erefore, BLSTM neural network
is used in this paper, and its basic structure is shown in
Figure 5. It can be seen from Figure 5 that BLSTM neural
network constructs two groups of LSTM networks from the
forward and backward directions. +e output Fht of the
forward LSTM network is related to the previous data, and
the output Bht of the backward LSTM network is related to
the subsequent data. +e output of BLSTM structure unit at
time t is

ht � f(w1∗Fht + w2∗Bht), (19)

where w1 and w2 are the coefficients of Fht and Bht, re-
spectively [40]. +erefore, the output of BLSTM neural
network is determined by the whole data sequence.

5. Experimental Evaluation

5.1. Experimental Setup and Data Acquisition. In this paper,
the experiments were carried out in a laboratory with an area
of 5m× 5m. In the laboratory, there are tables, chairs, and
experimental tables, and the layout of the laboratory is
shown in Figure 6. In the experiment, two computers with
Intel 5300 wireless network cards are used as signal trans-
mitter and receiver, and Ubuntu 10.04 operating system and
CSI tools are installed on both computers, in which the
transmitter sends signals through one antenna and the
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receiver receives signals through three antennas. In this
paper, the transmission frequency of WiFi signal is set to
2.4GHz, the channel bandwidth is set to 20MHz, and each
antenna receives CSI data of 30 subcarriers. +e distance
between the transmitting and receiving antennas is 2m, and
the height from the ground is 1m.+e volunteers are located
in the middle of the transceiver and perform boxing, falling,
running, walking, and sitting, respectively.+e receiving end
uses 1000Hz sampling frequency to collect data, each sample
is collected for 4 seconds, and 98 samples are collected for
each activity. In general, for small samples, about 70% and
30% samples are selected as training set and testing set,
respectively. However, in order to verify the good perfor-
mance of the proposed MF-ABLSTM in the case of small
samples, we only randomly select 10 samples from 98
samples of each activity as the training set and the other 88
samples as the testing set in the following experiment. +is
way of splitting dataset can not only ensure that the number
of training samples is small, but also ensure that the number
of testing samples is large, so that the experimental results
have good statistical significance.

5.2. Parameter Analysis

5.2.1. Analysis of ;reshold Value r. +e value of sample
entropy is closely related to the given threshold value r.
Pincus et al. [40] verified that the value of sample entropy
can better measure the complexity of time series when the
threshold value r is within 0.1–0.25 standard deviation of
time series. +erefore, the threshold value r is set as 0.1SD,
0.15SD, 0.2SD, and 0.25SD, respectively, where SD repre-
sents the standard deviation of CSI amplitude after interval
interception, and the accuracy of human activity recognition
based on MF-ABLSTM algorithm is analyzed. +e experi-
mental results are shown in Figure 7. From Figure 7(a), it can
be seen that the accuracy of human activity recognition is all

Xt

Ct-1

ht-1

ht

ht

Ct

tanh

tanh sigmoidsigmoidsigmoid
ot

ft it
ct′

Figure 4: +e structure unit of LSTM.

Output ht-1 ht ht+1

Xt-1 Xt Xt+1

Backward

Forward

Input

LSTM LSTM LSTM

LSTM LSTM LSTM

Figure 5: +e basic structure of BLSTM.

Figure 6: +e layout of the laboratory.
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above 90%, but the accuracy of five experiments is more
stable and relatively high when r is 0.2SD. From Figure 7(b),
it can also be seen that the average accuracy of human
activity recognition is the highest, 92.6%, when r is 0.2SD, so
the threshold value of sample entropy is set as 0.2SD in this
paper.

5.2.2. Analysis of Step Length nstep and mstep. +e time-
frequency features extracted in this paper are closely related
to the step length nstep of time domain and the step length
mstep of frequency domain, so it is necessary to analyze the
influence of different nstep and mstep on the accuracy of
human activity recognition.

According to the time component length of time-
frequency matrix, nstep is set to be 20, 50, 100, 200, 350, and
700, respectively, and mstep is set to be 1. +e accuracy of
human activity recognition based on MF-ABLSTM algo-
rithm is analyzed. +e experimental results are shown in
Figure 8. From Figure 8(a) and Figure 8(b), it can be seen
that when nstep is 200, the average accuracy of human
activity recognition is the highest, and the accuracy is rel-
atively stable in five experiments. +e reason is that nstep is
too large, which makes the number of time intervals too
small, so the discrimination of activity features contained in
each time interval is small, resulting in the reduction of
activity recognition accuracy. When nstep is too small, the
number of time intervals is too large, and the time domain
features of human activities become too complex, which in
turn leads to a decrease in the accuracy of activity recog-
nition. +erefore, nstep is set to be 200 in this paper.

According to the frequency component length of time-
frequency matrix, mstep is set to be 1, 5, 10, 20, and 40,
respectively, and nstep is set to be 200. +e experimental
results are shown in Figure 9. From Figure 9(a) and
Figure 9(b), it can be seen that the average accuracy of

human activity recognition decreases obviously with the
increase of mstep. +is is because the frequency domain
energy of human activity is mainly distributed in the low
frequency part. +e smaller the mstep is, the greater the
discrimination of activity features contained in the low
frequency part is, and the higher the accuracy of activity
recognition is. +erefore, mstep is set to be 1 in this paper.

5.3. Analysis of MF-ABLSTM Algorithm

5.3.1. Analysis of Features. In this paper, the statistical
feature, time domain feature, and frequency domain feature
of CSI amplitude are used to construct feature vectors for
recognizing human activities. Each of these features can
represent different human activities well. To verify the ef-
fectiveness of these feature combinations, the accuracy of
human activity recognition based on ABLSTM algorithm is
compared and analyzed in five cases: no feature (NF), only
statistical feature (SF), only time domain feature (TF), only
time-frequency domain features (TFF), and time-frequency
domain and statistical features (TFSF). Five experiments
were conducted for each case, and the average value was
taken as the final result. +e experimental results are shown
in Figure 10. From Figure 10, it can be seen that the accuracy
of ABLSTM algorithm using the TFSF is the highest and the
most stable, which is increased by 8.5%, 6.1%, 4.9%, and
1.4% compared with the NF, SF, TF, and TFF, respectively.
+e reason is that the four types of features characterize the
human activities from different perspectives, so their
combination can effectively improve the accuracy of human
activity recognition.

5.3.2. Analysis of Classification Algorithms. To analyze the
good performance of ABLSTM algorithm, the accuracies of
human activity recognition with five classification
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Figure 7: Analysis results of threshold value r. (a) Accuracy of activity recognition of 5 experiments. (b) Average accuracy of activity
recognition.
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algorithms, ABLSTM, LSTM, CNN, RF, and DTW-KNN
(Dynamic Time Warping-K Nearest Neighbors), are com-
pared, when the training set is 10 samples and the features
are TFSF. +e experimental results are shown in Figure 11.
From Figure 11(a), it can be seen that the recognition ac-
curacy of ABLSTM algorithm used in this paper is up to
92.6%, which is 11.4%, 5.3%, 20.2%, and 18.7% higher than
LSTM, CNN, DTW-KNN, and RF algorithms, respectively.
To further analyze the recognition accuracy of ABLSTM
algorithm for each activity, the confusion matrix of
ABLSTM algorithm is constructed, as shown in Figure 11(b).

From Figure 11(b), it can be seen that the recognition ac-
curacy of ABLSTM algorithm is more than 90% for all three
activities, where the recognition accuracy (90%) for falling
activity is lower and the recognition accuracy (99%) for
boxing activity is higher, which further verifies the effec-
tiveness of ABLSTM algorithm.

5.3.3. Analysis of Small Samples. +e number of training
samples has great influence on the recognition accuracy of
ABLSTM neural network. Generally, the larger the number of
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Figure 9: Analysis results of step length mstep. (a) Accuracy of activity recognition of 5 experiments. (b) Average accuracy of activity
recognition.
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training samples, the higher the recognition accuracy of the
algorithm. To verify the effectiveness of MF-ABLSTM when
there are only a small number of training samples, we conduct
the following experiments. We randomly select 40 samples
from 98 samples of each activity as the training set and the
other 58 samples as the testing set. +e ABLSTM algorithm is
conducted when the training samples are the first 10, 20, and
40 samples in the training set, respectively, and these ex-
periments are represented as ABLSTM(10), ABLSTM(20),
and ABLSTM(40). +e MF-ABLSTM algorithm is conducted
when the training samples are the 10, 20, and 40 samples
where the former one is the first 10 samples in the training set
and the latter two are expanded from the 10 samples the latter
two are expanded from the 10 samples by using the tensor
prediction algorithm proposed in this paper, respectively, and

these experiments are represented as MF-ABLSTM(10), MF-
ABLSTM(20), and MF-ABLSTM(40). +en, we compare the
activity recognition accuracies of the above six experiments by
testing the 58 samples, and the experimental results are shown
in Figure 12. From Figure 12, it can be seen that the rec-
ognition accuracy of ABLSTM algorithm is higher with the
increase of the number of training samples, which shows that
small samples and large samples have a great impact on the
recognition accuracy of ABLSTM algorithm. However, when
the training samples are 10, the recognition accuracy of MF-
ABLSTM algorithm proposed in this paper is higher than that
of ABLSTM(40) and is increased steadily after the proposed
tensor prediction algorithm expands the training samples,
which verifies the effectiveness of the method proposed in this
paper to solve the problem of small samples.
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6. Conclusion

Device-free human activity recognition technology based on
CSI has become an important research direction in the field of
intelligent sensing, and the related achievements emerge one
after another. However, the existing research still needs a large
number of training samples to obtain the ideal recognition
accuracy. To solve this problem, a MF-ABLSTM human
activity recognition method based on CSI small samples is
proposed. In this method, the proposed tensor prediction
algorithm is used to expand the training samples, the sta-
tistical features of sample entropy of CSI amplitude and the
time-frequency domain features of time-frequency matrix are
used to construct feature vectors representing human ac-
tivities, and the ABLSTM neural network is used to recognize
human activities. In this paper, the different feature combi-
nations, the different numbers of training samples, and the
performance of different classification algorithms are ana-
lyzed through experiments. +e experimental results show
that the MF-ABLSTM method proposed in this paper only
needs to use a few training samples, which can achieve high
accuracy and stability of human activity recognition.
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