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Lower energy consumption and higher data rate have been becoming the key factors of modern wireless mobile communication
for the improvement of user experiences. At present, the commercialization of 5G communications is gradually promoting the
development of Internet of things (IoT) techniques. Due to the limited coverage capability of direct wireless communications, the
indirect device-to-device (D2D) communications using information relay, in addition to the single 5G base station deployment,
have been introduced. Along with the increase of information nodes, the relay devices have to undertake the nonnegligible extra
data traffic. In order to adjust and optimize the information routing in D2D services, we present an algorithmic investigation
referring to the ant colony optimization (ACO) algorithm and the artificial immune algorithm (AIA). By analyzing the
characteristics of these algorithms, we propose a combined algorithm that enables the improved the iterative convergence speed
and the calculation robustness of routing path determination. Meanwhile, the D2D optimization pursuing energy saving is
numerically demonstrated to be improved than the original algorithms. Based on the simulation results under a typical ar-
chitecture of 5G cellular network including various information nodes (devices), we show that the algorithmic optimization of
D2D routing is potentially valid for the realization of primitive wireless IoT networks.

1. Introduction

Since the late eighties of the last century, the Internet has
been fast developing along with the progress of personal
computers. Meanwhile, a concept of “connecting ubiquitous
devices with Internet” emerged [1, 2] and further guided the
research of the Internet of (ings (IoT) for more com-
prehensive information sharing [3]. To date, the develop-
ment of hardware techniques has made great progress. For
instance, the fifth generation (5G) broadband communi-
cations employing high-frequency wavebands have un-
precedentedly enhanced the data traffic performances [4].
However, it also has been noted that higher frequency leads

to greater energy consumption due to the path loss of radio
wave propagation [5]. As a result, the increasing dataflow
requiring higher frequency inevitably encounters a power
supply problem, which may lead to the unacceptable de-
ployment density requirement of base stations [6, 7].
(erefore, for the wireless networking of IoTs, the dataflow
pressure of central base station is a critical challenge [8, 9].
Under the current hardware development level, the direct
routing scenarios using the traditional station-device
communication scheme may not be suitable.

Focusing on the issues above, we consider that the
networking of wireless IoTs may have to fully utilize the
current hardware and pursuing energy-efficient scenarios
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from the algorithm aspect [10]. Following this idea, the
algorithmic solutions improving the dataflow without ad-
ditional energy consumption are commonly related to an
indirect device-to-device (D2D) communication architec-
ture, by which the information nodes (e.g., mobile devices)
also undertake the message relay missions to reduce the data
pressure of the central base station via proper routing so-
lutions [11–13].(ereby, figuring out an appropriate routing
solution via programmed calculations and algorithms is
significantly important to the D2D networking [14]. We
regard that the D2D routing is somehow similar to a classical
mathematic problem which is the location of logistics dis-
tribution. To efficiently find out an available routing solution
(may not be exactly optimized) under the specific constraint
(e.g., energy efficiency in this work), the most well-known
algorithms are the ant colony optimization (ACO) and the
artificial immune algorithm (AIA) [15, 16]. First, ACO al-
gorithms are usually adopted in wireless networking, which
can be divided into two categories, the direct communica-
tion and the connectionless networks. In a direct one, all the
message packets in the same loop propagate via a common
path, which is selected by the preliminary setup state. On the
contrary, the connectionless packets in the same loop
propagate via different paths [17, 18]. For the routing so-
lution problem, the ACO algorithms envision the even and
random manners of the information nodes and update the
potentially optimal paths step-by-step [19]. However, these
algorithms are still hindered by some limitations to this day,
such as the blind search and local optimum problems. To
overcome these issues, the routing scenarios employing AIA
have been investigated for the fast convergence and the
global optimization [20–22]. Although the information
feedback in AIA programming is usually inefficient, which
may lead to severely redundant iterations, the global opti-
mizing advantage complementary to that of ACO algorithms
may potentially open up a novel feasible algorithm appro-
priate to the iterative calculations for the wireless D2D
routing paths [23].

Following these ideas, we proposed and a new algorithm,
which combines the ACO and AIA principles, and quan-
titatively discussed the iterative calculation performances via
numerical simulations. In particular, the physical environ-
ment of the D2D networking was designed based on the
existing commercial 5G architecture, and the optimization
constraint was accordingly selected as the reduce of energy
consumptions [10, 24, 25]. According to the numerical
simulation results, we showed that the newly designed al-
gorithm significantly improves the D2D routing solutions,
and the energy-saving performance may potentially enable
the primitive wireless IoTs for sensor network applications.

2. Algorithm

2.1. ACO Principle. (e ACO algorithm was originally de-
veloped for the vehicle routing problems (VRPs). Under this
configuration, the feasible routing solutions are regarded as
the paths of ants with similar mathematical models [18]. (e
paths of the entire ant population constitute a solution space.
Here, we introduce the ACO algorithm into the D2D routing

model. After each iteration, the ant colony in ACO judges
the optimization feasibility of each subset in the solution
space, according to the newest pheromone concentration,
and finds the optimal path. To maintain the universality, we
set the number of ants m(m ∈ [1, M]), the number of nodes
n(n ∈ [1, N]), and the distance between any two nodes i and
j as di,j(i, j � 1, 2, . . . n). At the moment t, the pheromone
concentration on a path connecting the nodes i and j is
τi,j(t). In particular, at the initial time, τi,j(0) � τ0. Con-
sidering that the next visiting node selected by ant k is
determined by the pheromone concentration on the con-
nection path between corresponding relay nodes s, the
propagation probability denoted Pk

i,j(t) can be expressed as

P
k
i,j(t) �

τi,j(t) 
α
ηi,j(t) 

β

s∈Bm
τi,j(t) 

α
ηi,j(t) 

β
 

, node s ∈ Bm,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where ηi,j(t) is the heuristic function, representing the ex-
pected degree of the ant transfer from node i to node j, and Bm

represents the set of relay nodes visited by antm. Especially, α is
the pheromone factor, greater α leads to higher pheromone
concentration effect in transfer. Similarly, β is the heuristic
function factor; larger β suggests higher probability of a relay
node being selected. Regarding the modelling of ACO in path
routing, we assume that there are m ants in a quality of service
(QoS) routing network, and the global and local pheromone
updating rules are adopted [26]. Only the solution belongs to
the global optimization path may lead to the increase of
pheromone. We then select a constant q0 ∈ [0, 1] as the
transfer factor and define a random variable q ∈ [0, 1] to
describe the determination of the next node. While an ant i in
node r selects the next node s according to the following rules,
if q≤ q0, the next node maximizes [τi,j(t)]α[ηi,j(t)]β. In
contrast, if q> q0, the state transfer probability determined by
equation (1) remains unchanged:

ρi(r, s) �
max[pheromone(r, s)], node s ∈ Bm

0, otherwise.
 (2)

According to equation (2), the ant transfer state deter-
mines the output probability results, which ensure the path
optimization by searching the local maxima.

Following this principle, the ACO algorithms adopt the
feedback mechanism and leave more concentrated phero-
mone in the paths, which indicates the better solutions. (e
positive feedback makes search processes continuously
converging and finally approaching the optima. Any pher-
omone changes alter the surrounding environment and result
in timely updates of the constraint result. Besides, if a sub-
optimal solution is utilized in the initial of calculation, the
iterative convergence could be significantly accelerated.
However, the rapid converging advantage may also induce a
potential local optimum issue. As a result, other algorithms
for the speed-optimum trade-off are necessary.
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2.2. AIA Principle. To get rid of the local optimum hin-
drance, the node prediction step planning for the more
effective global routing suggests the AIA principle [27].
Under the classical AIA configuration, the antigens repre-
sent the subsets of a solution space, and the antibodies
represent the coding sets of corresponding relay nodes. (e
antigen-antibody affinity indicates the recognition strength
of a target node.(us, the affinity function could be designed
as a location model of the transmission of the node:

Av �
1
Fv

�
1

i∈N j∈Mi
ωidi,jZi,j   − Ci∈Nmin j∈Mi

Zi,j  − 1, 0 
,

(3)

where Fv is the objective function, N is the set of all nodes,
Mi is a subset including the nodes i away from the base
station closer than s, wi is the data volume of node i, di,j is
the distance between the nodes i and j, C is a manually
selected large positive constant, and Zi,j is the distribution
relation of the transmission data traffic between the central
base station and a relay node. In the denominator of
equation (3), the second term represents the punishment for
the spatial solution violating the distance constraint. In
addition, the similarity among antibodies is expressed as

Sv,s �
kv,s

L
, (4)

where kv,s is the number of same bits of two antibodies v and
s and L is the length (number of bits) of antibody. (en, the
antibody concentration can be obtained as

Cv �
1
N


j∈N

Sv,s· (5)

(ereby, according to the affinity Av and the concen-
tration Cv above, the reproductive probability of an indi-
vidual node is determined as

P � α
Av

 Av

+(1 − α)
Cv

 Cv

, (6)

where α is an arbitrary constant factor. In equation (6), the
individual fitness applies a positive effect on the expected
reproduction probability. Higher affinity is helpful to the
global optimization. However, due to the application of
random searching, the efficiency of programming iteration
and convergence are usually limited. On the basis of the
discussion above, we considered to design a combined al-
gorithm, whichmanages to concurrently take the advantages
of ACO and AIA.

2.3. ACO/AIA Algorithmic D2D Routing. Under the current
cellular network architecture, the deployment density in-
crease of wireless devices (e.g., cellphones, unmanned
equipment, and sensor array) results in the much greater
data traffic pressure of the central base station. (us, the
traditional direct connection strategies are usually not
available, especially on the energy consumption manage-
ment aspect [28, 29]. In order to handle this difficulty, the
D2D networking exploiting wireless devices as the relay
nodes has to be proposed as a potentially applicable ap-
proach. Because of the requirement of routing determi-
nation in D2D networking, the algorithm performances in
converging speed and accuracy are significantly important.
As a result, the selection of information propagation paths
has to be readily determined with the global optimization.
As we discussed above, two representative algorithms (i.e.,
ACO and AIA) support the iterative programming for the
optimal routing determination, and occupy advantages
complementary to each other [30]. (erefore, we tried to
combine them together to concurrently preserve their
advantages. In this work, the D2D routing is discussed as a
typical wireless IoT networking mission under the existing
5G architecture [25].

(emain idea of ACO/AIA fusion algorithm is replacing
the worst antibody with the code represented by the best ant,
thus to realize the information exchange between ACO and
AIA. By using AIA, a series of starting times from the so-
lution space can be selected to generate antibodies, and the
ACO algorithm uses the solution space as the search range.
On the basis of equation (1), we can further deduce the
iterative update of pheromone τi,j(t) described by

τi,j(t + 1) � (1 − ψ)τi,j(t) + ψτ0, (7)

where ψ ∈ (1, 0] is a constant, τ0 � (mFnn)− 1 is the initial
value of the pheromone trajectory between the channel
nodes, and Fnn is the fit value calculated by the nearest
distance heuristic algorithm. (en, according to the
guardian behavior in AIA, the optimal solution generated by
ACO is used to stimulate the local search process. Mean-
while, the updating rules of pheromone trajectory are de-
fined by

τi,j(t + 1) � (1 − ρ)τi,j(t) + ρ∆τi,j(t), ρ ∈ (0, 1], (8)

where ρ is the volatile coefficient of pheromone and τi,j(t) is
the pheromone increment of at t. At the time t, the ants pass
through the node once, the local and global pheromones
need updates. (e pheromone parameters are adjusted
according to equations (1) and (2) to prevent the local
optimal solution. (e affinity function Av obtained by
equation (3) is used to define the final D2D algorithm
pheromone update:

pheromone(i, j) �
(1 − p) pheromone (i, j) + ρAv, nodes i, j on path,

(1 − p) pheromone(i, j) + bρAv, otherwise.
 (9)
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In equation (9), b ∈ (0, 1) is a constant, which prevents
the exceeding pheromone concentrations on multipath.
Before the D2D routing optimization algorithm is complete,
it maintains the iteration until the final convergence is
obtained.

While the ACO/AIA fusion algorithm is proposed, we
continue to discuss the constraint for the D2D networking
optimization. Since our target is realizing a technically
practical IoT scenario based on D2D routing, the optimi-
zation constraint is correspondingly set to make the total
energy consumption minimized, at least lower than the
traditional station-device direct communications. As the
current communication techniques have almost approached
the information channel capacity close to the Shannon limit,
the data rate in this work is estimated by the upper limit.
(en, based on the existing 5G architecture, we define the
service zone covered by a single base station. Simply, we set a
regular hexagon with the side length of dmax � 60m.
According to the Friis transmission formula, the data rate
becomes a univariate function of the distance d. (erefore,
the data rates of station-device (Rbs) and device-device (Rdv)

are expressed as follows:

Rbs � WEHlog2 1 +
P
tran
bsmax

G c/4πfEHd( 
2

pnWEH

⎡⎢⎣ ⎤⎥⎦ , d ∈ 0, dmax ,

Rdv � WSHlog2 1 +
P
tran
dvmax

G c/4πfSHd( 
2

pnWSH

⎡⎢⎣ ⎤⎥⎦, d ∈ 0, dmax .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

In equation (10), fEH � 50GHz and fSH � 2.4GHz in-
dicate the carrier wave frequencies of base station (extreme
high frequency, EHF) and wireless devices (special high
frequency, SHF), respectively. Accordingly, WEH � 500
MHz and WSH � 24MHz are the typical bandwidths of EHF
and SHF, Ptran

bsmax
� 400W and Ptran

dvmax
� 1W are the typical

power levels of EHF and SHF, Pn � 3.981 × 10− 21WHz− 1 is
the noise background power density, c � 3 × 108ms− 1 is the
radiowave propagation speed, and d≤ dmax � 60m is the
distance between any two nodes. (e distribution of all the
wireless devices, as well as the relay nodes, within a service
zone is assumed to obey the Gaussian distribution. (ere-
fore, in a representative loop l containing Nl nodes, the time
length of D2D communication Tl is deduced as

Tl � 

Nl

nl�1
Tl,nl

� 

Nl

nl�1

1
Rl,nl



nl

i�1
Il,i

⎛⎝ ⎞⎠·

(11)

Based on equation (11), the total energy consumption
can be calculated using Tl values (including the values of
devices Tl,n1

and base station Tl D2D). (erefore, the opti-
mization constraint for energy saving is expressed as

E � P
tran
dvmax



Nl

nl

Tl,nl
+ P

tran
bsmax

Tl D2 D· (12)

By using equation (12), the ACO/AIA algorithm can be
executed as an iterative program, until the convergence
indicates the minimal energy consumption.

3. Simulation Results and Discussion

On the basis of the algorithm and constraint we discussed
above, the D2D routing for the networking of an energy-
saving IoT was testified via the programming iteration.
After each iteration, the constraint result is calculated and
fed back to the next iteration for the asymptotic minimi-
zation of constraint [30]. In particular, according to the
existing 5G standard, the D2D sequence information
amount sent by a base station is set as a constant of 10Mb,
and the data amount of a device is randomly generated
obeying the Gaussian distribution within the range of
50–200Mb. (e programming scheme of out ACO/AIA
fusion algorithm is illustrated in Figure 1, and the pa-
rameters used in the programming are provided in Table 1.
In addition, to verify the performance advantage of our new
algorithm, the classical ACO and AIA algorithms are also
testified under the completely same conditions for com-
parisons [31].

Following the scheme in Figure 1, we first generate the
information nodes (wireless devices) within a hexagonal
cellular network service zone. As shown in Figure 2, the node
positions including data amounts are randomly generated
(30 nodes as a representative example in Figure 2(a)). (e
positions and data amounts of 30 nodes are also detailed in
Table 2. While all the nodes are covered by a central base
station, a traditional station-device direct connection model
is constructed (Figure 2(b)).

We then executed the programming iterations based on
the 30-node example (Figure 2) and presented the routing
results in Figure 3. Comparing with the classical ACO and
AIA algorithms, our novel fusion algorithm significantly
reduces the large-span connections. And, the interferences
between loops are also reduced. (ese numerical simulation
results imply that the ACO/AIA fusion algorithm might be
valid for the avoidance of local optimization disadvantages
in the conventional algorithms.

Furthermore, the iterative optimization performances
were quantitatively testified in the networking of 30-node
situation. As shown in Table 3, all the results acquired from
three algorithms approach stability after around 300-time
iterations. However, the ACO/AIA algorithm exhibits
much higher energy efficiency than the other two algo-
rithms, as shown in Figure 4. (e much higher energy
consumption levels of ACO and AIA algorithms, especially
the classical ACO algorithm, provide the relatively high
final results, which imply the local optimization issue as we
mentioned above.

Moreover, in order to further verify the universality of
our algorithm in the energy-saving optimization, the cases
including more devices (information nodes) were tested.
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As shown in Figure 5, the representative examples of D2D
networking of 70, 150, 200, and 300 nodes optimized by
using the ACO, AIA, and ACO/AIA fusion algorithms,
respectively, are compared with each other. We discov-
ered the consistent regularity that the ACO/AIA algo-
rithm possesses the best energy efficiency and the
convergence performance.

Besides, we would like to note that although D2D
routing significantly enhances the energy efficiency, the time
latency in indirect connections is an inevitable issue hin-
dering the practical applicability. To overcome the time-
delay hindrance, the final solution may still focus on the
hardware developments, together with the algorithm
investigations.
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Figure 1: Programming scheme of the ACO/AIA algorithm for energy-saving optimization.

Table 1: Algorithm programming parameters.

Parameters Value
Population size 100
Memory capacity 10
Crossover probability 0.5
Mutation probability 0.1
Diversity evaluation parameter 0.95
Pheromone index 2
Heuristic index 3
Pheromone volatility coefficient 0.1
Pheromone enhancer 1
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Figure 2: A representative wireless networking model containing 30 nodes. (a) Random generation of information nodes within a service
zone. (b) Traditional direct communication strategy.

Table 2: Node position and data amount information corresponding to Figure 2.

Node x-coordinate (m) y-coordinate (m) Data size (Mb)
0 0 0 0
1 −29.75076725 −21.1451 98
2 28.8074986 −32.3711 82
3 39.51346795 2.855766 93
4 8.864290527 −17.8691 111
5 −26.04441642 −28.5067 119
6 −12.29841177 0.593461 89
7 −21.67998262 24.53206 98
8 10.27037863 14.25358 86
9 48.77741011 1.931686 110
10 −10.43393433 36.8657 126
11 1.760926681 −4.10528 80
12 2.552906914 6.706503 52
13 16.18910379 −9.73259 79
14 25.22775935 2.95136 70
15 25.23375902 3.787866 104
16 −37.32864055 17.53824 120
17 −34.73651287 −16.5719 83
18 −5.951438079 −25.8198 86
19 −41.53044014 −2.10741 83
20 −19.18381344 −22.3525 82
21 21.70052876 20.78692 89
22 −34.21303177 −18.425 58
23 30.45716541 −6.42097 112
24 −17.23243667 −25.5631 76
25 −16.96341148 −4.05674 61
26 18.38068225 24.12656 101
27 −4.98049597 −7.19577 143
28 4.651289738 −25.7734 108
29 26.93717204 33.05046 102
30 −20.95107025 −24.6377 59
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Table 3: Optimization trends of energy-saving D2D networking (30-node) along with the iterations of ACO, AIA, and ACO/AIA fusion
algorithms.

(e number of iterations
Total energy consumption

ACO AIA ACO/AIA
1 292150.8678 325210.4059 242842.1009
2 194461.987 325210.4059 242842.1009
3 194461.987 325210.4059 240157.053
· · · · · · · · · · · ·

· · · · · · · · · · · ·

100 194461.987 227245.5209 98898.74869
· · · · · · · · · · · ·

200 194461.987 128434.1946 76446.35832
· · · · · · · · · · · ·

300 194343.9423 125626.1345 73241.97747
301 194343.9423 125626.1345 73241.97746
302 194343.9423 125626.1345 73241.97746
303 194343.9423 125626.1345 73241.97746

ACO AIA ACO/AIA

Figure 3: D2D routing results acquired from ACO, AIA, and ACO/AIA fusion algorithms (30 nodes in Figure 2).
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4. Conclusion

In summary, we investigated the D2D routing scenarios
for the energy-efficient networking from the algorithm
aspect. Based on the numerical simulation results, we il-
lustrated that the program iteration is a technical option
for the construction of primitive D2D wireless IoTs, under
the current hardware developing level. More importantly,
we proposed a D2D routing algorithm based on the
classical ACO and AIA algorithms. By testing the iterative
optimization under the energy-saving constraint, the novel
ACO/AIA fusion algorithm provides more satisfactory
converging performances than traditional algorithms. (e
authors regard that the exploration of wireless IoT net-
working could be moved forward following this algo-
rithmic method, concurrent to the hardware
developments.
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