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Website fingerprinting attacks allow attackers to determine the websites that users are linked to, by examining the encrypted traffic
between the users and the anonymous network portals. Recent research demonstrated the feasibility of website fingerprinting
attacks on Tor anonymous networks with only a few samples. .us, this paper proposes a novel small-sample website fin-
gerprinting attack method for SSH and Shadowsocks single-agent anonymity network systems, which focuses on analyzing
homology relationships between website fingerprinting. Based on the latter, we design a Convolutional Neural Network-Bi-
directional Long Short-Term Memory (CNN-BiLSTM) attack classification model that achieves 94.8% and 98.1% accuracy in
classifying SSH and Shadowsocks anonymous encrypted traffic, respectively, when only 20 samples per site are available. We also
highlight that the CNN-BiLSTM model has significantly better migration capabilities than traditional methods, achieving over
90% accuracy when applied on a new set of monitored sites with only five samples per site. Overall, our experiments demonstrate
that CNN-BiLSTM is an efficient, flexible, and robust model for website fingerprinting attack classification.

1. Introduction

With the continuous development of Internet technologies,
privacy protection has become one of the most critical
concerns. .us, a continuously increasing number of users
protect their anonymity while browsing the Internet by
utilizing anonymous network communication systems.
However, current research [1–10] shows that privacy can be
compromised even though clients use privacy-enhancing
technologies such as Shadowsocks [11], I2P [12], Tor [13],
Anonymizer [14], SSH, and VPN. Among several cyber-
attacks compromising anonymity, the website finger-
printing attack is one of the most representative ones. .e
core idea of this type of attack is that although the user’s
communication content is encrypted when visiting dif-
ferent websites, the traffic characteristics generated by each
website are unique due to each web page content, e.g., web
code, images, scripts, and style sheets. .erefore, the at-
tacker can analyze the anonymous traffic and infer the
user’s network behavior by passively extracting the traffic
between the user and the anonymous network portal using
the WF attack.

Current literature [1–5, 7, 8, 10, 15–17] considers website
fingerprinting attacks a classification problem. Indeed, the
attacker first builds a unique fingerprint model for each
website and trains a suitable classifier using the fingerprint
features, which can then be used to classify the collected user
traffic. Early researchers used machine learning models such
as Support Vector Machines [16] (SVM), k-Nearest
Neighbors (k-NN) [10], and Random Forests [8], managing
an attack accuracy of up to 90%. Nevertheless, in these
techniques, the model performance mainly depends on
handcrafted features. With the wide application of deep
learning techniques in the field of traffic identification, at-
tackers have applied deep learning models to website fin-
gerprinting attacks [1–5, 7, 9], dramatically increasing the
attack accuracy and effectively solving the challenging
problem of feature extraction and selection. Although the
advent of deep learning models has improved the attack
accuracy, researchers need to collect hundreds of training
samples for each website to enable the neural network to
extract high-dimensional fingerprint features. Involving a
large training dataset is crucial because when the training
sample size is small, the model suffers significantly from
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overfitting affecting the model’s training process. Simulta-
neously, the traditional deep models are less flexible, with
their performance dropping dramatically when applied to an
entirely new classification task.

Spurred by the drawbacks of current deep learning
methods, we propose a homology analysis-based approach
for website fingerprinting attacks that employ a Siamese
Networks [18] structure. Our deep learning architecture
analyzes the homology relationship between website fin-
gerprinting features and significantly reduces the training
samples required for model training and managing an
improved migration capability for the model. .e main
contributions of our work are as follows:

(i) We study and propose a homology analysis-based
website fingerprinting attack model, relying on a
Convolutional Neural Network-Bidirectional Long
Short-Term Memory (CNN-BiLSTM), which ach-
ieves 94.8% and 98.1% attack accuracy in a closed
world composed of encrypted traffic from SSH and
Shadowsocks anonymity networks, respectively,
with only 20 training samples per site. .e per-
formance of the proposed architecture is signifi-
cantly better compared to traditional methods.

(ii) We innovatively construct one-hot matrices by
sequence symbolization to represent the direction,
size, and time interval attributes exposed in the
traffic sequences. .is strategy improves the data
feature dimensionality and the fault tolerance for
sample burst features.

(iii) Compared to previous studies, we design a more
challenging scenario to evaluate the model’s mi-
gration capability. Specifically, we complete training
using SSH anonymous network encrypted traffic
and then utilize the trained model to classify
Shadowsocks anonymous network encrypted traffic.
.e results demonstrate that, with only five sample
attacks per site, our technique exceeds 90% classi-
fication accuracy.

.e remainder of this paper is organized as follows.
Section 2 summarizes and reviews previous approaches to
website fingerprinting attacks. In Section 3, we present the
threat model for website fingerprinting attacks and the
design of the CNN-BiLSTM model. Section 4 summarizes
the datasets used and the data processing methods, while
Section 5 provides the results of our experiments and the
corresponding analysis. .e limitations of our work and
directions for future research are discussed in Section 6.
Section 7 concludes this work.

2. Background and Related Work

Website fingerprinting attacks use a passive traffic analysis
technique. .e attacker first configures a network envi-
ronment similar to the monitored target, exploits the same
anonymous network encryption proxy to access each site in
the monitored set, and collects adequate training samples.
After that, the attacker builds a fingerprint library for each

monitored site and identifies the actual address of the user’s
communication counterpart by analyzing, extracting, and
comparing the features of the communication traffic ob-
tained during monitoring.

In 1998, Cheng et al. [19] were the first to apply the
website fingerprinting attack to traffic identification by using
the feature of file size to identify some specific SSL-protected
files. With the rise of anonymous networks, Herramnn et al.
[17] in 2009 performed website fingerprinting to identify JAP,
Tor, OpenSSH, OpenVPN, Stunnel, and CiscoIPsec-VPN. In
2011, Panchenko et al. [16] introduced a unique traffic
burstiness combined with an SVM algorithm that achieved a
54% identification rate for Tor traffic. In subsequent studies,
Wang et al. [10] extracted over 3000-dimensional feature
vectors to model website fingerprinting and employed a
weighted distance-based metric and a k-NN classifier to
measure the similarity of website fingerprinting. Panchenko
et al. [15] proposed the CUMUL method that exploited the
feature of cumulative packet size, while Hayes et al. [8]
proposed a random forest-based attack method (k-FP) to
describe website fingerprinting by selecting 150 important
features from the total 4,000 dimensions. Current methods
are implemented by handcrafted feature sets combined with
machine learning algorithms for website fingerprinting at-
tacks and managing an accuracy exceeding 90%.

With the development of deep learning techniques in
image, speech, and video, researchers have extended using
deep learning schemes for website fingerprinting attacks.
In 2016, Abe et al. [9] first succeeded using a Stacked
Denoising Autoencoder (SDAE) for website fingerprinting
attacks. In 2017, Rimmer et al. [7] extensively evaluated the
performance of deep learning methods such as SDAE,
CNN, and LSTM in a dataset consisting of 900 sites (each
with 2500 samples). .e reported results revealed that
CNN provided the best results, achieving 96.66% accuracy
in a closed world, while in an open environment, it
achieves a TPR of 71.3% and an FPR of 3.4%. In 2018,
Sirinam et al. [5] designed a more complex deep learning
model (DF) with a deeper network structure that involves
more convolutional and Batch Normalization layers. It
eventually achieved 98.3% accuracy in a closed world
consisting of 95 websites and 99% accuracy in an open
world with 94% recall.

However, using deep learning for website fingerprinting
attacks requires a large number of training samples per site.
Hence, to solve this problem, Sirinam et al. [3] in 2019 first
designed a Triplet Fingerprinting (TF) method for website
fingerprinting attacks using a small-sample technique
[18, 20–22], which involved a triplet network including an
anchor (A), positive (P), and negative (N) as subunits of the
triplet network. .is method employs the cosine distance
algorithm to measure the relationship between A-P and
A-N, so that A and P are close to each other, while A and N
are far away in the embedding space generated by the model.
.is means that the feature vectors generated by the same
website sample traffic are close to each other, and the feature
vectors generated by different website sample traffic are far
apart. After training, the trained model is used as a feature
extractor for website traffic, and then k-NN is used as a
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classifier to finally achieve 95% accuracy requiring a small
number of samples per website. Oh et al. [1], in 2021, first
proposed another highly representative fingerprinting attack
technique for low data sites, entitled GANDaLF, based on
generative adversarial networks (GAN). .is method uses a
small number of labeled data and amore extensive unlabeled
set to train the generator and the discriminator. .e gen-
erator is trained to convert random seeds into pseudotraces
with the same statistical distribution as the training data..e
discriminator is trained to correctly exploit data for clas-
sification while distinguishing between the generator’s true
traces and pseudotraces output. .is approach uses the
generator as an additional data source to help improve the
performance of the discriminator, making the website fin-
gerprinting attack effective even in low data settings.

3. Attacks Based on Homology Analysis

3.1. Attack (reat Model. .e website fingerprinting attack
aims to disrupt the user’s anonymity while visiting a website
by utilizing traffic analysis; that is, the eavesdropper can infer
the target websites visited by users from the encrypted
anonymous traffic, with the primary attack model presented
in Figure 1.

In this paper, we adopt the important assumptions of a
website fingerprinting attack; that is, the attacker can only
obtain the network packets on the communication link
passively and cannot modify, delete, or insert any packet and
encrypt, decrypt, or analyze the packets directly..e attacker
collects the traffic, compares it with previously known traffic
characteristics such as packet size, direction, and time in-
terval, and finally finds the best match to the targeted website
data stream record. In this way, the attacker is informed
about the websites visited by a user and thus compromises
the user’s anonymity.

3.2. Website Fingerprinting Homology Analysis. .e essence
of the website fingerprinting attack is matching traffic
characteristics, which is essentially the same goal as the
homology detection of proteins and DNA in biology. Both
scenarios aim to find similar segments between sequences, so
we consider homology analysis feasible for the website
fingerprinting attack. .e homology analysis methods are
commonly used in biology and are divided into three cat-
egories [23]: comparison-based, ranking-based, and dis-
criminative-based methods. .e most commonly used
comparison-based methods are sequence, sequence spec-
trum, and HMM comparison, i.e., comparing sequences by
dynamic programming and scoring functions. For example,
in 2017, Zhuo et al. [6] implemented a website fingerprinting
attack using a PHMM model. .e core idea of the sorting-
based approach is to regard homology detection as an in-
formation retrieval problem and sort the known sequences
in the database and the unknown query sequences according
to the homology relationship from near to far. .e critical
process of this method is the design of the sorting algorithm.
According to the closeness of homology relationship, the
discriminative-based approach involves dividing the

sequences into positive and negative sample training and test
sets. .en use the sequences in the training set to train the
classification model based on machine learning and deep
learning, and the test set evaluates the classifier’s
performance.

Traditional website fingerprinting attacks using deep
neural networks require a large amount of data, and when
the training data is insufficient, the model is less effective
during classification. Additionally, the website content
changes significantly over time, and these changes affect the
website fingerprinting features..erefore themodel needs to
be retrained after a while. At the same time, the migration
ability of the model is weak, and the classification accuracy
will drop significantly when the trained model is applied to a
new classification task.

In this paper, we adopt a discriminative approach for
website fingerprinting homology analysis. Unlike the tra-
ditional direct classification of website fingerprinting using
machine learning and deep learning models, we adopt the
structure of Siamese Networks [18]. During training, the
purpose of our model is to change from directly attributing
traffic sequences to corresponding website categories and
train the network to learn the correlation between website
traffic features, that is, the homology between website fin-
gerprinting. .is is achieved by using less data for model
training to achieve a higher accuracy rate of website fin-
gerprinting attacks.

3.2.1. Siamese Networks. Siamese Networks are a particular
type of neural network structure, which, unlike a network
model that learns to classify inputs directly, aim to learn the
similarities and the correlations between the two inputs. .e
model selects the most likely identical category for a clas-
sification task by comparing each example in the test set with
the training set..e Siamese Networks consider two samples
on the input simultaneously and finally output the proba-
bility that they belong to the same category.

As shown in Figure 2, the Siamese Networks have two
inputs X1 and X2, in each cell structure, where X1 and X2 are
input into the neural networks Network_1 and Network_2
with shared weights (in the usual case, it can be considered
that Network_1 and Network_2 are two identical neural
network structures). .en, a similarity measure algorithm is
used to calculate the distance between the high-dimensional
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Figure 1:.reat structure model for website fingerprinting attacks.
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features Gw(X1) and Gw(X2) extracted by the neural net-
work and the output value as the correlation measure of X1
and X2.

.e training test of the Siamese Networks contains
multiple Siamese Network units, and each twin unit accepts
two input data. Figure 3 illustrates the training test structure
of the Siamese Networks, including the input, network,
distance, and output layers. .e input layer combines the
input data, and the two inputs are logically symmetric be-
cause the network layer weights are shared, and the network
structure is consistent. .e network layer uses deep neural
networks to extract high-dimensional features from the
input data, commonly used as a CNN. .e distance layer
calculates the correlation between the high-dimensional
features, and the typically used distance metrics are the
cosine and sine. .e output layer uses the results of the
distance layer to get the probability that two inputs belong to
the same category.

3.2.2. Dataset Construction Method. Each unit of a Siamese
Network requires two inputs, and therefore the dataset needs
to be correctly reconstructed. Assuming that N websites are
to be classified, the training and test sets are defined by

Strain(k) � S
+
train(k)∪ S

−
train(k)

Stest(k) � S
+
test(k)∪ S

−
test(k)

(k � 1, 2, 3, . . . , N)
⎧⎨

⎩ ,

(1)

where k denotes the dataset for the k-th website prediction
classification, S+

train(k) and S−
train(k) are the positive and

negative sample training set for the k-th website, respec-
tively, and S+

train(k) and S−
train(k) together constitute the

training set Strain(k) for the k-th website. S+
test(k) denotes the

positive sample test set of the k-th website, S−
test(k) denotes

the negative sample test set of the k-th website, and S+
test(k)

and S−
test(k) together constitute the test set Stest(k) of the k-th

website:

S
+
train(k) � k

+
i ∪ k

+
j

S
−
train(k) � k

+
i ∪ k

−
l

⎧⎨

⎩ (1≤ i< j≤P, 1≤ l≤P ) . (2)

We assume that each website provides P samples for
model training (equation (2)), k+

i and k+
j denote any two

training samples from the k -th website, and the two inputs
of the Siamese Networks unit are logically symmetric. .en,
S+
train(k) � k+

i ∪ k+
j denotes that S+

train(k) consists of any two
training samples from the k-th website, with k−

l referring to
the training samples of other sites than the training samples
of the k-th site. To balance the number of samples of S+

train(k)

and S−
train(k) in the training set, we select only one random

sample as k−
l for each site other than the training samples of

the k-th site, and S−
train(k) � k+

i ∪ k−
l indicates that the two

combinations of k+
i and k−

l together form a negative sample
training set for the k-th website.

S
+
test(k) � k

+
i ∪ k

+
j

S
−
test(k) � k

+
i ∪ k

−
l

⎧⎨

⎩ (1≤ i< j≤Q, 1≤ l≤Q) . (3)

We also assume that each site provides Q samples for
model test evaluation (equation (3)), and then under the
same principle, we obtain the positive sample test set S+

test(k)

and the negative sample test set S−
test(k) for the k-th site.

3.3. CNN-BiLSTM-Based Siamese Networks Attack Model
Construction

CNN. A convolutional neural network has four sig-
nificant features, that is, the local perceptual domain,
shared weights, pooling, and multilayer network, which
can capture the complex features in the original data,
and therefore it is widely used to process serial and
image data..e original data is convolved with the local
perceptual domain, and shared weights are utilized to
form a feature map composed of local features. .ese
are then passed through the pooling layer for inte-
gration and to perform data dimensionality reduction.
.e in-depth features involve high-dimensional,
complex, and abstract features created after several
convolutional and pooling layers. In previous studies
[3, 5, 7], CNNs have been widely used as the dominant
feature extraction method for website fingerprinting
attacks.
LSTM. .e long short-term memory network dy-
namically processes the input sequence according to
the time series, and the output processed in the pre-
vious time step is used as the input on the next time
step. At the same time, LSTM achieves the purpose of
blocking irrelevant information, absorbing relevant
information, and maintaining information in a cell
state through the collaboration among input gates,
forgetting gates, and output gates, which solves the
problem of gradient disappearance and gradient ex-
plosion often encountered in the training process of
recurrent neural networks (RNN). .erefore, LSTM is
widely used in sequence information processing. .e
possibility of using LSTM for website fingerprinting
attacks was also discussed in [8].

As shown in Figure 4, our deep learning architecture
uses a combined network comprising a CNN and a

Distance<Gw (X1), Gw (X2)>

X1 X2

Gw (X)
Network_2

Gw (X)
Network_1 W

Value

Gw (X1) Gw (X2)

Figure 2: .e structure model of Siamese Networks unit.
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bidirectional LSTM (BiLSTM) as the base model of the
Siamese Networks. Firstly, the CNN is used to extract the
high-dimensional features of the two original input se-
quences, and then the dependencies in the high-dimensional
features of the sequences are extracted through the BiLSTM
layer. However, due to the long sequences generated by the
network traffic, the output of LSTM at the last time step
cannot represent the dependencies containing all subse-
quences, so we consider using the intermediate output of
LSTM at each time step to better handle the local and global
dependencies between the traffic sequences and the captured
subsequences. At the same time, we choose a BiLSTM to
replace the commonly used unidirectional LSTM. .e
forward LSTM in the BiLSTM model can extract the de-
pendencies between the current input subsequence and its
left subsequence, while the backward LSTM can extract the
dependencies between the current input and its right

subsequence. Hence, the concatenation of these two inter-
mediate outputs allows for more comprehensive informa-
tion on the dependencies between the sequences. In the
distance layer of twin networks, traditional distance mea-
surement metrics such as cosine, sine, Euclidean, or other
linear ones often underperform in evaluating the correlation
between the high-dimensional features of the sequences.
.us, in this paper, we consider using fully connected neural
networks as the distance measuring function. .e features
extracted from two original sequences are spliced, com-
bined, and input to the fully connected layer to evaluate the
homology relationship between the traffic sequences.

3.4. Model Parameters. To select the optimal hyper-
parameters for our model, we evaluate several CNN-
BiLSTM model structures and parameters using the
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extensive candidate search method. Table 1 presents some
of the critical parameter search spaces and the final
selection.

We use Layer Normalization [24] for the Batch Nor-
malization layer because the number of training samples we
exploit is small, and Batch Normalization [24], which uses
the mean and variance of the samples, does not reflect the
global statistical distribution. Nevertheless, the Layer Nor-
malization algorithm is independent of the batch size, and its
statistics depend on the number of nodes in the hidden layer.
For the network’s activation function layer, we choose
LeakyReLU [25], which presents the advantage of avoiding
the neuron “death” faced by ReLU during training, reduces
the parameters that need to be debugged, and improves
training speed.

4. Dataset

4.1.DataCollection. .e datasets used in this experiment are
Liberatore’s open dataset [26] and the Shadowsocks [6]. As
shown in Table 2, we also exploit two open datasets to
construct the closed world and open-world datasets required
for the experiment.

4.1.1. Closed World

SSH-200 Dataset. Built from the Liberatore open
dataset, this dataset contains encrypted network traffic
data from 2000 different sites accessed using SSH
tunnels. However, this dataset involves many empty
packets due to various failures during the collection
process. For consistency, this experiment screens out
sites with average instance SSH packet sequence length
greater than 100 (based on the original dataset) and
randomly selects 200 sites from them, with 25 instances
selected for each site to generate the SSH-200 dataset.
Shadowsocks-200 Dataset. 200 different domains were
randomly selected from the top 1000 Alexa rankings,
and each domain was accessed 25 times each using
Shadowsocks tunneling encryption to generate the
Shadowsocks-200 dataset.

4.1.2. Open World

SSH-2000 Dataset. One randomly selected instance
from Liberatore’s open dataset generates the SSH-2000
dataset for each site.
Shadowsocks-2000 Dataset. It includes randomly 2000
selected websites from Alexa top 1000 to 10000 and
uses Shadowsocks tunnel to visit each website only once
to generate Shadowsocks-2000 dataset.

4.2. Data Processing. We process packets to filter out
fragmented packets that do not provide reliable information
in transmission, including missing, retransmitted, ACK loss,
duplicate answers, and transmission packets with zero data
segment length. Since the subject of this paper is SSH and
Shadowsocks anonymous network encrypted traffic without
restrictions on the size of transmission units and packet
delays like Tor [10], we extract the size, transmission di-
rection, and time interval from each payload packet as the
original sequence features.

.is paper uses a one-hot matrix [23] to represent the
original feature data, which requires sequence symbolization
and construction of one-hot matrix processing for the
original direction, size, and time interval feature sequences.
After processing, we extend the feature dimension and the
homology relationship between website fingerprinting fea-
tures to enhance the measured feature distance.

4.2.1. Sequence Symbolization. Algorithm 1 describes the
symbolization steps of the packet size and feature data di-
rection, where the first two lines input the original packet
sequence into the algorithm and extract them in order. Lines
3 to 7 merge the two attributes of size and direction, and
lines 8 to 10 maximize the highlighted direction and size
attributes in the form of double-symbol bits based on the
maximum transmission unit MTU and the standard number
of symbols Num. Finally, the double symbols are filled in
cyclically to obtain the symbolized sequence S&D Seq.

Algorithm 2 describes the symbolization step of the
packet time interval feature data with the input of the
standard number of symbols Num and the maximum
symbolization time interval Maxtime. .e first two lines

0 0 0 1
0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

Input1

CNN

Bidirectional 
LSTM

0 0 0 1
0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

Input2

+

FC

Loss 
Function

…

…

…

Figure 4: Structure of CNN-BiLSTM attack mode.
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indicate that the original packet sequence is input to the
algorithm, and the average symbolization time interval
Time.interval is calculated based on the standard number of
symbols Num and the maximum symbolization time in-
terval Maxtime. .e time of the first packet is also set as the
base time. Lines 3 to 8 symbolize the time interval char-
acteristics of the original packet sequence by first calculating
the sequential two packet time interval ΔTime, which is set
as a fixed character if the time interval ΔTime is greater than
the maximum symbolization time interval. If the time in-
terval ΔTime is less than the maximum symbolization time
interval, each time interval Time.interval corresponds to a

symbol. Finally, the symbols are filled in cyclically to obtain
the symbolization sequence TSeq.

4.2.2. Building a One-Hot Matrix. .e original sequence is
symbolized and can be expressed by

Seq � S1, S2, S3, . . . , SL, (4)

where Si denotes the i-th character of the symbolized se-
quence Seq and L denotes the length of the sequence. In this
paper, the one-hot matrix, commonly used to represent
DNA, RNA, and protein sequences in biology, represents the

Table 1: Model hyperparameter search space and final selection.

Hyperparameters Search space Selected value
Number of filters
Conv2d1 [8 . . . 32] 16
Conv2d2 [16 . . . 64] 32
Normalization methods [Batch Normalization, Layer Normalization] Layer Normalization
Activation functions [ReLU, ELU, LeakyReLU] ReLU
Pooling layers [Average, max] Max
BiLSTM [64 . . . 256] 128
Number of FC layers [1 . . . 4] 3
[Filter, pool, stride] sizes [2 . . . 8] [3, 3, 1]
Loss function [Cross-entropy loss] Cross-entropy loss
Optimizer [SGD, adam, Adamax, RMSProp] Adam
Learning rate [0.0001 . . . 0.01] 0.001
Training epochs [10 . . . 50] 30
Minibatch size [16 . . . 64] 48

Table 2: Dataset used in the experiment.

Name Anonymous method Training set Test set Purpose
SSH-200 SSH 200× 20 200× 5 Close world
Shadowsocks-200 Shadowsocks 200× 20 200× 5 Close world
SSH-2000 SSH N/A 2000×1 Open world
Shadowsocks-2000 Shadowsocks N/A 2000×1 Open world

Input: Packets Sequence Seq, Number of symbols Num
Output: Size and direction symbol sequences S&D Seq
Steps:
(1) S&DSeq⟵Null
(2) for packet a ∈ Seq do
(3) if a.Direction � “ + ” then
(4) a.size⟵MTU.size + a.size
(5) else
(6) a.size⟵MTU.size − a.size
(7) end if
(8) a.S&D.interval⟵ (2 × MTU.size)/Num2

(9) a.S&D.symbol[0]⟵ Symbol(a.size/(a.S&D.interval × Num))

(10) a.S&D.symbol[0]⟵ Symbol(a.size%(a.S&D.interval × Num))

(11) S&D Seq.append(a.S&D.symbol)
(12) end for

ALGORITHM 1: Size and direction symbolization algorithm.
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symbolized sequences. For a sequence Seq, its one-hot
matrix can be expressed as

M �

e1,1 · · · e1,L

⋮ ⋱ ⋮

enum,1 · · · enum,L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ei,j �
1, Sj � Symboli,

0, otherwise,
􏼨

(5)

where num denotes the number of standard characters and
Symboli denotes the i-th standard character (1≤ i≤num).
Intuitively, each character of the symbolized sequence can be
represented by a num-dimensional vector, and only this
character is activated in this vector. .e value of this di-
mension is one, and the rest of the dimensions are zero.

To facilitate the training of the neural network model, we
normalize the length L of the symbolized sequence. When
the sequence length is greater than the preset normalized
value L, we truncate the sequence, and if the length does not
satisfy L, we complement it with zero (the num dimensional
vector corresponding to zero in constructing a one-hot
matrix is the zero-vector). Finally, all the original sequences
are processed into num × L matrices.

5. Experimental Evaluation

5.1. Assessment Indicators. To evaluate the experimental
results, we use the following evaluation metrics: accuracy,
true positive (TP), false positive (FP), true negative (TN),
false positive (FP), precision, and recall. Accuracy indicates
the ratio of the number of website categories correctly
identified to the total number of websites in the same test set
and is calculated by

accuracy �
TP + TN

TP + FP + TN � FN
× 100% , (6)

where TP is the number of monitored websites correctly
classified, FP is the number of unmonitored websites in-
correctly classified as monitored, TN is the number of
unmonitored websites correctly classified, and FN is the

number of monitored websites incorrectly classified as
different monitored or unmonitored websites. Recall refers
to the percentage of monitored sites among the sites cor-
rectly classified by the classifier, and precision and recall are
calculated by

precision �
TP

TP + FP
,

recall �
TP

TP + TN
.

(7)

5.2. Closed World Assessment. We evaluate the proposed
model in the closed world case using SSH-200 and Shad-
owsocks-200 and demonstrate the parameter’s interplay
with the overall model’s performance.

.e accuracy of the model tested in the dataset SSH-200
is shown in Table 3. In a closed world and given some
parameter setting conditions, our proposed CNN-BiLSTM
model requires only 20 training samples and achieves up to
94.8% accuracy, performing significantly better than the
traditional machine learning k-FP, k-NN, and PHMM
models. Moreover, compared to the recently emerging
small-sample website fingerprinting attack methods, the test
results are slightly better overall than TF, the small-sample
website fingerprinting attack model first proposed by Sir-
inam et al. in 2019 [3]. Additionally, our method’s optimal
test accuracy is equal to that of GANDaLF, the current state-
of-the-art and data fingerprinting attack model proposed by
Oh et al. [1].

In this section, we design comparative experiments to
investigate the impact of using different combinations of
traffic features and data representations on the accuracy of
fingerprinting attacks. In the closed world, we employ the
original direction and size features, that is,
Raw Size&Direction, and the original direction, size, and
packet spacing combination features, that is,
Raw Size&Direction,ΔTime, the one-hot processed

Input: Packets Sequence Seq, Number of symbols Num, Max Time interval Maxtime,
Output: Time interval symbol sequences TSeq
Steps:
(1) TSeq⟵Null,Time.base⟵ First packet.Time.now
(2) Time.interval←Maxtime/Num
(3) for packet a ∈ Seq do
(4) ΔTime⟵ a.Time.now − Time.base
(5) if ΔTime≥Maxtime then
(6) a.Time.symbol⟵ Symbol(Max)

(7) else
(8) a.Time.symbol⟵ Symbol(ΔTime/Time.interval)
(9) end if
(10) Time.base⟵ a.Time.now
(11) TSeq.append(a.Time.symbol)
(12) end for
(13) return TSeq

ALGORITHM 2: Time interval symbolization algorithm.

8 Security and Communication Networks



S&D Seq matrix, and the one-hot processed S&D Seq and
TSeq combined matrix. Also, we compare our technique
with the newly proposed directional timing-based attack
(Tik-Tok attack) by Rahman et al. [2] in 2020. Table 3
highlights that the attack accuracy of the model can be
improved by 4-5 percentage points using our proposed data
representation technique compared with the direct use of
raw traffic features and is significantly higher than the Tik-
Tok approach using the combination of packet direction and
timestamp features.

Meanwhile, we count the packet sequence lengths of the
visited sites in the SSH-200 dataset. Figure 5 highlights that
more than 75% of the sites have sequence lengths within 500,
and thus, we set L � 200, 300, 400, and 500. It can be seen
from Table 3 that the highest accuracy of the model clas-
sification, when tested directly using the original feature
sequences of size and direction, is 89.3%, and the model
classification accuracy decreases slightly because of the
feature increment introduced in the dimension of the time
interval. .e latter is due to exploiting only 20 training
samples and the subtle perturbation brought by the change
of time interval affects the model’s final training effect.

Additionally, due to the introduction of packet size and
time symbolization interval, the original feature sequence
after data processing presents for the same site multiple
sample collections, imposing data changes in a particular
range that does not change the symbol but improves the
stability of the site fingerprint data features, making these
statistical features uniquely representing a site. .erefore,
after data processing, adding the dimensional feature of time
interval improves the classification accuracy by 1.5%, and
the model’s highest attack accuracy is achieved at L � 300.
Using the combined sequence of S&D Seq andTSeq after the
one-hot matrix processing, the accuracy increases to 94.8%.
.e test results in Table 3 also indicate that, after data
processing, as the normalized sequence length L increases,
the model reaches the peak classification accuracy earlier.
.is is because the one-hot matrix introduces more zero
elements in the vector while expanding the feature di-
mension, and the increase of the normalized sequence length
L leads to more and more traffic sequences generated by the
sites needing to be zero-complemented, making the se-
quences look more similar to each other after data
processing.

.e test results in Table 3 reveal that the highest clas-
sification accuracy is improved by nearly 5% after sym-
bolizing the original feature data and constructing the one-
hot matrix. We designed the following validation experi-
ments to analyze the interplay between the number of
standard symbols (packet size symbolization interval and
time symbolization interval) and the accuracy during the
symbolization process.

Figure 6 presents the model attack accuracy curves,
where the number of standard symbols Num involves se-
quence lengths of L � 200, 300, and 400. It is clear that the
accuracy rate keeps improving with the increase of Num (for
0≤Num≤ 20), and the attack performance of the model
reaches the optimum when the standard number of symbols
is Num � 20. After that, the performance of the model starts
to gradually decrease (for Num≥ 20). Hence, we conclude
that the model’s performance is related to the size of the
symbolized interval division. When the standard number of
symbols Num is small, the symbolization interval is large.
.e serialization process is more fault-tolerant to minor
variations in packet size and time intervals in different
samples from the same site. .ese features allow the model
to categorize the samples originating from the same site, but
a too-large interval will lead to the sequence not being
obvious enough. .e sequence generated by the samples of
different sites varies less, which is not conducive to the
differentiation of different sites, thus affecting the model’s
overall performance. When the number of standard symbols
Num is larger, the symbolization interval is smaller. After
symbolizing the original data, the samples from different
sites will have apparent differences, which is beneficial to
classify samples from different sites. However, for the dif-
ferent samples generated by multiple visits to the same site,
the perturbations generated by the packet size and time
interval change will show more apparent differences in their
symbolization sequences, which is not conducive to the
homology analysis. .is is because samples from the same
site will affect the classification ability of the model.

.e tested accuracy of the CNN-BiLSTM model on the
dataset Shadowsocks-200 is shown in Table 4. .e model
remains efficient in classifying and identifying Shadowsocks
anonymous encrypted traffic, achieving a maximum attack
accuracy of 98.1% with only 20 training samples per site
when classifying against SSH anonymous encrypted traffic.

Table 3: Test accuracy of dataset SSH-200 (%).

Method name Test methods L � 200 L � 300 L � 400 L � 500

CNN-BiLSTM

Raw Size&Direction 87.2 88.5 89.3 88.6
Raw Size&Direction,ΔTime 85.6 87.9 88.3 89.7

Directional Timing 86.9 88.9 90.2 89.8
S&D Seq, one-hot 92.8 93.4 93.1 92.2

S&D Seq, TSeq, one-hot 93.7 94.8 94.1 93.9
TF S&D Seq, TSeq, one-hot 92.9 94.1 93.5 93.2
GANDaLF S&D Seq, TSeq, one-hot 94.3 94.6 94.9 94.7
PHMM S&D Seq, TSeq 85.9 87.3 88.2 86.5
Method name Test methods K� 1 K� 2 K� 3
k-FP S&D Seq, TSeq 90.6 91.2 91.1
k-NN S&D Seq, T Seq 90.8 86.4 82.3
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.is shows that each site’s packet direction, size, and time
interval in the Shadowsocks anonymous environment are
more prominent, while each site’s traffic has fewer burst
features and a smoother state, making it easier for eaves-
droppers to perform website fingerprinting attacks.

5.3. Migration Capability Assessment. Transfer learning [27]
is a deep learning-related technique, where an already
trained CNN is partially retrained on an entirely new
classification task. .e performance of the newly trained
model involves measuring its migration ability. Deep
learning models can automatically extract data features from
large amounts of data by semisupervised or unsupervised
feature learning algorithms and hierarchical feature

extraction schemes and manage a higher classification ac-
curacy than traditional machine learning methods. How-
ever, traditional website fingerprinting classification
methods that employ deep learning, such as DF and AWF,
require the training and test data to be independent and
codistributed. If a model trained in the monitored website
dataset collection A is used to classify fingerprint data in the
untrained monitored website collection B, the attack ac-
curacy of the deep learning model will drop drastically.
Additionally, much time is required to collect the monitored
website data in collection B and retrain the attack model,
which is unacceptable to the attacker.

To evaluate the migration capability of the model, we
consider a more challenging scenario and conduct experi-
ments using the SSH-200 and Shadowsocks-200 datasets.
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Table 4: Test accuracy of dataset Shadowsocks-200 (%).

Method name L � 200 L � 300 L � 400
CNN-BiLSTM 97.6 98.1 96.3
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SSH and Shadowsocks are two completely different
anonymous communication systems producing very dif-
ferent fingerprint data characteristics and collect signifi-
cantly different site information. Our model is trained
using one dataset, and the trained model is retrained by
randomly selecting R(R≤ 10) samples for each site in the
other dataset, with the latter dataset also exploited as a
testing dataset to evaluate the model’s classification ac-
curacy. Considering our trials, we evaluate the classification
accuracy of the CNN-BiLSTM, TF, AWF, DF, and GAN-
DaLF models with SSH anonymous fingerprint data as the
training set and employ the Shadowsocks anonymous
fingerprint data as the test set. .e corresponding results
are illustrated in Figure 7.

As seen in Figure 7, the TF, GANDaLF, and CNN-
BiLSTM models significantly outperform the traditional
deep learning models. Since the test set and the training set
are different types of traffic data, the data distribution is
weakly correlated, and the trained model is directly applied
to the classification task of the Shadowsocks dataset. .e
accuracy of the traditional deep learning AWF, DF, and
GANDaLF models based on the GAN network is less than
10%. In comparison, the attack accuracy of both TF and
CNN-BiLSTM models exceeds 70%. As the number of
samples (R) involved in the transfer learning process (sec-
ondary training) increases, the model’s attack accuracy
gradually improves with TF and CNN-BiLSTM’s accuracy
when 1≤R≤ 3, but in principle, this improvement effect
remains the same. .e accuracy of TF and CNN-BiLSTM
stabilizes above 90%, and when R � 10, the CNN-BiLSTM
model accuracy is close to 92%, which is a 6% improvement
over the TF method. .e GANDaLF model has a significant
improvement in attack accuracy as the sample number R
increases due to its robust data generation capability,
managing a close to the TF model performance for R� 10,
and the accuracy curve still maintains a slow upward trend.
.e accuracy improvement effect of the traditional methods
AWF and DF as the sample number R increases is more
evident than TF and CNN-LSTM methods but much lower
than GANDaLF model. .e accuracy rate is already close to
50% at R� 10, but still, 40% lower compared with the CNN-
LSTM method. .is indicates that traditional deep learning
models have limitations in adapting to new classification
tasks and that CNN-LSTM, TF, and GANDaLF models can
all better mitigate the adverse effects of data mismatch.
However, the CNN-LSTM method has better migration
ability in environments where samples are lacking.

5.4. Open-World Assessment. .e performance of classifiers
in the open world is another essential evaluation metric in
website fingerprinting attacks..e goal is to assess the ability
of the model to distinguish traffic generated by monitored
websites from traffic generated by any other unknown
websites. We use precision and recall to evaluate the CNN-
BiLSTM model in an open-world scenario by plotting the
precision-recall curve.

.is section evaluates the model’s performance in the
SSH and Shadowsocks anonymous communication systems.

To balance the number of monitored site samples with the
number of monitored samples, we randomly select 10
samples for each site from the SSH-200 and Shadowsocks-
200 datasets to construct a monitored test sample set. .e
latter is then combined with the SSH-2000 and Shadows-
ocks-2000 datasets to form the SSH and the Shadowsocks
open-world test set. At the same time, to better distinguish
the monitored and unmonitored sites, we use the standard
model during training and treat the unmonitored sites as an
additional label.

Figure 8 presents the precision-recall curves of the
CNN-BiLSTM model for sequence lengths of L � 200, 300,
and 400 in the SSH and Shadowsocks open world. .is
figure highlights that the accuracy and recall rates are
better in Shadowsocks than in SSH, which indicates that
the model is more suitable for Shadowsocks’ open-world
environment for website fingerprinting attacks. As the
recall rate increases, the classification accuracy rate sig-
nificantly decreases for SSH and Shadowsocks but is still
between 0.7 and 0.8. Also, in both environments, the
model performance is optimal for a sequence length of
L � 300.

Under small-sample conditions, we further evaluate two
extremely optimal models for website fingerprinting attacks
in the open world: TF and GANDaLF. We test the per-
formance of eachmodel for sequence length L� 300 and plot
the precision-recall curves with the corresponding results
shown in Figure 9. All three models perform better in the
open-world environment of Shadowsocks, indicating that
the individual characteristics of Shadowsocks anonymous
traffic data sites are more prominent and easier for model
classification. .e CNN-BiLSTM model performs signifi-
cantly better than the TF model in both open-world envi-
ronments. Furthermore, compared with the GANDaLF
model in both open environments, each has its advantages
and disadvantages.

.e model’s performance is appropriately optimized for
precision or recall at L � 200, 300, and 400 (Table 5). When
the model is tuned for optimum precision rate, SSH reaches
the highest precision rate of 0.889 at a sequence length of
L � 400 with the corresponding recall rate being 0.831.
Shadowsocks reaches the highest precision rate of 0.912 at
L � 300, with the recall rate being 0.899. Accordingly, when
the model is optimized for the recall rate, both SSH and
Shadowsocks reach the highest performance at L � 300,
managing the highest recall rates of 0.934 and 0.963, re-
spectively, while the corresponding precision rates are 0.742
and 0.789.

Figure 8 and Table 5 highlight that the CNN-BiLSTM
model is still highly usable in the open-world scenario, and
the attacker can tune the model in the open world utilizing
the task target. If the goal is to identify the traffic of
monitored websites in the network data, then the recall rate
should be of more concern to the attacker, and the accuracy
rate can be appropriately sacrificed to improve the recall
rate. Furthermore, when the attacker’s goal is to accurately
monitor the websites’ visitors, the accuracy rate is more
critical, and the recall rate needs to be appropriately
reduced.
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6. Discussion

In this section, we discuss the possible limitations of this
work and directions for future work.

6.1. Segmentation of Anonymized Web Data. In our exper-
iments, we use previously collected representative datasets to
ensure the purity of the data assuming that users open only
one web page at a time during data collection. However, in a
real-world attack scenario, users will open web pages ac-
companied by a lot of background traffic. .erefore, effi-
ciently splitting the anonymous traffic from the background
traffic is an important research topic.

6.2. (e Definition of Website Fingerprinting Attack. Our
work is consistent with most current studies that only
identify single-page website fingerprinting classification and
do not include the hyperlinks and other subpages on the
website homepage. .e next step is to focus on how to
characterize the overall fingerprint of the website.

6.3. Model Breakthroughs on Website Fingerprinting Defense
Technology. .is paper identifies and classifies the SSH and
Shadowsocks single-agent anonymous encrypted traffic and
employs the packet size, direction, and time interval as the
essential features to achieve better attack results. To defend
against website fingerprinting attack techniques that com-
promise user privacy, Tor, the currently best anonymous
network communication system, was designed to transmit
data in units in units of 512 bytes, called cells, and always pad
all data transfers up to a cell boundary, with targeted defense
against the important feature of packet size. Subsequent
researchers have further defended against other features.
Examples are the WTF-PAD based on adaptive padding
proposed by Juarez et al. [28], Walkie-Talkie based on half-
duplex communication and burst traffic proposed by Wang
et al. [29] in 2017, Traffic Silver presented at USENIX Se-
curity 2020 proposed by Cadena et al. [30], zero-delay
proposed by Gong and Wang et al. [31], and Mockingbird
based on GAN techniques proposed by Rahman et al. [32].
.ese anonymity network defense techniques change the
original direction, transmission time, and other character-
istics of website traffic, blurring the differences between
website traffic characteristics and increasing the difficulty for
attackers to implement website fingerprinting attacks.
.erefore, the model will have predictable degradation in
attack effectiveness when applied to this more challenging
anonymous network environment. A deeper analysis is
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needed on how to achieve a highly accurate small-sample
website fingerprinting attack under such more complex
conditions.

7. Conclusion

.is paper proposes a website fingerprinting attack method
based on homology analysis and designs a CNN-BiLSTM
website fingerprinting attack model using a Siamese Net-
work structure. Our architecture manages a high accuracy
rate with only a small number of training samples per
website. At the same time, we innovatively propose a data
processing method to increase the data feature dimension
and increase the fault tolerance of the sample’s burst
features.

We train our model with SSH anonymous network
encrypted traffic and then exploit it to classify the Shad-
owsocks anonymous network encrypted traffic, managing
over 90% accuracy with only five samples per site, which is
significantly higher than current methods. Additionally, this
experimental setup (training versus testing datasets are of
different nature) highlights that the proposed model has a
very appealing migration capability. Finally, the experi-
mental results indicate that attackers can still achieve ef-
fective website fingerprinting attacks with fewer resources.
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