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Data privacy threat arises during providing top-k query processing in the wireless sensor networks. +is article presents an
efficient privacy-preserving and collusion-resisting top-k(EPCT) query processing protocol. A minimized candidate encrypted
dataset determinationmodel is first designed, which is the foundation of EPCT.+emodel guides the idea of query processing and
guarantees the correctness of the protocol. +e symmetric encryption with different private key in each sensor is deployed to
protect the privacy of sensory data even a few sensors in the networks have been colluding with adversaries. Based on the above
model and security setting, two phases of interactions between the interested sensors and the sink are designed to implement the
secure query processing protocol. +e security analysis shows that the proposed protocol is capable of providing secure top-k
queries in the manner of privacy protection and anticollusion, whereas the experimental result indicates that the protocol
outperforms the existing works on communication overhead.

1. Introduction

Wireless sensor networks (WSNs), as one of the important
technologies in the Internet of +ings (IoT), have been
widely deployed to provide practical solutions in various
applications, such as environment monitoring, military
target sensing, and smart home application. Meanwhile, data
privacy leakage in WSNs is becoming the main obstruction,
which slows down its further development. For example, in
the scenario of a smart home application, videos or pictures
collected by wireless IP-cameras could be eavesdropped for
illegal profit. As a result, privacy protection on sensitive data
is a critical issue that must be addressed in WSNs.

InWSNs, the top-k query is one of the critical operations
in data aggregation for sensor monitoring process.+e top-k
query requests the k lowest or highest data items collected
from IoT sensors in WSNs. For example, “collecting the 10
lowest humidity data in forest area A-Z in last 2 hours” is an
example of top-k query, which can be performed for fire
monitoring. Our aim of this work is to design a secure top-k

query approach with privacy-preserving and collusion-
resisting manners.

+is article presents an efficient privacy-preserving and
collusion-resisting top-k query processing protocol (EPCT)
inWSNs.We first propose a minimized candidate encrypted
dataset determination model, which is the foundation of our
proposed protocol. It guides the idea of query processing and
guarantees the correctness of the protocol. +ere are two
phases of interactions between the queried sensors and the
sink in EPCT. In the first phase, when the queried sensors
receive a top-k query from the sink, they first use their own
private keys to encode the maximum of the collected data in
the interested time slot, respectively, and then, they submit
the encrypted data to the sink. In the second phase, the sink
decrypts the received ciphertext and calculates the candidate
sensors; after that, it unicastly informs the candidate sensors
to submit the rest candidate data. Once the sink obtains
enough data from the candidate sensors, the final result of
the query is determined. +e security analysis and perfor-
mance evaluation indicate that the proposed approach
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EPCT has the ability of protecting data privacy and per-
forming efficiently in transmission overhead.

+e main contributions of this article are listed as
follows:

(i) We present a minimized candidate encrypted
dataset determination model, which is the foun-
dation of our proposed scheme. It guides the idea of
query processing and guarantees the correctness of
the protocol.

(ii) We present a novel privacy-preserving and collu-
sion-resisting top-k query processing protocol,
which consists of two phases of secure interactions
between the queried nodes and the sink. We also
analyse the correctness, security, and transmission
overhead of the proposed method.

(iii) We perform evaluations on the transmission
overhead of the proposed protocol and the existing
works. +e experimental result shows the advan-
tages of the proposed scheme in transmission
overhead.

+e remainder of this article is organized as follows.
Section 2 discusses the related work. Section 3 introduces the
network model, query model, threat model, and the problem
description. Section 4 proposes the minimized candidate
encrypted dataset determination model. Section 5 presents
the top-k query processing protocol and the analysis of this
protocol. Section 6 presents the performance evaluation of
query protocols on communication cost, and Section 7 gives
a conclusion of this article.

2. Related Work

Secure data queries (such as top-k query, range query, and
MAX/MIN query) are critical operations for sensor moni-
toring and data collection in security-sensitive environment.
+ere are a lot of works [1–24] focusing confidentiality,
integrity, and completeness when performing data queries.

Kui et al. [3] utilize the pairwise-key and order-preserving
symmetric encryption and the together to protect the privacy
of data in top-k queries in two-tiered WSNs. Peng et al. [4]
encoded both sensory data and top-k query commands, and
storage nodes are designed to be able to correctly perform
top-k queries over those encoded data. Li et al. [6] use
pseudorandom hash function with bloom filter and partition
algorithm to protect data privacy and integrity for top-k
queries, respectively. Tsou et al. [7] constructed a layered
authentication tree by an order-preserving symmetric en-
cryption and used it to verify the completeness of query
results. Zhang et al. [12] designed a renormalized arithmetic
coding method such that storage nodes can calculate exact
top-k query results without knowing real values of data, and
they proposed a verification scheme to detect compromised
storage nodes. Peng et al. [13] encoded top-k queries by
threshold-based scheme and proposed a secure protocol that
storage nodes can calculate query results over encrypted
sensory data. Xingpo et al. [14] proposed secure top-k query
protocol with privacy and integrity preservation by deploying

the secure data preprocessing in sensor nodes. Wu andWang
[17] bound the collected sensory data with the corresponding
locations to achieve secure top-k query processing on hybrid
sensory data. Liu et al. [18] proposed a verifiable top-k query
protocol on two-tiered mobile sensor network, which adopts
the distinct symmetric data encryption and maps real nodes
into virtual nodes. +ese methods are designed for two-tiered
WSNs, which adopt resource-rich storage nodes in traditional
multihop WSNs. +e different network architecture makes
them not suitable for addressing secure top-k queries in
traditional multihop WSNs.

In traditional multihop WSNs, the earlier studies
[19, 25–29] proposed various top-k query schemes but
without concerning any security issues. Huang et al. [30]
designed a privacy-protection top-k query algorithm using a
filter and a data distribution table. +e algorithm adopts
conic section function to protect the privacy of the sensory
data. But, the algorithm is vulnerable when collusion attacks
happen. It is because all sensor nodes share the same secure
keys and functions. If a sensor node colludes with adver-
saries, these secure keys and functions will be disclosed, and
the adversaries could obtain the private data of other in-
nocent sensors. In our previous work [31], we gave the first
solution providing the privacy-protecting and anticollusion
top-k query processing scheme in wireless sensor networks.
It adopts the bloom filter and HMAC when performing
interactions between nodes and the sink to achieve secure
top-k query processing. However, there is some space for
transmission overhead saving because of the redundant data
submission and the false positive of bloom filter. +is article
presents an efficient and secure top-k query processing
protocol, which can address the above problems.

Additionally, some previous studies have focused on the
privacy-preserving range queries [8, 11, 32] and MAX/MIN
queries [15, 16] in WSNs. Because the query types are
different, the ideas of these works cannot be applied to
achieve the secure top-k queries in WSNs.

3. Problem Description

3.1. Network Model. +e architecture adopted is shown in
Figure 1. +e network routing topology is structured as a
tree, which is following TAG protocol [33]. Assuming that in
our scenario, n sensors S � s1, s2, . . . , sn􏼈 􏼉 are deployed and a
sink. Sensor nodes are sensory devices with limited resources
in energy, storage, and computation. +ey are in charge of
collecting data items from their neighboring areas and then
submitting the collected data to the sink through the tree
route. +e sink is a resourceful device, which executes query
commands from users and returns query results to users.
When receiving a query command, the sink cooperates with
those queried sensors in S to process queries according to
predeployed protocols. After the sink obtains the query
result, it returns the result to the upper-level users.

3.2. Top-kQueryModel. A top-k query is a data aggregation
operation to get k highest or lowest sensory data from
queried sensors. It is denoted as a triple Queryt � (t, S, k)
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where t is the queried time slot identity, S is the set of in-
terested sensors, and k is the number of interested data
items. For example, (t, s1, s2, . . . , s12􏼈 􏼉, 3) is a top-3 query to
obtain the 3 highest or lowest data items during sensors
s1, s2, . . . , s12􏼈 􏼉 in the time slot t.

Each sensor si ∈ S is assumed to collect N data items in a
time slot, which is denoted as Di � di,1, di,2, . . . , di,N􏽮 􏽯, and
each data item collected by a sensor is assumed to have an
unique score. +e uniqueness of collected data items can be
achieved by integrating the data collecting time and the
sensor identity into the data item score calculation. It en-
sures the uniqueness and correctness of a top-k query result.

3.3. .reat Model. +e honest-but-curious threat model [9]
is adopted in this article. +e sink is trustful while sensors
could collude with adversaries to leak out their collected or
forwarded data. But the sensors that has been attacked still
perform the pre-deployed protocols and cooperate with
other innocent (noncompromised) sensors to process query
commands. We have to note that the innocent sensors are
the majority inWSNs; otherwise, the network will be useless.

+e goal of the proposed secure top-k query protocol is
described as follows:

(1) A sensor only owns the data collected by itself, and
the data can be shared with the sink. It has no idea of
the data collected by other sensors even when they
are colluding with the adversaries.

(2) Query results can only be obtained by the sink, but
the adversaries have no idea of them even when there
are a few compromised sensors colluding with the
adversaries.

(3) +e k data items obtained by the sink are the k

highest or lowest data items collected by the queried
sensors, which means that the query result is correct.

Because sensors have limited energy, the network life-
time is usually determined by the energy consumption of the
sensors. Reference [33] shows that sensors consume most
energy in data transmission. +us, the transmission over-
head of network is an important metric for performance
evaluation. We will perform the evaluation on this metric in
Section 6.

4. Minimized Candidate Encrypted Dataset
Determination Model

Based on the idea making, the proposed protocol efficient in
transmission overhead. We propose the minimized candi-
date encrypted dataset determination model in this session.

4.1. Minimized Candidate Sensor Set. Let Queryt � (t, S, k)

be a query command, and each sensor si ∈ S collects N data
items in a time slot, the set of collected data of all sensors in S

is D � di,j|si ∈ S∧ 1≤ j≤N􏽮 􏽯.

Definition 1. For a top-k query, the query result Rt is a
dataset having the k largest data items of D. L(Rt) is denoted
as the lower bound of Rt, which is the minimum of Rt.

Definition 2. For a sensor si ∈ S, the in-node-maximum of si

is the maximum data item.
For example, if the collected data of si are

Di � di,1, di,2, . . . , di,N􏽮 􏽯 and di,1 >di,2 > · · · >di,N, then di,1
is the in-node-maximum of si.

Definition 3. For a top-k query, we define Φ is a sensor set
consisting of k sensors whose in-node-maximums are the k

largest in-node-maximums of sensors in S, that is

Φ⊆ S∧ |Φ| � k∧ ∀si ∈ Φ, sj ∈ S −Φ⟶ di,1 > dj,1􏼐 􏼑. (1)

Lemma 1. L(Rt)≥min( di,1|si ⊆Φ􏽮 􏽯)

Proof. According to Definition 1, L(Rt) is the lower bound
of Rt, which is the kth largest data of D. Because |Φ| � k,
there are k in-node-maximums of sensors of Φ, that is,
| di,1|si ∈ Φ􏽮 􏽯| � k. +us, min(di,1|si ∈ Φ}) is the kth largest
data of di,1|si ∈ Φ􏽮 􏽯, where min(∗ ) represents the mini-
mum of a dataset. Because di,1|si ∈ Φ􏽮 􏽯⊆D, we have that
L(Rt)≥min( di,1|si ∈ Φ􏽮 􏽯) holds. □

Lemma 2. Φ is the candidate sensor set of a query, which
means that all data in the query result Rt are contributed by
sensors of Φ, that is,

Rt ⊆ ∪
si∈Φ

Di. (2)

Proof. We give the proof by contradiction. We are
assuming that there is at least one data of Rt, which is not
contributed by a sensor of Φ. It means that
∃x(x ∈ Rt ∧x ∈ Dj), where x is collected by sj and sj is not
inΦ, i.e., sj ∈ S −Φ. We are assuming that x is the lth largest
data of D. +en, we can deduce two results: 1. 1≤ l≤ k holds
because of x ∈ Rt and |Rt| � k. 2. According to the definition
of Φ, for ∀y ∈ di,1|si ∈ Φ􏽮 􏽯, because x is assumed to be
collected by sj ∈ S −Φ, we have y>dj,1 ≥ x, where dj,1 is the
in-node-maximum of sj. Additionally, there are k in-node-
maximums contributed by sensors in Φ, i.e.,
|di,1|si ∈ Φ}| � k. +erefore, we can deduce that l> k holds.
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Figure 1: A example of tree routing topology.
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Obviously, there are contradictions between 1 and 2. As a
result, we deduce that Lemma 2 holds.

Lemma 2 It indicates that all sensors in Φ are candidate
sensors, which contribute the query result. In addition, Φ is
also the minimized candidate sensor set, and we prove it in
Lemma 3. □

Lemma 3. Φ is the minimized candidate sensor set that
contribute the query result Rt.

Proof. To prove this lemma, we have to prove the following
two observations. □

Observation 1. For ∀dj,h ∈ Dj where ∀sj ∈ S −Φ,
L(Rt)> dj,h holds.

Observation 2. Any sensor deletion from Φ could incur the
incompleteness of query result. If and only if the two ob-
servations hold simultaneously, then we can deduce thatΦ is
the minimized candidate sensor set that contribute the query
result.

Proof to Observation 1. According to Definition 3, for
∀si ∈ Φ and ∀sj ∈ S −Φ, di,1 and dj,1 are their in-node-
maximums and di,1 >dj,1 holds. Because dj,1 is the in-node-
maximum of sj, di,1 ≥dj,h holds where dj,h ∈ Dj. +us,
di,1 >dj,h holds. In addition, because si could be any sensor
of Φ, we can deduce that min( di,1|si ∈ Φ􏽮 􏽯)> dj,h. At last,
Lemma 1 indicates that L(Rt)≥min( di,1|si ∈ Φ􏽮 􏽯); there-
fore, L(Rt)> dj,h holds, and the first observation is
proved. □

Proof to Observation 2. To prove the second observation, we
just need to prove that, for any sensor ofΦ, its collected data
could belong to the query result Rt. If it is true, then deleting
any sensor fromΦ could cause the incompleteness of Rt. We
are assuming that the collected data of sensors of Φ satisfy:
∀di,j(si ∈ Φ∧ 2≤ j≤N)⟶ di,j <min(dp,1 ∣ sp ∈ Φ). Be-
cause |Φ| � k, the top-k query result Rt is determined and
Rt � dp,1|sp ∈ Φ􏽮 􏽯. It means that the in-node-maximums of
all sensors ofΦ are just the elements of Rt. It is obvious that,
in such circumstance, deleting any sensor from Φ will incur
the incompleteness of Rt. +erefore, the second observation
is proved.

According to the proofs, the above two observations
both hold. +us, Φ is the minimized candidate sensor set
that contribute the query result. □

4.2. Minimized Candidate Encrypted Dataset. To protect
data privacy, each sensor owns its private key only by itself.
When a query is started, sensors first encrypt the qualified
data by their keys and then submit the encrypted data to
sink. For sensor si, we are assuming its key is gi, which is
only shared by si and sink. +e encrypted data of di,j is
denoted as (di,j)gi

.

Definition 4 (minimized candidate encrypted dataset). For a
top-k query, the minimized candidate encrypted dataset,
denoted as Γ, is contributed by sensors of Φ and consists of
the minimum number of encrypted data that have the
encrypted query result in it.

We are assuming that the candidate sensors are
Φ � s1, s2, . . . , sk􏼈 􏼉 and their in-node-maximums are
d1,1, d2,1, . . . , dk,1􏽮 􏽯, respectively, where d1,1 >d2,1 > · · · >

dk,1. For any sensor si ∈ Φ, its collected data items are
di,1, di,2, . . . , di,N􏽮 􏽯, where di,1 > di,2 > · · · >di,N. +us, the
calculation of Γ is given as follows:

Γ � ∪
si∈Φ
Γi, (3)

where

Γi �

di,j􏼐 􏼑
gi

|1≤ j≤ k − i + 1􏼚 􏼛, N≥ k − i + 1,

di,j􏼐 􏼑
gi

|1≤ j≤N􏼚 􏼛, N< k − i + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

We give an example to describe the minimized candidate
encrypted dataset. As shown in Figure 2, we are assuming
that there are 5 nodes s1, s2, s3, s4, s5􏼈 􏼉, and each sensor has
collected 4 data items. +eir in-node-maximums satisfy
d1,1 >d2,1 > · · · >d5,1. For sensor si, its collected data satisfy
di,1 > di,2 >di,3 >di,4. According to Definition 4, the mini-
mized candidate encrypted datasets when k � 3 and k � 5 are
shown in the dotted-lined area and solid-lined area,
respectively.

Lemma 4. Γ is the minimized candidate encrypted dataset
that has the encrypted query result.

Proof. To prove this lemma, the following two observations
need to be proved. □

Observation 3. For any (di,j)gi
∉ Γ, which is generated by si,

L(Rt)>di,j holds.

Observation 4. Any encrypted data deletion from Γ could
incur the incompleteness of query result. If and only if the
two observations hold simultaneously, then we can deduce
that Γ is the minimized candidate encrypted dataset that has
the encrypted query result.

Proof of Observation 1. For sensor si, it has two alternative
cases, which are si ∉ Φ or si ∈ Φ. We give the proofs in such
two cases:

(i) Case I: si ∉ Φ. According to Lemma 3, Φ is the
minimized candidate sensor set that contribute the
query result Rt. Because si ∉ Φ, we have di,j ∉ Rt,
where di,j ∈ Dj and then L(Rt)> di,j is deduced.

(ii) Case II: si ∈ Φ. Because (di,j)gi
∉ Γ, k − i + 2≤ j≤N

is deduced according to equation (4). In the calcu-
lation of Γ, d1,1 >d2,1 > · · · >di,1 > · · · >dk,1 and
di,1 >di,2 > · · · > di,j > · · · >di,N are the given as-
sumption. +us, there are at least k, � i + j − 2 data
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larger than di,j. According to k − i + 2≤ j≤N and
k′ � i + j − 2, then we have k≤ k′ ≤ i + N − 2. It
means that there are at least k data larger than di,j.
Definition 1 shows that the query result Rt has the k

largest data, so theminimum ofRt is obviously larger
than di,j, that is, L(Rt)>di,j. +e deductions in two
cases both lead to the same result L(Rt)>di,j, and
the first observation is proved. □

Proof of Observation 2. To prove the second observation, we
just need to prove that, for any (di,j)gi

∈ Γ, the corre-
sponding plaintext data di,j could belong to Rt. If it is true,
then deleting any encrypted data from Γ could cause the
incompleteness of Rt. According to the assumptions of the
calculation of Γ that the minimized candidate sensor set is
Φ � s1, s2, . . . , sk􏼈 􏼉, where their in-node-maximums satisfy
d1,1 > d2,1 > · · · > dk,1 and the collected data of any si ∈ Φ
satisfy di,1 > di,2 > · · · > di,N, for the data di,j and
C � d1,1, d2,1, . . . , di−1,1, di,1, di,2, . . . , di,j−1􏽮 􏽯, each data in C

is larger than di,j and |C| � i + j − 2. If the following
equation holds, then di,j is the (i + j − 2)th largest data.

∀dp,q dp,q􏼐 􏼑
gp

∈ Γ ∧dp,q ∉ C􏼒 􏼓⟶ dp,q <di,j. (5)

According to the calculation of Γ in equations (3) and
(4), we have j≤ k − i + 1, then |C|≤ k − 1 holds. It means that
di,j is at least the kth largest data when equation (5) hold. In
such scenario, di,j always belongs to Rt. +erefore, we have
that deleting any encrypted data from Γ could cause the
incompleteness of Rt. Observation 2 is proved.

According to the above proofs, two observations both
hold. +us, Γ is the minimized candidate encrypted dataset
that has the encrypted query result. Lemma 4 is proved.

Lemma 4 It indicates that Γ is the minimized candidate
encrypted dataset that has the encrypted query result. It is a
key to achieve efficient privacy-preserving query processing
method. □

5. Top-k Query Processing

At first, an efficient privacy-preserving and collusion-
resisting top-k (EPCT) query scheme is introduced here.
+en, the correctness and security analysis, and performance
of the proposed EPCT protocol will be presented.

5.1. Query Processing Protocol. +e queried nodes and the
sink are involved as the cooperators in this EPCT protocol.
To perform the protocol, sensors and the sink are firstly

settled with keys in the network deployment. Each sensor is
deployed a private key, and it only shares the key with the
sink. +e sink owns keys of all sensors, whereas sensors have
no idea of each other’s keys. +e protocol has two phases,
shown in Figure 3. +e command is broadcasted to sensors
in S, before the sink receives a top-k query Queryt � (t, S, k)

in the first phase from the user. Once the sensor si gets
Queryt, it transmits the encrypted in-node-maximum in the
queried time slot t to the sink. As the first phase ends, the
second phase begins. In the second phase, the minimized
candidate sensor set is determined according to the maxi-
mum values of the queried sensors. +en, the sink transmits
the second phase data request command to those candidate
sensors. After each candidate sensor submits the qualified
encrypted data, the sink obtains the minimized candidate
encrypted dataset, and then, it will get the final query result
after decryption.+e processing of the top-k query Queryt is
finished.

+e detailed procedures of the query processing protocol
are shown in Protocol 1.

Protocol 1. EPCT protocol is shown as follows:

(1) Phase 1:

(1) As a query Queryt � (t, S, k) is running, the first
phase starts to process. Sink broadcasts Queryt

through all the networks and initials the dataset
Γ � ∅. +en, it waits till the first phase responses
from the queried nodes in the networks.

(2) For each node si ∈ S, si encrypts its in-node-
maximum di,1 by using its private key gi, after si

gets the Queryt. +en, si generates the encrypted
data (di,1)gi

, submitting the message as follows to
the sink.

si⟶ sink: 〈t, i d si( 􏼁, di,1􏼐 􏼑
gi

〉 (6)

(2) Phase 2:

(1) As the submitted message from a queried sensor
si ∈ S arrives, 〈t, i d(si), (di,1)gi

〉, the sink de-
crypts (di,1)gi

with the shared private key gi and
gets the plaintext in-node-maximum of si. si

obtains all the decrypted in-node-maximums of
the nodes in S, di,1|si ∈ S􏽮 􏽯, before it determines
the top-k data. If the determined top-k data are
d1,1, d2,1, . . . , dk,1􏽮 􏽯 where d1,1 >d2,1 > · · · >dk,1
and the corresponding sensor list according to
the decent sequence of data are
Φ � s1, s2, . . . , sk􏼈 􏼉. According to Lemma 3, Φ
are the set of minimized candidate sensors.+en,
the sink appends d1,1, d2,1, . . . , dk,1􏽮 􏽯 into Γ and
transmits the following messages to the k-1
candidate nodes in Φ − sk􏼈 􏼉 in unicast mode.

sink⟶ si: 〈t, (k − i)gi
〉, ∀si ∈ Φ − sk􏼈 􏼉. (7)

(2) For each candidate node si ∈ Φ − sk􏼈 􏼉, as the
message 〈t, (k − i)gi

〉 arrives, si decrypts the
ciphertext and gets the plaintext number k − i.

(d1,1)g1
(d2,1)g2

(d3,1)g3
(d4,1)g4

(d5,1)g5

(d1,2)g1
(d2,2)g2

(d3,2)g3
(d4,2)g4

(d5,2)g5

(d1,3)g1
(d2,3)g2

(d3,3)g3
(d4,3)g4

(d5,3)g5

(d1,4)g1
(d2,4)g2

(d3,4)g3
(d4,4)g4

(d5,4)g5

S1 S2 S3 S4 S5

Γ (k = 3)

Γ (k = 5)

Figure 2: Minimized candidate encrypted datasets when k � 3 and 5.
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+en, si encrypts k − i collected data items and
sends them to the sink, e.g.,

si⟶ sink: 〈t, i d si( 􏼁, LRi〉, (8)

where

LRi �

di,j􏼐 􏼑
gi

|2≤ j≤ k − i + 1􏼚 􏼛, N≥ k − i + 1,

di,j􏼐 􏼑
gi

|2≤ j≤N􏼚 􏼛, N< k − i + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

(3) +e sink obtains the message 〈t, i, LRi〉 trans-
mitted by the candidate node si ∈ Φ − sk􏼈 􏼉 in the
second phase, before the ciphertext of the
message is decrypted. +e plaintext data after
decryption are denoted as Dec(LRi, gi) and
appended into Γ. After all messages submitted
from the candidate nodes are processed, the
minimized candidate encrypted dataset Γ is de-
termined, where

Γ � ∪
si∈Φ

di,1􏽮 􏽯∪Dec LRi, gi( 􏼁􏼐 􏼑. (10)

(4) +e sink gets the top-k data of Γ, which is the
exact query result Rt.

Rt ⊆ Γ∧ Rt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � k∧ ∀x ∈ Rt, y ∈ Γ − Rt( 􏼁⟶ x>y( 􏼁.

(11)

As presented in Protocol 1, the query command Queryt

arrives from the user in the first phase, before the sink
broadcasts it through the whole network. As a queried
sensor knows Queryt, it encodes the in-node-maximum
before transmitting the encrypted data to the sink, where the
received ciphertext is decrypted to obtain the in-node-
maximums of the queried sensors in the second phase.
Afterwards, the sink uses the in-node-maximums to de-
termine the candidate sensor set Φ − sk􏼈 􏼉, and then, it
unicasts each candidate sensor inΦ − sk􏼈 􏼉 to start the second
phase. Once a candidate sensor receives the unicast message,
it submits the rest data in ciphertext according to the request
to the sink. As the sink obtains all the needed data from
candidate nodes, the query result is determined in the end.

5.2. Protocol Analysis

5.2.1. Correctness Analysis. In the proposed EPCT
protocol, when a user starts a query command Queryt, the

sink will know the minimized candidate encrypted dataset
Γ after interactions of the sink and sensors within two
phases. Γ is consisting of the coded data items of query
result. According to Lemma 4, for any (di,j)gi

∉ Γ, (di,j)gi

does not belong to the query result Rt, definitely. Addi-
tionally, Γ is the minimized candidate encrypted dataset
that contains the encrypted query result. Any encrypted
data deletion from Γ could incur the incompleteness of
query result. As Γ received by the sink, it can get the query
result by obtaining the top-k data from Γ. +erefore, our
proposed scheme is capable of guaranteeing the correctness
of top-k query result.

5.2.2. Security Analysis. +e security analysis is conducted
here for the privacy of the collected data and the query
results. With the cooperation of the sink and the sensors in
EPCT in these two phases, each node is deployed with a
private key, which is only shared with the sink. +e collected
data of sensors only exists in data submission from sensors
to the sink. When a top-k query is started, two phases of
query processing are performed. In the first phase, each
sensor performs a symmetric encryption to encrypt its in-
node-maximum and then transmits it to the sink. Secondly,
candidate nodes are unicastly informed by the sink. +ey
encrypted a fixed number of collected data according to the
request and then sends the enciphered date to the sink node.
Clearly, the data collected and transmitted through the
network are all in the form of ciphertext. Every node inWSN
owns a unique private key, so it can only get access to the
data it collected. However, it fails to know the data collected
by other sensors because of the computational infeasibility of
symmetric encryption. Even a few nodes probably are
attacked and colluded with adversaries, they can only snoop
the collected data of those colluded sensors, but they have no
idea of the collected data of innocent sensors. Besides, due to
the query result is decrypted and computed in the sink and
sensor nodes only process the encrypted data for the query, it
is hard for the attackers to know the plaintext query result
even if a few compromised sensors are colluded with them.
+erefore, this proposed EPCT is a privacy-preserving and
anticollusion top-k query processing protocol, which can
protect the privacy of collected data of sensors even a few
compromised sensors are in collusion with the adversaries,
which can protect the privacy of collected data from ad-
versaries even a few compromised sensors are in collusion
with the adversaries.

5.2.3. Communication Cost Analysis. InWSNs, sensors have
limited energy resource, and the energy are mainly con-
sumed by communication. During the top-k query proce-
dures, the communication cost of the network is mainly
caused by transmission overhead of sensors. +e parameters
used in sensor networks are introduced in Table 1.

We are assuming that the transmission overhead of
phase 1 and phase 2 are C1 and C2, respectively. According
to the proposed EPCT protocol, all sensors participate in
phase 1, whereas only the candidate sensors participate in
phase 2. +en, we obtain

Sink Si

Broadcast all sensors

Unicast candidate sensors
Feedback

Feedback

Phase 1

Phase 2

Figure 3: EPCT protocol query process.
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C1 � n · lq + n · li d + lt + lc( 􏼁 · L,

C2 � (k − 1) · lt + lc( 􏼁 · L + 􏽘
k−1

i�1
li d + lt + i · lc( 􏼁 · L

� (k − 1) · li d · L +(k − 1) · li d + lt( 􏼁 · L +
k · (k − 1)

2
· lc · L

� (k − 1) · li d + 2lt + lc( 􏼁 · L +
k · (k − 1)

2
· lc · L

(12)

+e total communication overhead of the whole network
is computed as follows:

Ctotal � C1 + C2 � n · lq +(n + k − 1) · li d + lt + lc( 􏼁 · L

+(k − 1) · lt · L +
k · (k − 1)

2
· lc · L.

(13)

6. Performance Evaluation

Based on the improved simulator of [34], we implement
three protocols, EPCT, PCTQ [31], and a naive protocol
(Naive). For Naive scheme, each node queried firstly encodes
its k highest data items and then submits them to the sink.
After the sink gets all the ciphertext from sensors, it decrypts
them to obtain the final query result. +e performance is
evaluated by the communication overhead in WSNs.

+is experiment is conducted on a PC with an AMD R5-
3600 (6 cores 12 threads 4.2Ghz) CPU and 32GB RAM,
running 64-bit win 10 professional OS and Java JDK 1.8. In
the simulation, we generate 10 networks with random to-
pologies, and each network is distinguished by different
network IDs. In each network, sensors are randomly dis-
tributed in area covering a 200× 200m2, and the commu-
nicating radius of a sensor is 6m. +e collected data of
sensors are randomly generated in each time slot. +e
network communication cost Ctotal is measured by com-
puting the average result of these 10 networks. +e default
settings of other parameters are shown in Table 2.

(1) Ctotal versus Network ID. Figure 4 presents that the
transmission overhead of these methods are dis-
tributed uniformly in different networks. Naive has
much higher cost compared with PCTQ and EPCT.
Statistically, the communication overhead of EPCTis
averagely 89.06% and 43.23% lower than that of
Naive and PCTQ, respectively.

(2) Ctotal versus lc. Figure 5 shows that the communi-
cation overhead of EPCT, PCTQ, and Naive in-
creases as the space size of an encrypted data item lc
increases. +e reason is that the transmission
overhead of three approaches are all in proportion
to the space size of an encrypted data item. +e
growth rates of communication overhead in EPCT
and PCTQ are smaller than that in Naive. Statis-
tically, EPCT reduces about 89.14% and 38.32%
transmission overhead than Naive and PCTQ,
respectively.

(3) Ctotal versus n. Figure 6 presents that the commu-
nication overhead of three schemes grows as the
number of sensors n increases. +e reason is that the
more sensors are queried, the more data are trans-
mitted in the network, i.e., the higher communica-
tion costs. Moreover, the curves in Figure 6 tell that
the growth rate of transmission overhead in Naive is
significantly higher than that in PCTQ and EPCT.
Statistically, EPCT saves about 89.51% and 42.00%
communication overhead than Naive and PCTQ,
respectively.

(4) Ctotal versus k. As shown in Figure 7, the trans-
mission overhead of three methods all increases as
the number of requested data items k increases. It is
that when k increases, more data items are requested
in all three protocols. +e growth rates of commu-
nication cost in PCTQ and EPCT are both lower
than that in Naive. Specifically, EPCT saves about
93.44% and 44.57% on average than Naive and
PCTQ in communication cost.

Table 1: Parameters description.

Para Description
li d +e space size of a sensor ID
lt +e space size of a time-slot
lc +e space size of a coded data item
lq +e space size of a query command
L +e average path length from sensors to the sink

Table 2: Default settings of parameters.

Parameter n k li d lq lt lc

Value 500 10 4 byte 8 byte 4 byte 16 byte
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Figure 4: Ctotal vs. Network ID.
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According to the results of Figures 4–7, the transmission
overhead of EPCT is the lowest in three protocols, whereas
the overhead of Naive is much higher than the others.
Because in EPCT and PCTQ, transmission only caused by
candidate sensors need to, whereas in Naive scheme, all
sensors are participated in transmission. Specifically, there
are k · (k + 1)/2, at least k2, and n · k encrypted data items
are submitted from sensors to the sink in EPCT, PCTQ, and
Naive, respectively. As a result, according to the above
evaluations, compared with the PCTQ and Naive protocol, it
has been shown that the proposed EPCT has less network
communication cost and more efficient.

7. Conclusion

Data privacy threat arises during providing top-k query
processing in the wireless sensor networks. To address this
issue, we proposed a novel and efficient top-k query pro-
cessing approach, which is capable of privacy protection and
anticollusion. We fist present a minimized candidate
encrypted dataset determination model, which is the foun-
dation of the protocol. +e model guides the idea of query
processing and guarantees the correctness of the protocol.+e
symmetric encryption with different private keys in each node
is employed for data privacy and even to prevent the attackers
from colluding with a few nodes. Based on the above model
and security setting, two phases of secure interactions be-
tween queried nodes and the sink are designed to implement
the query processing protocol. +e security analysis shows
that our scheme is capable of providing privacy-protecting
and collusion-resisting top-k queries, whereas the experi-
mental result indicates that our approach is efficient by
evaluating the network communication.

Data Availability

+e data generated randomly in WSN and used to support
the findings of this study are available from the corre-
sponding author upon request.
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