
Research Article
An Efficient HPRA-Based Multiclient Verifiable Computation:
Transform and Instantiation

Shuaijianni Xu 1,2,3

1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3University of Chinese Academy of Sciences, Beijing 100049, China

Correspondence should be addressed to Shuaijianni Xu; xushjn@shanghaitech.edu.cn

Received 15 November 2020; Revised 15 December 2020; Accepted 8 January 2021; Published 17 February 2021

Academic Editor: Nanrun Zhou

Copyright © 2021 Shuaijianni Xu. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Choi, Katz, Kumaresan, and Cid put forward the conception of multiclient noninteractive verifiable computation (MVC),
enabling a group of clients to outsource computation of a function of f. CKKC’s MVC is impractical due to their dependence on
fully homomorphic encryption (FHE) and garbled circuits (GCs). In this paper, with the goal of satisfying practical requirements,
a general transform is presented from the homomorphic proxy re-authenticator (HPRA) of Deler, Ramacher, and Slamanig to
MVC schemes. MVC constructions in this particular study tend to be more efficient once the underlying HPRA avoids in-
troducing FHE and GCs. By deploying the transform to DRS’s HPRA scheme, a specific MVC scheme for calculating the linear
combinations of vectors has been proposed. It can be understood that it is the first feasible and implementableMVC scheme so far,
and the instantiation solution has a great advantage in efficiency compared with related works.

1. Introduction

*e past several years have witnessed a rapid growth of
attention on outsourcing computation due to the popularity
of cloud computing: the on-demand availability of computer
system resources, including data storage and computing
power, without maintaining infrastructure by the client. *e
proliferation of mobile devices is also one of the reasons why
outsourced computing is getting more attention.

Outsourcing computation allows relatively weak devices
(phones, tablets, laptops, and PCs) to offload work (storage,
image processing, and video encoding) to powerful cloud
servers. However, many things can (and do) go wrong in
cloud computing scenarios. One must worry about bugs,
misconfigurations, operator error, natural disasters, or even
malicious cloud servers. *e servers may have considerable
financial incentives to perform dishonestly, and the servers
may offer fast but faulty computations to reduce the oc-
cupation of computational resources. In the above cases, the
client needs some measures to ensure that computation was
processed in the expected way and has not been tampered

with. Moreover, when the client’s data (e.g., function and
inputs or/and outputs) are not encrypted, the servers may
misuse the data. How to ensure that the correctness of the
calculations and how to ensure that the clients’ data are not
misused are two critical security topics in the outsourcing
computation area.

Gennaro et al. [1] proposed the conception of nonin-
teractive verifiable computation (VC) for the single-client
scenario. *e VC scheme allows client with weak computing
power to outsource the computation task of a function f on
a set of inputs x1, x2, . . . , xn to a server, ensuring that client
can detect the malicious or malfunctioning server by veri-
fying the results returned, but their efficiency is problematic
due to the dependence on expensive cryptographic primi-
tives, for example, fully homomorphic encryption (FHE)
and garbled circuits (GCs). *e initial proposal and con-
struction of VC led to a long line of follow-up work, which
provided further exploration on optimizing the efficiency of
outsourced computations for restricted classes of functions.

Some researchers extended VC into different scenarios.
*ere are, however, scenarios in which it would be meaningful

Hindawi
Security and Communication Networks
Volume 2021, Article ID 6612614, 18 pages
https://doi.org/10.1155/2021/6612614

mailto:xushjn@shanghaitech.edu.cn
https://orcid.org/0000-0003-1624-8484
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6612614

to extend this functionality to multiclient case. For example,
with limited infrastructure, n resource-constrained nodes
cannot directly communicate with each other while are only
given access to a central server. It may be desirable for the
nodes to get evaluation result of a function f over their joint
inputs. At this point, only the central server is responsible for
collecting the data and reporting the computation results,
thereby letting the nodes to adjust the modalities.

Choi et al. [2] initiated the study of this setting,
extending the single-client VC model to the multiclient
noninteractive verifiable computation (MVC) model.
*ey assumed no client-client communication involved
and focused on noninteractive solutions, where each
evaluation of the function f required only a single round
of communication, i.e., noninteractive. In a single round
of communication, n clients send the representation of
joint inputs (x

(1)
1 , . . . , x(1)

n) to the server, and server
returns the evaluation result accompanied by a proof.
MVC ensures that a malicious server can neither fool any
client into accepting a wrong result nor misuse the inputs
of the clients. In the scheme, they consider the case where
only the first client obtains output (a more general case is
dealt with by simply making the clients execute the
scheme several times in parallel, with each client playing
the role of the first client in one round of execution). *ey
also presented a construction for outsourcing the evalu-
ation of universal Boolean circuits by integrating the
scheme of Gennaro et al. [1] with the proxy oblivious
transfer. Since FHE and GCs are still the main technical
primitives in their construction, the efficiency issue re-
mains unresolved.

Reducing the use of these expensive cryptographic
primitives is necessary for constructing a more practical
MVC scheme. Unfortunately, if we are limited to the
outsourcing of arbitrary computations on confidential
data, then using these primitives is somehow unavoidable.
In order to go further in efficiency, we sacrifice the gen-
erality of the outsourced functions. *is paper is primarily
concerned with efficient MVC schemes for specific func-
tions, especially for calculating the linear combination of
vectors.

1.1. Our Contribution. *e main contributions in this paper
are twofold. *e first one is a proposal of general transform
from the homomorphic proxy re-authenticator (HPRA) [3],
a tool providing security and verifiability guarantees to the
multiuser data aggregation scenarios, to the MVC schemes.
*e HPRA makes distinct signers authenticate input data
under private keys and allows an aggregator to transform all
authenticators into an MAC under the receiver’s secret key.
*e evaluation of a function f on the data along with an
aggregate authenticated message vector is computed by the
aggregator; therefore, the receiver can verify whether the
computation is correct or not. Compared with the MVC,
there is an additional receiver in the HPRA that obtains and
verifies the function output; by contrast, in the MVC, the
first client not only performs verification but also provides
its own function input.

A very natural idea is thus generated: what will happen if
we map the parties in the HPRA into those in the MVC?
Taking into account the different properties and function-
alities of all the entities, the first step was to merge the
receiver with the first signer in the HPRA and then to
consider this merged participant as the first client in the
MVC. Second, we consider each of the remaining signers
play as a different client in the MVC. *ird, we regard the
aggregator in the HPRA as a cloud server in the MVC.
Following this idea, we construct a general transform that
can be applied to any HPRA scheme, resulting in an MVC
with the following properties:

(i) No malicious server can generate an incorrect
output passing the verification of the client, except
with a nonnegligible probability.

(ii) For each client, any information on the client’s
input should not be leaked to the other entities.

(iii) No malicious server can learn anything about the
result of the computation beyond what the de-
scription of f would leak.

(iv) *ere is no client-client communication, and all the
involved parties do not share a secret key. As an
alternative, the clients use independent private keys
generated by themselves to encrypt and authenticate
the data.

(v) Compared with the HPRA, no extracomputational
consumption is introduced. Our MVC construction
has nothing to do with FHE and GCs as long as the
underlying HPRA avoids introducing these ex-
pensive cryptographic primitives.

(vi) Compared with the HPRA, no extracryptographic
assumption is introduced. Our MVC construction
relies only on the assumptions required in the
HPRA.

*e second contribution is an MVC scheme imple-
mentable by applying a particular HPRA scheme of Derler
et al.’s [3] to the transform, which allows n clients to jointly
outsource the linear combination of n vectors of length ℓ. It
can be seen that it is the first time to implement an MVC
scheme.

A model was developed by Parno et al. [4] to analyze the
efficiency of the computational performance of the
FHE+GC-based VC schemes [1,2]. *ey estimated that the
client would take ≥1011 seconds to outsource the multi-
plication of two 100 by 100 matrices in the MVC by Choi
et al. [2] as our MVC can also be adjusted to outsource the
matrix multiplications as well. *e experimental results
show that, in our MVC scheme instance, calculating the
multiplication of two 100 by 100 matrices takes only ≈103
seconds at the client side. Our proposed scheme evidently
has a great advantage in terms of efficiency.

1.2.RelatedWorks. A single-client noninteractive VCmodel
was presented by Gennaro et al. [1], and an instantiation by
considering FHE and GCs as main technical tools was
constructed. Parno et al. [4] and Setty et al. [5] gave general-

2 Security and Communication Networks

purpose VC protocols on the basis of the quadratic arith-
metic programs (QAPs) [6]. To provide noninteractive,
publicly verifiable computation and zero-knowledge proofs,
many recent systems [7–10] have converged on the
Pinocchio protocol [4] as a cryptographic primitive.
Benabbas et al. [11] initiated a line of research about efficient
protocols for specific functions. Following this line, a series
of subsequent outsourcing computations systems [12–15]
developed schemes with improved efficiency for restricted
classes of functions. Some research studies [16,17] are
dedicated to provide additional security, ensuring that the
outsourced polynomial remains hidden.

Choi et al. [2] firstly formed the conception of multiclient
noninteractive verifiable computation. In a nutshell, MVC is
like VC with an extra feature, allowing multiple clients to
jointly outsource a computation under different secret keys.
*ey also proposed an FHE-based construction for out-
sourcing the computation of arbitrary Boolean circuits by
integrating Gennaro et al.’s scheme [1] with proxy oblivious
transfer. However, their scheme still uses FHE and GCs as
main technical tools and would thus leave the efficiency
problem. Moreover, if a malicious server is allowed to send
malformed responses and observe the reaction of the first
client, the soundness might be threatened. *is problem was
resolved by Gordon et al. [18], and they provide solutions
against a malicious server or multiple colluding clients.
However, as they used the falsifiable assumption which is not
as mature as the well-known assumptions such as DLOG,
CDH, and DDH, they may have potential weakness. *e
falsifiable assumption introduced the dependence on the
circuit depth, and the efficiency is also sacrificed.

Multi-input functional encryption (MIFE) is a general-
ization of the functional encryption into the case of multi-
input functions. MIFE has a great variety of applications
related to computation over the encrypted data frommultiple
sources. However, the construction of MIFE assumed in-
distinguishability obfuscation (iO) for circuits, which intro-
duces a strong assumption as the work of Goldwasser et al.
revealed [19]. Moreover, current MIFE schemes have pro-
hibitively large overhead. Fiore et al. [20] built a multikey
homomorphic authenticator (multikey HA), allowing mul-
tiple clients to authenticate and outsource a large collection of
data, together with the corresponding authenticators, to a
malicious server. Backes et al. [12] added a crucial efficiency
property for the verification of multikey HAs. Based on the
line of multikey HAs, the HPRA introduced by Derler et al.
[3] allows a group of signers to authenticate data under
private keys and allows an aggregator to transform all the
single authenticators into an MAC under the secret key of
receiver. Following this research line of multikey HAs,
Schabhüser et al. [21] presented a publicly verifiable homo-
morphic authenticator scheme with efficient and context
hiding verification in the case of multiple clients. However, in
their scheme, the result of the outsourced computation is
public to all entities, thus leading to privacy breaches.

1.3. Organization of the Paper. *e preliminaries, such as
MVC and HPRA, are highlighted in Section 2. *e HPRA to

MVC transform and related security proof are presented in
Section 3. A concrete construction is then provided in
Section 4. *e implementation of concrete instantiation and
analysis of results are illustrated in Section 5. Conclusions
are drawn based on this particular research in Section 6.

2. Preliminaries

To facilitate the comprehension of our work, we give some
notations and review some preliminaries pertaining to our
research work, namely, multiclient noninteractive verifiable
computation and homomorphic proxy re-authenticator.

2.1. Notation. *e Greek letter κ stands for the security
parameter of schemes. A function f(κ) is considered to be
negligible in κ if f(κ) � o(κ− c) under every constant c> 0,
and we denote all such functions as negl(κ) and otherwise
denoted as non − negl(κ). When a function can be repre-
sented as a polynomial, we use the notation poly(·). For any
n ∈N, we refer to [n] as [n] ≔ 1, . . . , n{ }. We use a

→ to
denote a vector a

→
� a1, a2, . . . , an􏼈 􏼉 and a to denote a se-

quence of vectors a � a
→

1, a
→

2, . . . , a
→

n􏼈 􏼉. For vectors with
subscript in their variable name, say a

→
1, we use a

→
1[i] to

indicate the i-th element in vector a
→

1. Given a set S, the
notation s←R S remains for the process of sampling s from S

uniformly.

2.2. Multiclient Verifiable Computation. In an n-party MVC
introduced by Choi et al. [2], there are n clients
P1, P2, . . . , Pn who expect to outsource the evaluation of
some functions over their joint inputs to a server for several
times. In the i-th evaluation, client P1, P2, . . . , Pn inputs are
denoted as x

(i)
1 , x

(i)
2 , . . . , x(i)

n , respectively. To ensure the data
privacy, the clients encode the original inputs into
χ(i)
1 , . . . , χ(i)

n and send it to a server along with the encoded
function Φ of function f. *e server is expected to evaluate
Φ(χ(i)

1 , . . . , χ(i)
n) and respond with encoded output ω(i). P1 is

designated to verify the correctness of ω(i) with a decoding
secret ξ and restore the real result y(i) � f(x

(i)
1 , x

(i)
2 , . . . , x(i)

n)

from ω(i).
For the convenience of follow-up research, we made

some reasonable modifications to the MVC model: (1) we
replace the security parameter 1κ with public parameter set
pp containing the information of 1κ and the public out-
sourcing function f. (2) Let P1 runs KeyGen1 algorithm first
and let pk1 be one of the inputs of algorithm KeyGenj, for
j � 2, . . . , n. As MVC has assumed the existence of a public-
key infrastructure (PKI), which makes all the public keys of
clients be accessible to all other entities. *is change makes
other client Pj to wait for client P1 to finish running
KeyGen1 but does not affect security. (3) As EnFunc is run
by client P1, taking P1’s private key sk1 as an extrainput of
EnFunc is also reasonable.

Definition 1. (MVC). An n-party MVC scheme Π �

(KeyGenj􏽮 􏽯
n

j�1,EnFunc, EnInputj􏽮 􏽯
n

j�1,Compute, Verify)
for a function family F consists of 2n + 3 algorithms as
follows and in Figure 1:

Security and Communication Networks 3

(i) (pk1, sk1)←KeyGen1(pp). Client P1 will execute
this algorithm on public parameters pp to produce
a public key pk1 and a private key sk1.

(ii) (pkj, skj)←KeyGenj(pp, pk1). For j � 2, . . . , n,
client Pj will execute this algorithm to produce a
public key pkj and a private key skj.

(iii) (ϕ, ξ)←EnFunc(pk
�→

, sk1, f). Client P1 will execute
this algorithm with pk

�→
� (pk1, pk2, . . . , pkn) and

sk1 to encode any f ∈ F to an encoded function ϕ
and send ϕ to the server. *en, Client P1 will
produce a decoding secret ξ and keep it private.

(iv) (χ(i)
1 , τ(i))←EnInput1(i, pk

�→
, sk1, ξ, x

(i)
1). When out

sourcing the i-th computation to the server, P1 will
execute this algorithm to encode its input x

(i)
1 to an

encoded input χ(i)
1 and send χ(i)

1 to the server. *en,
Client P1 will produce a decoding secret τ(i) and
keep it private.

(v) χ(i)
j ←EnInputj(i, pk

�→
, skj, x

(i)
j). When outsourcing

the i-th computation to the server, each client Pj

(j≠ 1) will execute the algorithm to encode its input
x

(i)
j to an encoded input χ(i)

j and send χ(i)
j to the

server. We denote χ→(i)
� (χ(i)

1 , . . . , χ(i)
n).

(vi) ω(i)←Compute(i, pk
�→

,ϕ, χ→(i)
). *e server will ex-

ecute the algorithm to obtain an encoded output
ω(i).

(vii) y(i) ∪ ⊥{ }←Verify(i, ξ, τ(i),ω(i)). Client P1 will
implement this algorithm to return either an
evaluation result y(i) � f(x

(i)
1 , . . . x(i)

n) or a symbol
⊥ informing that the server returned an incorrect
result.

Required by [2,18], an MVC scheme should be correct,
sound, and input private. An MVC satisfies the property of
correctness if all the involving algorithms are honestly ex-
ecuted; an honest server will always produce output cor-
responding to the evaluation of f on those inputs and will
always pass the verification.

AnMVC scheme satisfies the property of soundness if no
malicious server can fool clients into obtaining a wrong
evaluation on given inputs, even if the server is given access
to an oracle, which can generate arbitrary valid input
encodings:

(i) OracleIN(x1, . . . , xn)

(ii) i ≔ i + 1;
(iii) record (x

(i)
1 , . . . , x(i)

n) ≔ (x1, . . . , xn);
(iv) (χ(i)

1 , τ(i))←EnInput1(i, pk
�→

, sk1, ξ, x
(i)
1);

(v) for j � 2, . . . , n: χ(i)
j ←EnInputj(i, pk

�→
, skj, x

(i)
j);

(vi) output (χ(i)
1 , . . . , χ(i)

n).

Definition 2. (soundness). For scheme Π, consider an ex-
periment ExpsoundA [Π, f, κ, n] with a malicious server A: for
j � 1, . . . , n, the public/private key pairs (pkj, skj) are
produced; an encoded function ϕ and a decoding secret ξ are
produced. A is given inputs pk

�→
and ϕ and access to

OracleIN and returns a forge ω∗. *e challenger obtains
y∗ by executing Verify; if y∗ ∉ ⊥, f(x

(i)
1 , . . . , x(i)

n)􏽮 􏽯, the
output of ExpsoundA [Π, f, κ, n] is defined to be 1 and 0
otherwise. Scheme Π satisfies the property of soundness if
for all n � poly(κ), all functions f ∈ F, and all probabilistic
polynomial-time adversary (PPT) adversary A; there is a
negligible function negl(·) such that Pr[ExpsoundA [Π, f,

κ, n] � 1]≤negl(κ).

AnMVC scheme satisfies the property of input privacy if
no information about the inputs is leaked to all the other
entities including both server and other clients. While the
clients except the first one apparently had no opportunity to
learn any information about the others’ input data, the input
privacy of the MVC scheme includes two properties: privacy
against the first client and privacy against the server.

Definition 3. (privacy against the first client). *e scheme Π
achieves the privacy against the first client if for any x

→
0 �

(x1, x2, . . . , xn), x
→

1 � (x1, x2′, . . . , xn
′) with

…

Client 1

Client 2

Client n

Server

…

2. Encoded input X1
(i)

2. Encoded input X2
(i)

2. Encoded input Xn
(i)

3. Encoded output ω(i)

1. Encoded function ϕ

Figure 1: Multiclient verifiable computation model.

4 Security and Communication Networks

f(x
→

0) � f(x
→

1), the view of P1 executing Π if all clients
holding x

→
0 cannot be distinguished from the view of P1

when executing with all clients holding x
→

1.
Privacy against the server requires that the server should

not be able to distinguish the encoded inputs from two
distinct inputs, even if the malicious server gains access to
the OracleIN.

Definition 4. (privacy against the server). Consider an ex-
periment ExpprivA (Π, f, κ, n, b) with an adversarial server A:
for j � 1, . . . , n, the public/private key pairs (pkj, skj) are
generated, so are an encoded function ϕ and a decoding
secret ξ.*e adversaryA is given inputs pk

�→
and ϕ and access

to OracleIN and outputs two series of jointly inputs
(x0

1, . . . , x0
n), (x1

1, . . . , x1
n). *e challenge ciphertext (χb

1, . . . ,

χb
n) is computed and given toA.A continues to have oracle
access to IN and outputs a guess b′ of b. *e advantage of
A in the experiment above is defined as

AdvprivA (Π, f, κ, n) � Pr ExpprivA (Π, f, κ, n, 0) � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

− Pr ExpprivA (Π, f, κ, n, 1) � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌.

(1)

*e MVC scheme Π is private against the server if for
any n � poly(κ), any functionf ∈ F, and any PPTadversary
A, there is a negligible function negl(·) such that
AdvprivA (Π, f, κ, n)≤ negl(κ).

2.3. Homomorphic Proxy Re-Authenticator (HPRA). *e
HPRA scheme introduced by Derler et al. [3] consists of nine
algorithms: Gen, SGen, VGen, Sign, Verify, SRGen,
VRGen, Agg, and AVerify. And there are three types of
parties: a set of signers, an aggregator, and a receiver. In a
nutshell, HPRA allows n signers to authenticate data items
m
→

1, m
→

2, . . . , m
→

n with signatures under their own distinct
keys and allows the aggregator to convert their signatures to
one under the receiver’s key. *e aggregator outputs an
aggregate authenticated message vector Λ consists of an
evaluation result of function f on the inputs, and a signature
corresponds to the result.

Definition 5. (HPRA). A homomorphic proxy re-authen-
ticator scheme Σ � (Gen, SGen, VGen, Sign,Verify,

SRGen,VRGen,Agg, AVerify) is composed of nine poly-
nomial-time algorithms as follows and demonstrated in
Figure 2.

(i) pp←Gen(1κ, ℓ): given a security parameter 1κ and
a constant ℓ, the algorithm generates public pa-
rameter set pp, which defines a message spaceMℓ,
a function familyF � f|f: (Mℓ)n⟶Mℓ􏼈 􏼉, and
a tag space.

(ii) (id, sk, pk)←SGen(pp): each signer Pi will execute
this algorithm on public parameter set pp to
output a signer key, including an identifier id, a
private key sk, and a public key pk.

(iii) (mk, aux)←VGen(pp): the receiver will execute
this algorithm on public parameters pp to obtain
an MAC key mk and an auxiliary information aux.

(iv) σ←Sign(sk, m
→

, μ): each signer will execute this
algorithm to sign its input m

→ as a signature σ,
which will be sent to the aggregator. For all the
signers P1, . . . , Pn, we denote their signatures as
σ→ � (σ1, . . . , σn).

(v) b←Verify(pk, m
→

, μ, σ): any entity with m
→ can

verify the validation of a signature σ with the al-
gorithm and outputs a bit b← 0, 1{ }.

(vi) rki←SRGen(ski, aux): each signer will generate a
re-encryption key rki with the algorithm.

(vii) aki←VRGen(pki,mk, rki): with this algorithm, an
aggregation key aki can be generated by the re-
ceiver, which will be sent to the aggregator.

(viii) Λ←Agg(ak
�→

, σ→, μ, f): the aggregator will generate
the aggregate authenticated message vector Λ by
the algorithm. Let ak

�→
� (ak1, . . . , akn).

(ix) (m
→

, μ)/(⊥,⊥)←AVerify(mk,Λ, ID, f): the re-
ceiver will generate a pair (m

→
, μ) with the algo-

rithm and otherwise output (⊥,⊥) showing that
the aggregator tries to cheat.

Required by [3], an HPRA scheme is required to be
correct, input private, signer unforgeable, and aggregator
unforgeable.

*e correctness of an HPRA should meet the require-
ment that if all the involving algorithms are honestly exe-
cuted, the aggregate authenticated message vector Λ will
always pass the verification and extract the real result of
evaluation m

→
� f(m

→
1, m

→
2, . . . , m

→
n).

*e input privacy of HPRA should meet the requirement
that an aggregate authenticated message vector Λ should not
leak any more information of the signers’ data m

→
1, m

→
2, . . . ,

m
→

n compared with what can be directly speculated from f

and the real result of evaluation m
→.

Definition 6. (input privacy). *e HPRA scheme Σ for F is
input private if for any κ ∈ N, any f ∈F, all tags μ, and all
m1 � (m

→
11, . . . , m

→
n1) ∈ (Mℓ)n andm2 � (m

→
12, . . . , m

→
n2) ∈

(Mℓ)n with f(m
→

11, . . . , m
→

n1) � f(m
→

12, . . . , m
→

n2), all
pp←Gen(1κ, ℓ), all (mk, aux)←VGen(pp), for i � 1, . . . , n,
(ski, pki)←SGen(pp), rki←SRGen(ski, aux), and aki←
VRGen(pki,mk, rki). We denote QUOTE sk

→
� (sk1, . . . skn)

sk
→

� (sk1, . . . skn). *e following distributions are identical:

Agg ak
�→

, Sign sk
→

,m1, μ􏼒 􏼓, μ, f􏼒 􏼓􏼚 􏼛,

Agg ak
�→

, Sign sk
→

,m2, μ􏼒 􏼓, μ, f􏼒 􏼓􏼚 􏼛.

(2)

*e signer unforgeability of an HPRA requires that if the
aggregator always remains honest, no coalition of dishonest
signers can produce a valid Λ with respect to the function
f ∈F such that Λ is outside of the range of f evaluated on
arbitrary combinations of the actually signed vectors. *e
aggregator unforgeability is the natural counterpart of signer

Security and Communication Networks 5

unforgeability; if the signers always remain honest, mali-
cious aggregator cannot output a valid aggregate authenti-
cated message vector with respect to the function f, such
that the aggregate authenticated message vector is out of the
range of f evaluated on the virtually signed vectors.

Let T represent “Signer” or “Aggregator.” In both def-
initions, the adversary gains access to a set OT of oracles,
where OT ≔ SG, SKey, SR,VR, A􏼈 􏼉 for T� “Signer” and
OT ≔ SG, Sig, SR,VR,VRKey􏼈 􏼉 for T� “Aggregator.” *e
oracles maintain some sets S, AK, RK, and SIG which are
initially empty and work as follows, let i � 1, . . . , n repre-
sents the index of client Pi, and we do not consider the
corruption between the signers:

(i) SG(i): works as SGen, sets S[i]←(id, sk, pk) and
returns (id, pk).

(ii) Skey(i): returns S[i].
(iii) Sig(1, . . . , n{ },m): works as Sign, sets SIG

[μ]←SIG[μ]∪ m
→

i, S[i]􏼈 􏼉 for i � 1, . . . , n, returns
σ→ � (σ1 . . . σn) and μ. Let m � (m

→
1, . . . , m

→
n).

(iv) SR(i): works as SRGen, returns RK[i] � rki.
(v) VR(i): works as VRGen but without returning

anything, sets AK[i] � aki.
(vi) VRKey(i): returns AK[i].
(vii) A(σ→, 1, . . . , n{ }, μ, f): works as Agg, returns Λ.

Definition 7. (T-unforgeability). For the HPRA scheme Σ,
consider an experiment ExpT−unforge

A (Σ, κ, n, l) with regard to
a PPT adversary A: Public parameter pp is generated by
running Gen(1κ, ℓ); the MAC key and the auxiliary infor-
mation (mk, aux) are generated by running VGen(pp).A is
given inputs pp and aux and access to oracleOT and outputs
a forge (Λ⋆, ID⋆, f⋆). *e challenger carries out AVerify
(mk,Λ⋆, ID⋆, f⋆) and obtains (m

→
, μ); if (m

→
, μ)≠ (⊥,⊥) and

(∄(m: (∀i ∈ [n]: (m
→

i, id
∗) ∈ SIG [μ])∧f⋆ (m

→
1 . . . , m

→
n) �

m
→

), it outputs 1 and otherwise outputs 0. *e HPRA scheme

Σ is T-unforgeable; if for all PPT adversaries A, there is a
negligible function negl(·) such that Pr[ExpT−unforge

A (Σ, κ,

n, ℓ) � 1]≤ negl(κ).

*ere is an optional property for HPRA and output
privacy, which simulates the situation that the aggregator
learns nothing about either the inputs or the function’s
output. In order to formally give a definition of output
privacy, we define an oracle RoS as follows:

(i) RoS(i, (m, b)): If S[i] � ⊥, it returns ⊥. Otherwise, it
samples μ uniformly at random, and if b � 0, for
i � 1, . . . , n, it computes σi←Sign(S[i][2], m

→
i, μ).

Else, it randomly chooses r
→

� (r1, . . . , rn)←(Mℓ)n,
and for i � 1, . . . , n, it computes σi←Sign
(S[i][2], r

→
i, μ) and returns σ→ � (σ1, . . . , σn).

Definition 8. (output privacy). For the HPRA scheme Σ, as-
suming an experiment ExpoutprivA (Σ, κ, n, ℓ) with a PPT ad-
versaries A: public parameter pp is gained by executing
Gen(1κ, ℓ), the MAC key, and the auxiliary information
(mk, aux) are gained by executingVGen(pp).A is given input
pp and access to oracle O. A random bit b← 0, 1{ } is chosen by
the challenger, and a challenge ciphertext σ→ is computed and
given to A. A continues to have oracle access to QUOTE O

≔ SG, SKey,RoS(b), SR,VR,VRKey􏼈 􏼉 O ≔ SG, SKey,RoS􏼈

(b), SR,VR,VRKey} and outputs a guess b′ of b.
An HPRA for a family of function classes F is output

private; if for all PPT adversaries A, there is a negligible
function negl(·) such that Pr[ExpoutprivA (Σ, κ, n, ℓ) � 1]≤
(1/2) + negl(κ).

3. The HPRA to MVC Transform

Following the definition in Section 2, some similarities
between the twomodels are figured out through observation:
(1) the clients in MVC and signers in HPRA play similar roles
in providing inputs; (2) the server inMVC and the aggregator

Signer 1

Aggregator
Receiver

…

1. Signature σ1

1. Signature σ2

1. Signature σn

2. Authenticated
message vector Λ

Signer 2

Signer n

Figure 2: Homomorphic proxy re-authenticator model.

6 Security and Communication Networks

in HPRA play similar roles in computing an encoded output
with a corresponding proof; (3) the first client in MVC and
the receiver in HPRA play similar roles in extracting the
evaluation result and verifying its correctness. A very
straightforward idea is that we can achieve the goal of
transforming HPRA to MVC by constructing a mapping of
the participants in the two schemes as follows, which can be
depicted in Figure 3: (1) let the aggregator in HPRA take over
the work of the server inMVC; (2) merge the receiver with the
first signer in HPRA, and let this merged participant take over
the work of the first client in MVC; (3) let each of the rest
signers play a different client in MVC.

Let Σ � (Gen, SGen,VGen, Sign,Verify, SRGen,

VRGen, Agg, AVerify)⊲ be an HPRA scheme for a function
family F. *e general transform from Σ to Π �

(KeyGenj􏽮 􏽯
n

j�1,EnFunc, EnInputj􏽮 􏽯
n

j�1, EnInputj􏽮 􏽯
n

j�1,

Compute,Verify), an MVC scheme forF, will be explained
in elaborate as follows. Let pp←Σ.Gen (1κ, ℓ) be a set of
public parameters. In the proposed MVC scheme, we
consider the computation of a function f on inputting
(x

→(i)

1 , . . . , x
→(i)

n), where x
→(i)

j ∈M
ℓ is a vector over a finite

field of each client Pj.

(i) (pk1, sk1)←KeyGen1(pp). On inputting public
parameter pp, client P1 executes HPRA’s signer’s
key generation algorithm Σ.SGen(pp) and obtains
an identifier id1 and a public/private key pair
(sk1, pk1). Client P1 runs receiver’s key generation
algorithm. Σ.VGen(pp) gets an MAC key mk and
auxiliary information aux. On private key sk1 and
auxiliary information aux, client P1 executes
signer’s re-encryption key generation algorithm
Σ.SRGen(sk1, aux), and obtains re-encryption key
rk1. Client P1 sets pk1 � (id1, pk1, aux, rk1), sk1 �

(sk1,mk).
(ii) (pkj, skj)←KeyGenj(pp, pk1). On inputting public

parameter pp and client P1’s public key pk1, for
j � 2, . . . , n, each client Pj executes HPRA’s signer’s
key generation algorithmΣ.SGen(pp) and obtains an
identifier idj and a public/private key pair (skj, pkj).
On inputting private key skj and auxiliary infor-
mation aux, client Pj executes signer’s re-key gen-
eration algorithm Σ.SRGen (skj, aux) and obtains a
re-encryption key rkj. Client Pj individually sets
pkj � (idj, pkj, rkj), skj � skj.

(iii) (ϕ, ξ)←EnFunc(pk
�→

, sk1, f). For j � 1 . . . n, takes a
public key pkj and the private key sk1 of client P1,
client P1 executes Σ.VRGen(pkj,mk, rkj) and
obtains an aggregation key akj. Client P1 sets the
encoded function ϕ � (f, ak

�→
) and the decoding

secret ξ � ∅.
(iv) (χ(i)

1 , τ(i))←EnInput1(i, pk
�→

, sk1, ξ, x
→(i)

1). When out
sourcing the i-th computation to the server, it takes
a time period i, the public keys pk

�→
, the private key

sk1 of client P1, an input message vector x
→(i)

1 , the
decoding secret ξ, the first client P1 gets a tag μ ∈ G,
executes the sign algorithm Σ.Sign(sk1, x

→(i)

1 , μ),
gets a signature σ1, and sets χ(i)

1 � σ1, τ(i) � mk.

(v) χ(i)
j ←EnInputj(i, pk

�→
, skj, x

→(i)

j). When outsourcing
the i-th computation to the server, each client Pj

takes a time period i, the public keys pk
�→

, the signer
secret key skj of client Pj, and input message vector
x
→(i)

j ; Pj (with j≠ 1) obtains a tag μ ∈ G, and then he
executes the algorithm Σ.Sign(skj, x

→(i)

j , μ), gets
signature σj, and sets χ(i)

j � σj.
(vi) ω(i)←Compute(i, pk

�→
, ϕ, χ→(i)

). Given the public
keys pk

�→
, the encoded function ϕ, and the encoded

inputs χ→(i), the server executes the algorithm
Σ.Agg(ak

�→
, χ→(i)

, μ,ϕ), gets aggregate authenticated
message vector Λ, and sets ω(i) � Λ.

(vii) y(i) ∪ ⊥{ }←Verify(i, pk
�→

, ξ, τ(i),ω(i)). Take the
public keys pk

�→
, the decoding secrets (ξ, τ(i)), and an

encoded output ω(i) as inputs, and the first client P1
executes the receiver’s verification algorithm
Σ.AVerify(mk,Λ, ID, f) which outputs pair of
message vector and tag (m

→
, μ), on success, and

(⊥,⊥) otherwise. Set y(i) � m
→ and otherwise return

⊥ informing that the server tries to cheat.

Scheme Π should satisfy the properties of correctness,
soundness, and privacy. While the correctness is quite ob-
vious, we start with soundness.

Theorem 1. (soundness). If Σ is a T-unforgeable HPRA
scheme, where T� “Aggregator,” then Π described above is a
sound MVC scheme.

Proof. *is study demonstrates that if there is a probabilistic
polynomial-time (PPT) adversary A for which break
soundness (Definition 2) of Π and let Pr[ExpsoundA

[Π, f, κ, n] � 1]≥non − negl(κ). A PPT adversary B can be
constructed that breaks the T-unforgeability (Definition 7)
of Σ for T� “Aggregator.”B is given inputs (1κ, n, ℓ) and an
oracle OT ≔ SG, Sig, SR,VR,VRKey􏼈 􏼉, and its goal is to
output a forge that can successfully convince the challenger.
In detail, the following holds:

ExperimentExpT−unforge
B [Σ, κ, n, ℓ]:

(1) *e challenger executes pp←Gen(1κ, ℓ), (mk, aux)

←VGen(pp) and sends pp and aux to B.
(2) For j � 1, . . . n, B queries the following oracles and

obtains (idj, pkj)←SG(j), rkj←SR (j); B also
queries the oracle VR(j) to produce akj and queries
akj←VRKey(j).

(3) B then sets pk1 � (id1, pk1, aux, rk1); for j � 2 . . . n,
pkj � (idj, pkj, rkj), ϕ � (f, ak), and sends them to
A. Let f be the function on whichA can breakMVC
soundness.

(4) B initializes a counter i ≔ 0.
(5) WheneverA queries its encryption OracleIN with

inputs (x
→

1, . . . , x
→

n), B answers the queries as
follows:

(a) Set i ≔ i + 1.
(b) Record (x

→(i)

1 , . . . , x
→(i)

n) ≔ (x
→

1, . . . , x
→

n).

Security and Communication Networks 7

(c) Query and get (σ(i)
j , μ)←Sig(1, . . . , n{ }, x(i)). Let

x(i) � (x
→(i)

1 , . . . , x
→(i)

n), and denote σ→(i)
� (σ(i)

1 ,

. . . , σ(i)
n).

(d) Set and return χ→(i) ≔ σ→(i).

(6) WhenA outputs ω⋆,B setsΛ⋆ ≔ ω⋆ and sends (Λ⋆,
ID⋆, f⋆) to the challenger, where ID⋆ ≔ (id1,
. . . , idn), f⋆ � f.

(7) *e challenger executes the algorithm AVerify
(mk,Λ⋆, ID⋆, f⋆).

(8) If (m
→

, μ)≠ (⊥,⊥) and (∄(x: (∀j ∈ [n]: (x
→

j, id
⋆) ∈∈

SIG[μ])∧f⋆(x
→

1 . . . , x
→

n) � m
→

) (i.e., 1. f⋆(x
→

1, . . . ,

x
→

n) � m
→, and at least one x

→
j has not been queried

by A in the i-th query or 2. f⋆(x
→

1, . . . , x
→

n)≠m
→)

outputs 1 and otherwise outputs 0.

A PPTadversaryAwill find aω⋆ such that the challenger
gets y∗ ∉ ⊥, f(x

→(i)

1 , . . . , x
→(i)

n)􏼚 􏼛 when running Verify if A
is considered to be able to break Π with non-negl(κ) As
Π.Verify in our transform directly calls Σ.AVerify, if such a
ω∗ is produced, B can directly consider ω∗ as an input of
Σ.AVerify. Clearly, if A can cheat Π.Verify and make
ExpsoundA [Π, f, κ, n] � 1,B can definitely also fool Σ.AVerify
and let ExpT−unforge

B (Σ, κ, n, ℓ) equal to 1. *en, we suc-
cessfully construct such an adversary B who breaks
T-unforgeability when T� “Aggregator” with non-negl(κ):
Pr[ExpT−unforge

B (Σ, κ, n, ℓ) � 1]≥ Pr[ExpsoundA (Π, f∗, κ, n) �

1]≥non − negl(κ).

However, it has been proved that Σ is a T-unforgeable
HPRA [3], which contradicts our derivation; that is,
soundness is guaranteed in MVC based on the T-unfor-
geability of HPRA. □

Theorem 2. (privacy against the first client). If Σ is an input
private HPRA scheme, then Π is an MVC scheme with the
privacy against the first client.

Proof. *e privacy against the first client (Definition 3) can
be directly derived from the input privacy of HPRA. Recall
Definition 6, an HPRAΠ scheme is called input private if for
all (m

→
11, . . . , m

→
n1) and (m

→
12, . . . , m

→
n2), where f(m

→
11, . . . ,

m
→

n1) � f(m
→

12, . . . , m
→

n2), and the following distributions
are identical:

Λ1←Π.Agg ak
�→

, σ→1, μ, f􏼒 􏼓,

Λ2←Π.Agg ak
�→

, σ→2, μ, f􏼒 􏼓,

(3)

where σ→1 is the signatures of (m
→

11, . . . , m
→

n1) from Σ.Sign
and σ→2 is the signatures of (m

→
12, . . . , m

→
n2) from Σ.Sign.

Recall Definition 3; an MVC scheme Σ is called privacy
against the first client if the view of the first client when
executing Σ with clients holding inputs (x

→
1, x

→
2, . . . , x

→
n) is

distributed identically from the view of the first client when
running Σ with clients holding inputs (x

→
1, x

→
2′, . . . , x

→
n
′).

Since the first client P1 has no other opportunity to access
information from all other entities when performing Σ, except
when running the algorithm Verify: P1 obtains an encoded
outputω(i), whichmay reveal some information. As a result, it is
only necessary to prove that the distributions below are identical:

ω(i)⟵Σ.Compute i, pk
�→

j, ϕ, χ→(i)
􏼒 􏼓,

ω′(i)⟵Σ.Compute i, pk
�→

j, ϕ, χ→′(i)
􏼒 􏼓.

(4)

(Signer 1)

Server
(aggregator)

(Receiver)

2. Authenticated
message vector Λ

Client 1

…

Client 2 (signers 2)

Client n (signers n)

1. Signature σ2

1. Signature σ1

1. Signature σn

Figure 3: Idea of transform.

8 Security and Communication Networks

Let χ→(i) be the encoded inputs of (x
→

1, x
→

2, . . . , x
→

n),
generated by Π.EnInput1 and Π.EnInputj. And let χ→′(i) be
the encoded inputs of (x

→
1, x

→
2′, . . . , x

→
n
′), generated by

Π.EnInput1 and Π.EnInputj. Without loss of generality, we
set (x

→
1, x

→
2, . . . , x

→
n) and (x

→
1, x

→
2′, . . . , x

→
n
′), be any two

vectors with the same first component such that f(x
→

1, x
→

2,

(x
→

1, x
→

2′, . . . , x
→

n
′) at the same time. Intuitively speaking,

both Π.EnInput1 and Π.EnInputj directly call the algorithm
Σ.Sign, except that Π.EnInput1 returns mk additionally; in
other words, χ→(i)

� σ→1 and χ→′(i)
� σ→2. Furthermore,

Π.Compute calls Σ.Agg, and ω(i) and ω′(i) are calculated
exactly in the same way as in the definition of input privacy
of HPRA, i.e., ω(i) � Λ1 and ω′

(i)
� Λ2. Because of the input

privacy of HPRA, ω(i) and ω′(i) are identical. As a result,
privacy against the first client of MVC scheme Σ is
guaranteed. □

Theorem 3. (privacy against the server). If Σ is an output
private HPRA scheme, then Π will be an MVC scheme with
the privacy against the server property.

Proof. If there is a PPTadversaryA for which privacy against
the server ofΠ (Definition 4) on functionf does not hold, then
a PPT adversary B that breaks the output privacy of Σ
(Definition 8) can be constructed.B is given inputs 1κ, n, ℓ and
access to an oracle O ≔ SG, SKey,RoS􏼈 (b), SR,VR,VRKey}.
We follow the assumption of MVC that all the clients are
honest but curious, and we do not consider corrupted client
situation. In detail, the following holds:

(i) ExperimentExpoutprivB [Σ, κ, n, ℓ]:
(1) *e challenger carries out pp←Gen(1κ, ℓ), (mk,

aux)←VGen(pp) and selects a random bit b← 0, 1{ }

and then returns pp and aux to B.
(2) For j � 1, . . . , n, B queries the oracles and obtains

(idj, pkj)←SG(j), rkj←SR(j). B also queries the
oracle VR(j) to yield akj, and queries
akj←VRKey(j).

(3) B then sets pk1 � (id1, pk1, aux, rk1), for j � 2, . . . ,

n, pkj � (idj, pkj, rkj), ϕ � (f, ak
�→

), and sends them
to A. Let f be the function on which A can break
the MVC soundness.

(4) B initializes a counter i ≔ 0.
(5) When A queries the encryption oracle IN with

inputs (x
→

1, . . . , x
→

n), B answers the queries as
follows:

(a) Set i ≔ i + 1.
(b) Record (x

→(i)

1 , . . . , x
→(i)

n) ≔ (x
→

1, . . . , x
→

n).
(c) Query the oracle and obtain (σ→(i)

, μ)←Sig
(1, . . . , n{ }, (x

→(i)

j)j∈[n]).
(d) Let χ→(i) ≔ σ→(i) and return χ→(i) to A.

(ii) When A outputs x0 � (x
→0

1, . . . , x
→0

n), x1 � (x
→1

1,

. . . , x
→1

n),B picks a random bit b0← 0, 1{ } and works
as follows:

Queries RoS(j, xb0 , b) and gets ((σb0
1 , c

b0
1), . . . ,

(σb0
n , c

b0
n).

Returns the challenge ciphertext χ→b0 ≔ σ→b0 to A.

(iii) WhileA gives a bit b1 toB,B outputs 1, if b0 � b1;
otherwise, B outputs 0.

Intuitively speaking, when b0 � b1,A outputs a successful
guess b′ � b of which one of the inputs x0, x1 is signed, thenB
guesses that its challenge string given by RoS(b) must be a
signature and outputs a guess b′ � 1 of b. Otherwise, while ifA
does not succeed, B guesses that its challenge string given by
RoS(b) must be random and generates a guess bit b′ � 0 of b.
When the privacy against the server (Definition 3) ofΠ against
A does not hold, we have

AdvprivA (Π, f, κ, n) � Pr ExpprivA (Π, f, κ, n, 0) � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

− Pr ExpprivA (Π, f, κ, n, 1) � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

≥non − negl(κ).

(5)

Without loss of generality, let Pr[Exppriv
A [Π, f, κ, n, 1] �

1] be bigger than Pr[ExpprivA [Π, f, κ, n, 0] � 1].
As xb0 � (x

→b0
1 , . . . , x

→b0
n) is encrypted by RoS(b) when

b � 0, then the view ofA when runs as a subroutine byB is
indistinguishable to the view of A in experiment ExpprivA

[Π, f, κ, n, b0]. As a result,

Pr ExpoutprivB [Σ, κ, n, ℓ] � 1|b � 0􏽨 􏽩 � Pr b0 � 0􏼂 􏼃

− Pr b0 � 0􏼂 􏼃 · Pr ExpprivA (Π, f, κ, n, 0) � 1􏽨 􏽩

+ Pr b0 � 1􏼂 􏼃 · Pr ExpprivA (Π, f, κ, n, 1) � 1􏽨 􏽩.

(6)

Because b0 is randomly picked by B, Pr[b0 � 0] �

Pr[b0 � 1] � (1/2), we have

Pr ExpoutprivB [Σ, κ, n, ℓ] � 1|􏽨 􏽩b � 0]≥
1
2

+
1
2

· non − negl(κ).

(7)

A string of random numbers is encrypted by RoS(b)

when b � 1, then the view ofAwhen runs as a subroutine by
B is indistinguishable to the view of A in an experiment of
guessing random numbers. *us,

Pr ExpoutprivB (Σ, κ, n, ℓ) � 1|b � 1􏽨 􏽩 �
1
2
. (8)

Considering the above two equations, because the
challenger chooses b randomly, Pr[b � 0] � Pr[b � 1] �

(1/2), if adversaryA can break the privacy against the server
and B can determine whether its challenge string is a true
signature or a random string with probability:

Security and Communication Networks 9

Pr ExpoutprivB (Σ, κ, n, ℓ) � 1􏽨 􏽩 �
1
2

· Pr b′ � 1|b � 0􏼂 􏼃

+
1
2

· Pr b′ � 1|b � 1􏼂 􏼃≥
1
2

+
1
4

· non − negl(κ).

(9)

But the output privacy has been confirmed [3], which
leads to a contradiction. In other words, privacy against the
server is guaranteed in our MVC scheme based on the
output privacy of HPRA. □

4. A Concrete Instantiation

To explain our transform in more detailed way, we give a
concrete instantiation. Essentially, we build an MVC for the
family of linear function F over Zq based on a concrete
HPRA scheme 4 in [3].

4.1. Bilinear Map. Let G1 � 〈g1〉, G2 � 〈g2〉, and GT � 〈g〉

be cyclic groups of prime order q. Let g1, g2 be generators of
groups G1 and G2, respectively, and a paring e: G1
×G2⟶ GT is a bilinear map if the following features hold:

(i) Bilinearity: e(ua, vb) � e(u, v)ab for any
u ∈ G1, v ∈ G2 and a, b ∈ Zq.

(ii) Nondegeneracy: e(g1, g2)≠ 1GT
.

(iii) Computability: there is an efficient algorithm to
compute e(u, v) for any inputs u ∈ G1, v ∈ G2.

For simplicity, assuming there is a symmetric bilinear
map such that G1 � G2 � 〈g〉. Let BG←BGGen(1κ) be a
bilinear group generation algorithm, and the output BG is
the generator (g, g) of G and GT with a bilinear pairing e:
G × G⟶ GT.

4.2. Overview of a DetailedHPRA Scheme. Scheme 4 in [3] is
said to be an input private, T-unforgeable, and output
private HPRA scheme. *ey allow the signer to report an
encrypted data with its signature under their own keys; the
aggregator re-encrypts the ciphertexts and converts them to
the ciphertexts under the receiver’s key and homomorphi-
cally evaluates the function f on ciphertexts.

For more details, to achieve the output privacy and the
homomorphism, they employ an ElGamal-like encryption
scheme: encode message x ∈ Zq into the exponent and
encrypt gx. One can decrypt and get x′ � gx and then
additionally compute x � loggx′ to obtain x, with size of the
message space being polynomial in security parameter κ. As
one can verify the guesses for signed messages using solely
the signatures, they blind signer Pj’s signature with a ran-
dom element grj . Unfortunately, because of some flaws in
this scheme, even if the aggregator performs honestly, the
evaluation result still cannot pass AVerify; that is, the
Scheme 4 in [3] is not a correct HPRA scheme.

We slightly modified Scheme 4 in [3] and turned it into a
correct HPRA scheme: we blinded the input od signer Pj

with a random element grj instead of blinding signer of Pj

with a random element grj and prevented verifying guesses
for signed messages as well. It has been proven that the
revised HPRA scheme still maintains input privacy,
T-unforgeability, and output privacy (see Appendix A for
more details of the origin scheme 4 in [3] and howwe revised
it; Appendix B gives the security proof).

4.3. Ee Construction. We describe n clients where each
client Pj holds an ℓ-length input x

→
j � (x

→
j[1], . . . ,

x
→

j[ℓ]) ∈ (Zq)ℓ and a tag μ ∈ G which is related to the set of
inputs. Here, f is a linear function represented by its co-
efficient (q1, . . . , qn). It is worth noting that when the inputs
of f are vectors, e.g., given n ℓ-length input vectors
(x

→
1, . . . , x

→
ℓ), we define f as a function calculated column

by column, that is,

f x
→

1, . . . , x
→

n(􏼁 ≔ 􏽘

n

j�1
x
→

j1􏽨 􏽩 · qj, . . . , 􏽘

n

j�1
x
→

jℓ􏽨 􏽩 · qj
⎛⎝ ⎞⎠.

(10)

An additional symbol is placed at the end of the ci-
phertext to indicate the state of the ciphertext: “1” stands for
first-level ciphertext, which is not allowed to re-encrypt, “2”
stands for second-level ciphertext, which is allowed to be re-
encrypted, and “R” means that this ciphertext has already
been re-encrypted. In this instantiation, we describe the
process for one time period i to simplify.

We fix a hash function H: G × G⟶ G, which can later
be used as a public random oracle. We also choose g

→
� (g1,

. . . , gℓ)←Gℓ and publish the public parameter
pp←(BG, H, g

→
, ℓ):

(1) (pk1, sk1)←KeyGen1(pp).

(a) On inputting public parameter pp, client P1
randomly chooses a vector a

→
1 � (a

→
1[1], . . . ,

a
→

1[ℓ + 1])←R Zℓ+1
q , and β1←

R
Zq yields an identifier

and a public/private key pair set:

id1 � g
1/β1(),

pk1 � g a
→

1[1]
, . . . , g a

→
1[ℓ+1]

􏼒 􏼓, g
β1 , g

1/β1(), pp􏼒 􏼓,

sk1 � a
→

1, β1(􏼁.

(11)

(b) *e first client P1 randomly chooses α←R Zq, b
→

�

(b1, . . . , bℓ+1)←
R
Zℓ+1

q and obtains an MAC key mk
and the auxiliary information aux:

mk � (α, b
→

),

aux � g
b1 , . . . , g

bℓ+1􏼐 􏼑.
(12)

(c) Client P1 obtains the re-encryption key rk1 �

((gb1) a
→

1[1], . . . , (gbℓ+1) a
→

1[ℓ+1]).
(d) Client P1 sets and outputs:

10 Security and Communication Networks

pk1 � id1, pk1, aux, rk1(􏼁,

sk1 � sk1,mk(􏼁.
(13)

(2) (pkj, skj)←KeyGenj(pp, pk1).

(a) On inputting public parameter pp, client Pj

randomly chooses a
→

j � (a
→

j[1], . . . , a
→

j[ℓ+ 1])

←R Zl+1
q , and βj←

R
Zq produces an identifier and a

public/private key pair set:

idj � g
1/βj(􏼁

,

pkj � g a
→

j[1]
, · · · , g a

→
j[ℓ+1]

􏼒 􏼓, g
βj , g

1/βj(􏼁
, pp􏼒 􏼓,

skj � a
→

j, βj􏼐 􏼑.

(14)

(b) For j � 2, . . . , n, client Pj obtains the re-encryp-
tion key rkj � (gb1 a

→
j[1], . . . , gbℓ+1 a

→
j[ℓ+1]).

(c) Client Pj sets and outputs:

pkj � idj, pkj, rkj􏼐 􏼑,

skj � skj.
(15)

(3) (ϕ, ξ)←EnFunc(pk
�→

, sk1, f).

(a) On inputting pk
�→

, public parameter pp, MAC key
mk, and function f, for j � 1, . . . , n, client P1
obtains aggregation key akj � (g(1/βj))α.

(b) P1 sets and outputs:

ϕ � (f, ak),

ξ � ∅.
(16)

(4) (χ1, τ)←EnInput1(pk
�→

, sk1, ξ, x
→

1). Client P1 ran-
domly chooses μ ∈ G, parses sk1 as (sk1,mk), parses
pk1 as (id1, pk1, ·, ·), and randomly chooses
(r1, k1)←

R
Z2

q.

(a) Client P1 computes σ1′:

σ1′ � H μ id1
����􏼐 􏼑􏼐 · 􏽙

ℓ

t�1
g

x
→

1[t]
t · g

r1β1 . (17)

(b) Client P1 computes the encryption x
→

1 which
consists of ℓ + 3 components, denoted as c

→
1 �

(c
→

1[1], . . . , c
→

1[ℓ + 3]).
*e first component:

c
→

1[1] � g
k1 . (18)

*e following components c
→

1[2] to c
→

1[ℓ + 1] are
x
→

1 covered by pk1 and random number k1, such that
for all t � 2, . . . , ℓ + 1:

c
→

1[t] � g x
→

1[t− 1]
· g a

→
1[t− 1]

􏼒 􏼓
k1

. (19)

*e ℓ + 2-th component in c
→

1 contains the infor-
mation of random number r1 instead of an element in
x
→

1:

c
→

1[ℓ + 2] � gr1 · g a
→

1[ℓ+1]
􏼒 􏼓

k1

. (20)

Client P1 sets the last component c
→

1[ℓ + 3] � 2,
in order to remark the state of the cipher text: c

→
1 is a

second-level ciphertext:
(c) Sets σ1 � (σ1’, c

→
1) and outputs (χ1, τ) � (σ1,mk).

(5) χj←EnInputj(pk
�→

, skj, x
→

j). For j � 2, . . . , n, client
Pj parses sk1 as (sk1, ·), parses pkj as (idj, pkj, ·), and
randomly chooses (rj, kj)←

R
Z2

q.
(a) Client Pj computes:

σj
′ � H μ idj

�����􏼒 􏼓􏼒 · 􏽙
ℓ

t�1
g

x
→

j[t]

t · g
rjβj . (21)

(b) Client Pj computes the encryption x
→

j which
consists of ℓ + 3 components, denoted as c

→
j �

(c
→

j[1], . . . , c
→

j[ℓ + 3]).

*e first component:

c
→

j[1] � g
kj . (22)

*e following components c
→

j[2] to c
→

j[ℓ + 1] are
information of x

→
j covered by pkj and a random

number kj, such that for all t � 2, . . . , ℓ + 1:

c
→

j[t] � g x
→

j[t− 1]
· g a

→
j[t− 1]

􏼒 􏼓
kj

. (23)

*e ℓ + 2-th component in c
→

j contains the infor-
mation of a random number rj instead of x

→
j:

c
→

j[ℓ + 2] � grj · g a
→

j[ℓ+1]
􏼒 􏼓

kj

. (24)

Client Pj sets the last component c
→

[ℓ + 3] � 2 to
remark the state of the ciphertext: c

→
j is a second-

level ciphertext.
(c) Sets σj � (σj

′, c
→

j), outputs (χj, τ) � (σj,mk), and
denotes χ→ � (χ1, . . . , χn).

(6) ω←Compute(pk
�→

, (ϕ, χ→)). Parses χj as σj, parses
pk1 as (·, ·, ·, rk1), parses pkj for j � 2, . . . , n as
(·, ·, rkj), parses ϕ as (f, ak

�→
).

(a) For j � 1, . . . , n, the server computes a re-en-
cryption of the client Pj’s ciphertext cj which
consists of 2ℓ + 3 components, denoted as c

→
j
′ �

(c
→

j
′[1], . . . , c

→
j
′[2ℓ + 3]).

*e server first calculates pairings between c
→

j[1]

and each component of rkj and set the 1-st to
(ℓ + 1)-th components to be the pairing result, that
is, for all t � 1, . . . , ℓ + 1:

Security and Communication Networks 11

c
→

j
′[t] � e c

→
j[1], g

bt􏼐 􏼑
a
→

j[t]
􏼠 􏼡. (25)

For t � ℓ + 2, . . . , 2ℓ + 2, the server directly sets

c
→

j
′[t] � c

→
j[t − ℓ]. (26)

Server sets c
→

j
′[ℓ + 3] � R to remark the state of

the ciphertext, where the c
→

j
′ is a re-encrypted

ciphertext.
(b) After the server finished the above for each c

→
j,

where j � 1, . . . , n, the server begins to evaluate
the function f on these re-encrypt ciphertext, and
the evaluation is denoted as c

→′ � (c
→′ [1], . . . ,

c
→′[2ℓ + 3]).
For j � 1, . . . , n and t � 1, . . . , 2ℓ + 2, the server

calculates the qj-th power of c
→

j
′[t]. Puts all these

powered components together and considers it as
an × (2ℓ + 2) matrix, and the server gets a
(2ℓ + 2)-length vector by adding the n components
of the matrix in each column such that for all
t � 1, . . . , 2ℓ + 2:

c
→′[t] � 􏽙

n

j�1
c

→
j
′[t]

qj . (27)

*e server sets the last component c
→′[2ℓ + 3] � R

in order to remark the state of the ciphertext, where
the new vector denoted as c′ is a re-encrypted
ciphertext.
(c) *e server computes σ′ with ak, where

σ′ � 􏽙
n

j�1
eσ′qj

j , akj􏼒 􏼓. (28)

(d) *e server sets and outputs ω � (c
→′, σ′, μ).

(7) y
→∪ ⊥{ }←Verify(pk

�→
, ξ, τ,ω). Parses ω as (c

→′, σ′, μ),
τ as mk, let y

→
� (y1, y2, . . . , yℓ) denote the result of

f(x
→

1, . . . , x
→

n) evaluated by the server, and let r

denote the random element evaluated by the server.
(a) If the last component of c

→′ is label “R,” the first
client P1 decrypts and obtains and ⊥ otherwise.
For t � 1, . . . , ℓ, the server calculates gyt and gr as
follows:

gyt � c
→′[t + 1] · c

→′[1]
− 1/bt(),

gr
� c

→′[ℓ + 2] · c
→′[1]

− 1/b(ℓ+1)().
(29)

(b) Solving the discrete log problem and return y
→ if

the following equation holds and ⊥ otherwise:

σ′ · g
r

(􏼁
− α

� 􏽙
n

j�1
g

qj , H μ idj

�����􏼒 􏼓􏼒 􏼓 · e 􏽙
ℓ

t�1
g

yt

t g(􏼁⎛⎝ ⎞⎠

α

⎛⎝ ⎞⎠. (30)

4.4. Correctness. We now present the proof of the cor-
rectness, if the server runs Compute honestly, the result will
pass Verify. We start with showing an honest server do
return expected y

→
� f(x

→
1, . . . , x

→
n), according to the

equation (29), for t � 0, . . . , ℓ:

gyt � 􏽙
n

j�1
g x

→
j[t]

· g a
→

j[t]kj􏼒 􏼓
qj

· e g
kj , g

bt a
→

j[t]
􏼒 􏼓

qj

􏼠 􏼡

− 1/bt()

� 􏽙
n

j�1
g x

→
j[t]qj+ a

→
j[t]kjqj− a

→
j[t]kjqj � 􏽙

n

j�1
g x
→

j[t]qj ,

(31)

and, for gr in equation (29), we can also do the same cal-
culation as above and find gr � 􏽑

n
j�1 g

rjqj .
Client P1 requires an alternative decryption strategy for

the vector components (gy1 , . . . , gyℓ , gr), as r is uniformly
chosen inZq and can thus not be efficiently recovered, when
decrypting the vector components (gy1 , . . . , gyℓ , gr), and
client P1 cannot directly obtain the plaintext. Fortunately,

obtaining r ∈ Zq is unnecessary, and it is sufficient to
unblind the signature by gr (resp., gr). We now present the
left side and the right side of the equation (30) always keeps
equal as long as the server remains honest. Here, we re-
emphasize that gt is randomly chosen from G and do not
mix it up with the generator g of groupGT *e left-hand side
of the equation (30) is equal to

LHS � 􏽙

n

j�1
e σ
′qj

j , akj􏼓 · gr
(􏼁

− α
􏼒 􏼓 � 􏽙

n

j�1
e H μj idj

�����􏼒 􏼓􏼒 􏼓

· 􏽙
ℓ

t�1
g

x
→

j[t]

t · g
rj 􏼡

βjqj

, g
α/βj(􏼁

􏼓 · g− αr⎛⎝ ⎞⎠

� 􏽙
n

j�1
e H μj idj

�����􏼒 􏼓􏼒􏼒 􏼓 · 􏽙
ℓ

t�1
g

x
→

j[t]qj

t , g
α

􏼠 􏼡,

(32)

and the right-hand side of the equation (30) is equal to

12 Security and Communication Networks

RHS � 􏽙
n

j�1
e g

qj , H μj idj

�����􏼒 􏼓􏼒 􏼓.e 􏽙
ℓ

t�1
g

􏽘
t j � 1n

x
→

j[t] · qjg
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

α

� 􏽙
n

j�1
e g

α
, H μj idj

�����􏼒 􏼓
qj

􏼒 􏼓 · 􏽙
n

j�1
e 􏽙

ℓ

t�1
g

x
→

j[t]·qj

t g
α

􏼠 􏼡⎛⎝ ⎞⎠ � 􏽙
n

j�1
e H μj idj

�����􏼒 􏼓􏼒􏼒 􏼓 · 􏽙
ℓ

t�1
g

x
→

j[t]qj

t , g
α

􏼠 􏼡.

(33)

We can clearly find that the two sides of the equation
(30) are equal and thus conclude that our detailed con-
struction meets the correctness definition. Furthermore,
following the security proof of general construction, the
detailed construction is a sound, private against the first
client, and private against server MVC scheme.

5. Implementation

To measure the performance of our transform, we imple-
ment concrete instantiation described in Section 5 and
conduct a variant of experiments and focus on evaluating the
performance overhead. All the experiments are run on a PC
with an Intel Core i7-4790K CPU running at 3.60GHz and
8GB of RAMon ubuntu-16.04.1.*e implementation is in C
with the help of PBC (pairing-based cryptography) library,
which is designed to be the backbone of implementations of
pairing-based cryptosystems [22]. More specifically, we use
the symmetric pairings constructed on the curve y2 � x3 + x

over the field Fq for some prime q � 3mod 4 with |q| � 512.

5.1. Client Computation. Following the theoretical analysis,
the length ℓ of the input vector, the maximum size xmax of
the input vector element (any element in the input vector
xj
→(i) of client Pj is smaller than 2xmax), and the number of
clients n in total largely influence the runtime of the algo-
rithms. We give some notations for the basic cost units of
our protocol: (MulG/MulGT

) represents the runtime of a
multiplication in (G/GT). (ExpG/ExpGT

) represents the
runtime of an exponentiation in (G/GT). PairG represents
the runtime of a pairing in G. Log represents the runtime of
solving a discrete log problem.

Key generation. *e key generation process includes
both KeyGen1 and KeyGenj. We theoretically analyzed
the computational performance of our key generation
process, which is shown in Table 1. Figure 4 depicts the
key generation process cost for our scheme, and we set
the maximum size xmax of input vector element to a
fixed size 20 bits and observe how the total number n

and the length ℓ of the input vector affect the
performance:

(i) When n remains constant, the runtime of the key
generation process changes uniformly with respect
to ℓ.

(ii) When ℓ remains constant, the runtime of the key
generation process changes uniformly with respect
to n.

(iii) Compared to n, ℓ can determine the runtime to a
greater extent.

Function encoding. We did not conduct the experi-
mental analysis of function encoding process which
only contains EncFunc, and as shown in Table 1, the
runtime changes uniformly with respect to the total
number of the clients.
Input encoding. We did not conduct the experimental
analysis of clients’ encoding process which only con-
tains EnInput, as shown in Table 1, and the runtime
changes uniformly with respect to the length ℓ of the
input vector.
*e algorithm Verify, involving computing discrete
logarithm, is the only step in the verification process.
Pollard’s kangaroo algorithm [29] is the known fastest
algorithm to solve the discrete logarithm problem for a
general elliptic curve, and the time complexity is
O(

��
x

√
). x is the size of the input number of Pollard’s

kangaroo algorithm, which is mainly determined by the
maximum size xmax of input vector element. Based on
the theoretical analysis in Table 1, we can find that the
verification process requires a total of ℓ discrete log-
arithmic calculations. We fix n to 2 as it has relatively
small influence on runtime, and the algorithm per-
formance on different xmax and ℓ is given in Figure 5
with log 2-type Y axis:

(i) When xmax remains constant, the runtime of
verification process increases along with ℓ.

(ii) When ℓ remains constant, the runtime of verifi-
cation process increases along with xmax.

(iii) *e increase in xmax has a greater impact on the
runtime of verification process than the increase in ℓ.

Note that each ℓ discrete logarithm is computed sepa-
rately; as a consequence, the ℓ computation can be paral-
lelized and will greatly save the client’s runtime. However, as
we assume that clients are usually devices with limited
computing power, performing parallel computation is ob-
viously against our assumptions, so we do not implement
Verify algorithm in parallelized way.

5.2. Server Computation. As server only carries out Compute,
the experiments of the server’s runtime focus on the parameters
influence on the efficiency of Compute. We fix xmax to 20 bits
for simplicity, and the results plotted in Figure 6 and Table 1
show the server’s runtime in relation to the total number n of
the clients and the input vector length ℓ:

(i) When n is fixed, the server’s runtime increases along
with the length ℓ.

(ii) When ℓ is fixed, the server’s runtime increases along
with total number n of the clients.

Security and Communication Networks 13

5.3. Analysis and Comparison

5.3.1. Efficiency Analysis. *e client computation overhead
may be even higher than that of the server in some cases.
According to both theoretical and experimental analyses, we
show how to avoid these inefficiencies and under what

circumstances an instance can be regarded as an efficient
solution. Assume that the computational complexity of all
group operations is constant and that xmax + log2n − 1 is the
expected length of the evaluation results of the linear com-
binations of the n clients’ input vector with the maximum
element size xmax.We hope that the runtime of any client in the
scheme will be less than that of the server; however, client P1
runs most algorithms on the client side. Here, we denote the
computational complexity of P1 as Tclient:

Tclient � 12ℓ + 5n + 12 + ℓ
�������������

xmax + log2n − 1
􏽱

,

Tclient ≤ 7n +(4n − 1)ℓ − 1.
(34)

By the above inequality, one can indicate that when n be-
comes sufficiently large and xmax stays rather small, the runtime
required on the server side will exceed the runtime required on
the client side, and the gap will become more significant as n

grows. Although the runtime of both sides is O(n), the coef-
ficient of n on the server side is obviously larger and hencemore
sensitive to the increase in n. We fixed ℓ to 128 and let xmax be
rather small, i.e., 20 bits. *ese theoretical analyses correspond
well with the experimental results shown in Figure 7.

5.3.2. Performance Relative to Prior Scheme. Parno et al. [4]
built a model to estimate the performance of FHE+GC-
based VC schemes according to the results for FHE [30].
Because of the similarities between FHE+GCs based VC

Table 1: Computational complexity of our MVC

MulG ExpG MulGT
ExpGT

PairG Log

Key generation 0 2ℓ + n + 4 0 ℓ + 1 0 0
Function encoding 0 n 0 0 0 0
Input encoding ℓ + 1 ℓ + 3 ℓ 2ℓ 0 0
Verification process ℓ − 1 ℓ + n ℓ + n + 2 ℓ + 4 ℓ + n ℓ
Server computation 0 n (2ℓ + 3)(n − 1) + 1 (2ℓ + 2)n ℓ + n + 1 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ke
y

ge
ne

ra
tio

n
tim

e (
s)

1286416 32421 8
Length of the input vector (bits)

n = 2
n = 64
n = 256

Figure 4: Client’s key generation time.

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1024
2048
4096

D
ec

ry
pt

io
n

pa
rt

 ti
m

e (
s)

2 4 8 16 32 64 1281
Length of the input vector (bits)

xmax = 20
xmax = 30
xmax = 40

Figure 5: Client’s decryption time.

0

2

4

6

8

10

12

14

16

18

Se
rv

er
’s

ru
nn

in
g

tim
e (

s)

2 4 8 16 32 64 1281
Length of the input vector (bits)

n = 2
n = 64
n = 256

Figure 6: Server’s runtime.

14 Security and Communication Networks

and MVC, we can likewise use the method to estimate the
performance of MVC.

Parno et al. [4] used multiplication of two (t × t) matrices
M1 and M2 as test application, and each component in M1
and M2 is at most 32 bits. As the multiplication of two (t × t)

matrices can be viewed as (t × t) linear combinations of
vectors with length t, we set both the clients’ number n and
the length ℓ of the input vectors to t, and let themaximum size
xmax of input vector elements equal to 32 bits in order to
construct an MVC with the same computational scaling as
above. We plot the time complexity for the verification
process in Figure 8.*roughout the results, it can be observed
that our scheme significantly improves performance and can
be considered applicable in a practical setting.

6. Conclusions

We combined MVC with an efficient cryptographic protocol
HPRA by providing a general transform. We also gave and
implemented a concrete instantiation of MVC scheme for
outsourcing the linear combinations of vectors over a finite field.
*e instantiation and implementation could give the way for the
future research on the designs and optimizations of outsourcing
computation. Our implementation requires solving discrete
logarithm problem. How to avoid the usage of these expensive
operations is an open question for further research.

Appendix

A. Details of theModification to Scheme 4 in [3]

Intuitively speaking, Scheme 4 in [3] combines their HPRA
scheme, Scheme 2 without output privacy with a homo-
morphic proxy re-encryption scheme (HPRE), and Scheme
3 to construct an output private scheme which consists of
nine algorithms (Gen, SGen,VGen, Sign,Verify, SRGen,

VRGen,Agg, AVerify) as follows:

(i) Gen(1κ): fix an HPRE � (P,G, E
→

,D
→

,RG, RE,

EV) for class Flin and HPRA.EV � (Gen, SGen,

VGen, Sign, Verify, SRGen, VRGen, Agg,

AVerify) from Scheme 2 such that MPRA⊆MPRE,
run pps←Gen(1κ, ℓ), ppe←P(1κ, ℓ + 1) and output
pp←(pps, ppe).

(ii) SGen(pp): run (id,sk,pk)←SGen(pps),
(rsk,rpk)← G (ppe) and output (id, sk,pk)←(id,

(sk,rsk,rpk),pk).
(iii) VGen(pp): carry out (mk, aux)←VGen(pps),

(rsk, rpk)←G(ppe) and output (mk, aux)←
((mk, rsk), (aux, rpk)).

(iv) Sign(sk, m
→

, τ): parse sk as (sk, ·, rpk), choose r←R

Zq, and output σ←(σ′ · gr, c
→

), where

σ′, ·(􏼁←Sign(sk, m
→

, τ),

c
→←E2

ℓ+2(rpk, m
→

‖r).
(A.1)

(v) SRGen(ski, aux): parse ski as (ski, rski, rpki) and
aux as (aux, rpk). Obtain rki←SRGen (ski, aux)

and prki←RG(rski, rpk) and return rki←(rki,

prki).
(vi) VRGen(pki,mk, rki): parse pki as pki and mk as

(mk, ·), obtain aki←VRGen(pki,mk), and return
aki←(aki, rki).

(vii) Agg((aki)i∈[n], (σi)i∈[n], τ, f): for i ∈ [n], parse aki

as (aki, (rki, prki)) and σi as (σj
′ · gr, c

→
i). Output

Λ←(c
→′, μ, τ), where

c
→

j
′􏼐 ←RE prki, c

→
i(􏼁i∈[n],

c
→′, μ, τ(􏼁←Agg aki(􏼁i∈[n], σi

′ · g
r
, ci
′(􏼁i∈[n], f).

(A.2)

0

10

20

30

40

50

60

70

80

90

Ti
m

e (
s)

1024512128 25632 6416
Number of total clients

Server’s total runtime
Client’s total runtime

Figure 7: Total runtime.

20 40 60 80 100
Matrix dimension (n × n)

100

101

102

103

104

105

106

107

108

109

1010

1011

1012

Ti
m

e (
s)

Our scheme
Choi et al., 2013

Figure 8: Comparison with [2].

Security and Communication Networks 15

(viii) AVerify(mk,Λ, ID, f): parse mk as (mk, rsk) and
Λ as (c

→′, μ, τ), get m
→′‖r←D1

ℓ+1(rsk, c
→

) and
return (m

→
, τ) if the following holds and (⊥,⊥)

otherwise:

AVerify mk, m
→

, μ · g
r

(􏼁
− 1

, τ􏼐 􏼑, ID, f􏼐 􏼑 � 1. (A.3)

Because one can verify guesses for the signed messages only
according to the signatures, the signature σj′

of signer Pj is
blinded with a random element grj by setting σj←(σj

′ · grj).
According to the definition of AVerify(·) and AVerify(·),
we know that AVerify(·) returns if and only if the following
equation holds:

μ · gr
(􏼁

− 1
� 􏽙

n

i�1
e g

ω
i , H τ g

βi

�����􏼒 􏼓􏼒 􏼓 · e 􏽙
ℓ

i�1
g

mi

i g(􏼁
α⎛⎝ ⎞⎠.

(A.4)

We can see that (gr)− 1, where r � 􏽐
n
j�1 rj · qj, is mul-

tiplied on the left-hand side of equation (A.4) to eliminate
the effect of the random elements grj . Here, we offer more
details on the calculation of both sides of equation (A.4). For
the sake of simplicity, ℓ takes 1, and then, the left-hand side is
equal to

LHS � 􏽙
n

j�1
e H μj idj

�����􏼒 􏼓􏼒 · g
mj

1􏼒 􏼓
βjωj

· g
rjωj , g

1/βj􏼐 􏼑
α
􏼑 · gr

(􏼁
− 1

� 􏽙

n

j�1
e H μj idj

�����􏼒 􏼓 · g
mj

1􏼒 􏼓
ωj

, g
α

􏼒 􏼓 · g
rjωj(􏼁

α/βj􏼒 􏼓 · gr
(􏼁

− 1
.

(A.5)

*e right-hand side of the equation (A.4) is equal to

RHS � 􏽙
n

j�1
e g

ωj , H μj idj

�����􏼒 􏼓􏼒 􏼓 · e g
􏽘
i j � 1n

xj · ωi, g⎛⎝ ⎞⎠⎛⎝ ⎞⎠

α

� 􏽙

n

j�1
e g

α
, H μj idj

�����􏼒 􏼓
ωj

􏼒 􏼓 · 􏽙

n

j�1
e g

xj ·ωj

1 , g
α

􏼐 􏼑

� 􏽙
n

j�1
e H μj idj

�����􏼒 􏼓 · g
xj

1􏼒 􏼓
ωj

, g
α

􏼒 􏼓.

(A.6)

*e two sides of equation (A.4) are not equal, thus
Scheme 4 does not meet the correctness definition. *e
equation will be equal if the last term on the left-hand side
becomes (gr)

− 􏽐
n

j
(α/βj). However, this is unreasonable, as βj

is part of the j-th signer’s private key skj while AVerify is
run by the receiver.

To fix this flaw, we blind the input of Pj with a random
element grj by the set (σj

′, ·)← Sign(skj, x
→

j‖rj, μ), instead of
blinding the signature of Pj with a random element grj , and
prevent the verification of guesses for signed messages as
well. In this way, the evaluation of items related to random
elements rj and items related to inputs xj are consistent,

which makes the item related to rj on the left side of
equation (A.4) become g− αr and removes βj. In detail, we
modify Sign, Agg, and AVerify as follows:

(i) Sign(sk, m
→

, τ): parse sk as (sk, ·, rpk), select r←R Zq,
and output σ←(σ′, c

→
), where

σ′, ·(􏼁←Sign(sk, m
→

‖r, τ),

c
→←E2

ℓ+2(rpk, m
→

‖r).
(A.7)

(ii) Agg((aki)i∈[n], (σi)i∈[n], τ, f): for i ∈ [n] parse aki as
(aki, (rki, prki)), σi as (σi

′, c
→

i). Return
Λ←(c

→′, μ, τ), where

c
→

j
′←RE prki, c

→
i(􏼁􏼐 􏼑

i∈[n]
,

c
→′, μ, τ(􏼁←Agg aki(􏼁i∈[n], σi

′, ci
′(􏼁i∈[n], f).

(A.8)

(iii) AVerify(mk,Λ, ID, f): parse mk as (mk, rsk) and Λ
as (c

→′, μ, τ), get m
→′‖r←D1

ℓ+1(rsk, c
→′), and return

(m
→

, τ) if the equation as follows holds and (⊥,⊥)
otherwise:

AVerify mk, m
→

, μ · gr
(􏼁

− α
, τ(􏼁, ID, f(􏼁 � 1. (A.9)

B. Proof of Security

We have already proved the correctness in Section 5, so we omit
it here. Now we need to prove that this modified HPRA still
maintains input privacy, T-unforgeability, and output privacy.

In fact, input privacy, aggregator unforgeability, and
output privacy are not affected by the modification. Our
blinding approach extends the vector m

→ with the element r;
i.e., the second input of Sign changes from m

→ to m
→

‖r, which
certainly does not affect these properties. *e input privacy
of the output private HPRA can be reduced to the input
privacy of Scheme 2 [3].

*e T-unforgeability is the only property that may be
affected, more precisely, aggregator unforgeability. Since
signing an input vector m

→
i or signing an extending input

vector m
→

i with and random element ri, m
→

i‖ri do not in-
fluence the signer unforgeability.

*e T-unforgeability of the output private HPRA can be
reduced to the aggregator unforgeability of Scheme 2 when
T� “Aggregator, which can be further reduced to the
eBCDH assumption [3]. Here, we re-certify following the
original proof in [3]. We first give the definition of eBCDH
assumption.

Definition 9. (eBCDH). *e extended bilinear computa-
tional Diffie–Hellman assumption holds relative to
BG←BGGen(1κ); if for all PPT adversaries A, there is a
negligible function negl(·) such that

Pr
u, v, w←R Zq : h � e(g, g)

uvw

h←A BG, g
1/u

, g
u
, g

v
, g

w
􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦≤ negl(κ).

(B.1)

16 Security and Communication Networks

If there is an efficient algorithm A breaking T-unfor-
geability, then we can design an algorithmR that breaks the
eBCDH assumption.Rmaintains two sets: Rnd and H, both
are initially empty. R obtains an eBCDHκ←
(g(1/β), gβ, g(α/β), gc) related to the security parameter κ and
executes the modified algorithm Gen′ to obtain pp as
follows:

(i) Gen′(eBCDHκ, ℓ): for i ∈ [ℓ], select Rnd[i]←
(si, ti)←

R
Z2

q and set gi←(gc)si gti . Fix H: Zq⟶ G

and output pp←(BG, H, (gi)i∈[ℓ], ℓ).
(ii) *en, R starts A on inputting pp and aux � ∅,

where R simulates the oracles as follows:
(iii) H(x): if x ∈ H return H[x][1]. Otherwise, choose

(ρ, v) ←R Z2
q, set H[x]←((gc)ρgv, ρ, v), and return

H[x][1].
(iv) SG(i): choose ξ←R Z∗q and set S[i]←(ξ, (gβ)ξ ,

(g(1/β))(1/ξ)). *en, return ((gβ)ξ , (g(1/β))(1/ξ)).
(v) Sig((ji)i∈[n], (m

→
ji
)i∈[n]) work as the original oracl

except: randomly choose τ←R Zq, and for all i ∈ [n],

choose (vi, ri)←
R
Z2

q. If τ‖S[ji][2] ∈ H for any
i ∈ [n], abort. Otherwise, for all i ∈ [n], set ρi← −

􏽐k∈[ℓ]Rnd[k][1] · mji
[k] · Rnd[k][2] and H[τ‖S

[ji][2]]←((gc)ρi gvi , ρi, vi), compute σ←vi + 􏽐k∈[ℓ]
[mji

k] · ri · Rnd[k][2], and return (σji
←S[ji]

[2]σ)i∈[n] and τ.
(vi) VR(i): if S[i] � ⊥, RK[i] � ⊥, AK[i]≠⊥, and return
⊥. Otherwise, set AK[i]←(g(α/β))(1/S[i][1]).

If A finally returns a valid forgery (Λ⋆, ID⋆, f⋆) �

((m
→⋆

, μ⋆, τ⋆), ID⋆, f⋆) with f⋆ � (w⋆i)i∈[n], we know that it
is of the following form:

μ⋆ � e 􏽙
i∈[ℓ]

g
m⋆

i

i g􏼒 􏼓 · 􏽙
i ∈ [n]

e g
w⋆

i , H τ⋆ id⋆i
����􏼐 􏼑􏼐 􏼑

α
· gα(􏼁

r⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� g
αc

(􏼁

􏽘
i∈[ℓ]

Rnd⋆i [i][1]

g
α

(􏼁

􏽘
i∈[ℓ]

Rnd⋆i [i][2]

· gα(􏼁
r

· g
αc

(􏼁

􏽘
i∈[n]

w⋆
i
·H τ⋆[pk⋆i‖[][2]

gα(􏼁

􏽘
i∈[n]

w⋆
i
·H τ⋆‖[pk⋆i[][3]

.

(B.2)

*en, we let

φ � 􏽘
i∈[ℓ]

Rnd⋆i [i][1] + 􏽘
i∈[n]

w
⋆
i · H τ⋆ pk

⋆
i

����􏽨 􏽩[2] + r,

v � 􏽘
i∈[ℓ]

Rnd⋆i [i][2] + 􏽘
i∈[n]

w
⋆
i · H τ⋆ pk

⋆
i

����􏽨 􏽩[3],
(B.3)

and output gαc←(μ∗ · e(gβ, g(α/β))− v)(1/φ) as eBCDH solu-
tion. *e simulation above can be considered indistin-
guishable to the original security game: all the values are
identically distributed, while the signature is uniquely de-
termined by the responses of the random oracle and the key
also indistinguishable to a real signature. *us, if there is an
efficient algorithmA breaking aggregator unforgeability, we

can construct an efficient algorithm R which turns A into
an efficient eBCDH solver, which is in conflict with eBCDH
assumption.

Data Availability

No data were used to support this study.

Disclosure

A preliminary version of this paper appears in the Pro-
ceedings of the 6th International Conference on Information
Systems Security and Privacy, 2020, under the title “A
Homomorphic Proxy Re-Authenticators Based Efficient
Multi-Client Non-Interactive Verifiable Computation
Scheme.”

Conflicts of Interest

*e author declares that there are no conflicts of interest.

References

[1] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive ver-
ifiable computing: outsourcing computation to untrusted
workers,” in Advances in Cryptology—CRYPTO 2010,
pp. 465–482, Springer, Berlin, Germany, 2010.

[2] S. G. Choi, J. Katz, R. Kumaresan et al., “Multi-client non-
interactive verifiable computation,” in Eeory of Cryptogra-
phy, pp. 499–518, Springer, Berlin, Germany, 2013.

[3] D. Derler, S. Ramacher, and D. Slamanig, “Homomorphic
proxy re-authenticators and applications to verifiable multi-
user data aggregation,” in Proceedings of the International
Conference on Financial Cryptography and Data Security,
pp. 124–142, Springer, Anguilla, UK, 2017.

[4] B. Parno, J. Howell, C. Gentry et al., “Pinocchio: nearly
practical verifiable computation,” in Proceedings of the IEEE
symposium on security and privacy, pp. 238–252, IEEE,
Berkeley, CA, USA, May 2013.

[5] S. Setty, B. Braun, V. Vu et al., “Resolving the conflict between
generality and plausibility in verified computation,” in Pro-
ceedings of the 8th ACM European Conference on Computer
Systems, pp. 71–84, ACM, Prague, Czech Republic, April 2013.

[6] R. Gennaro, C. Gentry, B. Parno et al., “Quadratic span
programs and succinct NIZKs without PCPs,” in Proceedings
of the Annual International Conference on the Eeory and
Applications of Cryptographic Techniques, pp. 626–645,
Springer, Athens, Greece, May 2013, Advances in Cryptolo-
gy—EUROCRYPT 2013 p.

[7] E. Ben-Sasson, A. Chiesa, D. Genkin et al., “SNARKs for C:
verifying program executions succinctly and in zero knowl-
edge,” in Advances in Cryptology-CRYPTO 2013, pp. 90–108,
Springer, Berlin, Germany, 2013.

[8] E. Ben-Sasson, A. Chiesa, E. Tromer et al., “Succinct non-
interactive zero knowledge for a von Neumann architecture,”
in Proceedings of the USENIX Security Symposium, pp. 781–
796, Washington, DC, USA, August 2014.

[9] M. Backes, M. Barbosa, D. Fiore et al., “ADSNARK: nearly
practical and privacy-preserving proofs on authenticated
data,” in Proceedings of the 2015 IEEE Symposium on Security
and Privacy, pp. 271–286, IEEE, San Jose, CA, USA,May 2015.

[10] R. S. Wahby, S. T. V. Setty, Z. Ren et al., “Efficient RAM and
control flow in verifiable outsourced computation,” in

Security and Communication Networks 17

Proceedings 2015 Network and Distributed System Security
Symposium, San Diego, CA, USA, February 2015.

[11] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation
of computation over large datasets,” in Proceedings of the
Annual Cryptology Conference, pp. 111–131, Springer, Santa
Barbara, CA, USA, May 2011, Advances in Cryptology—
CRYPTO 2011.

[12] B. Braun, A. J. Feldman, Z. Ren et al., “Verifying computations
with state,” in Proceedings of the twenty-fourth ACM Sym-
posium on Operating Systems Principles, pp. 341–357, ACM,
Farmington, MI, USA, November 2013.

[13] G. Cormode, M. Mitzenmacher, and J. *aler, “Practical
verified computation with streaming interactive proofs,” in
Proceedings of the 3rd Innovations in Eeoretical Computer
Science Conference, pp. 90–112, ACM, Cambridge, MA, USA,
January 2012.

[14] C. Papamanthou, E. Shi, and R. Tamassia, “Signatures of
correct computation,” in Eeory of Cryptography,
pp. 222–242, Springer, Berlin, Germany, 2013.

[15] J. Ye, Z. Xu, and Y. Ding, “Secure outsourcing of modular
exponentiations in cloud and cluster computing,” Cluster
Computing, vol. 19, no. 2, pp. 811–820, 2016.

[16] X. Bultel, M. L. Das, H. Gajera et al., “Verifiable private
polynomial evaluation,” in Proceedings of the International
Conference on Provable Security, pp. 487–506, Springer,
Singapore, Singapore, December 2017.

[17] S. Xu, Y. He, and L. F. Zhang, “Cryptanalysis of tran-pang-deng
verifiable homomorphic encryption,” in Proceedings of the In-
ternational Conference on Information Security and Cryptology,
pp. 59–70, Springer, Xi’an, China, November 2017.

[18] S. D. Gordon, J. Katz, F. H. Liu et al., “Multi-client verifiable
computation with stronger security guarantees,” in Proceed-
ings of the Eeory of Cryptography Conference, pp. 144–168,
Springer, Warsaw, Poland, March 2015.

[19] S. Goldwasser, S. D. Gordon, V. Goyal et al., “Multi-input
functional encryption,” in Proceedings of the Annual Inter-
national Conference on the Eeory and Applications of
Cryptographic Techniques, pp. 578–602, Springer, Copenha-
gen, Denmark, May 2014.

[20] D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin, “Multi-
key homomorphic authenticators,” IET Information Security,
vol. 13, no. 6, pp. 618–638, 2019.

[21] L. Schabhüser, D. Butin, and J. Buchmann, “Context hiding
multi-key linearly homomorphic authenticators,” in Pro-
ceedings of the Topics in Cryptology—CT-RSA, pp. 493–513,
Springer, San Francisco, CA, USA, March 2019.

[22] https://crypto.stanford.edu/pbc/.
[23] B. Lynn, On the Implementation of Pairing-Based cryptosys-

tems, Stanford University, Stanford, CA, USA, 2007.
[24] A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit

conditions of elliptic curve traces for FR-reduction,” IEICE
Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, vol. 84, no. 5, pp. 1234–1243,
2001.

[25] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic
curves of prime order,” in Proceedings of the International
Workshop on Selected Areas in Cryptography, pp. 319–331,
Springer, Waterloo, Canada, August 2005.

[26] D. Freeman, “Constructing pairing-friendly elliptic curves
with embedding degree 10,” in Proceedings of the Interna-
tional Algorithmic Number Eeory Symposium, pp. 452–465,
Springer, Berlin, Germany, July 2006.

[27] D. Coppersmith, “Fast evaluation of logarithms in fields of
characteristic two,” IEEE Transactions on Information Eeory,
vol. 30, no. 4, pp. 587–594, 1984.

[28] E. Barker and Q. Dang, “NIST special publication 800-57 Part
1, revision 4,” NIST, Technical Report, National Institute of
Standards and Technology, Gaithersburg, MD, USA, 2016.

[29] J. M. Pollard, “Monte Carlo methods for index computation
$({\rm mod}\ p)$,” Mathematics of Computation, vol. 32,
no. 143, p. 918, 1978.

[30] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic
evaluation of the AES circuit,” in Proceedings of the Annual
Cryptology Conference, pp. 850–867, Springer, Santa Barbara,
CA, USA, August 2012.

18 Security and Communication Networks

https://crypto.stanford.edu/pbc/

