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In order to realize the high-precision direction of arrival (DOA) estimation of the coherent source of two-dimensional multiple-
input and multiple-output (MIMO) radar, a solution is given by combining Toeplitz matrix set reconstruction. MIMO radar
obtains a larger aperture with fewer arrays. Traditional two-dimensional reconstruction Toeplitz-like algorithms use part of the
information in the construction of two correlation matrices or covariance matrices to construct the Toeplitz matrix when
performing two-dimensional coherent source DOA estimation, which makes the information utilization incomplete and requires
additional denoising processing. To solve the above problems, this paper proposes an improved Toeplitz matrix set reconstruction
algorithm based on the two-dimensional reconstruction Toeplitz class algorithm. -e complete array element receiving signal
vector is used to construct two Toeplitz matrix sets containing complete information, and then their conjugate transposes.
Multiply and sum to correct the matrix to obtain a full-rank matrix, so as to achieve the purpose of decoherence and combine the
traditional ESPRIT algorithm to perform two one-dimensional reconstruction processing through rotation invariance and then
perform angle matching to achieve two-dimensional coherent signal angle estimation, while avoiding additional denoising
processing. Finally, the simulation results of the cross array and the L-shaped array verify the effectiveness of the algorithm in this
paper and further extend it to the two-dimensional MIMO radar array model and compare it with the traditional ESPRIT-like
algorithm and the REC-FBSS-ESPRIT algorithm. In comparison, the algorithm in this paper has better performance under the
conditions of successful resolution, DOA estimation accuracy, and low signal-to-noise ratio.

1. Introduction

-e multiple-input and multiple-output (MIMO) radar
system is a new radar system proposed in recent years.
MIMO technology has brought a new breakthrough to the
application performance of the radar system. Compared
with the traditional radar, MIMO radar has potential ad-
vantages in parameter target estimation, target parameter
detection, estimation performance analysis, space-time
adaptive processing suppression, radar interference wave-
form design, and so forth. -e direction of arrival (DOA) [1]
estimation problem is one of the important research di-
rections in the signal processing of sensor arrays [2, 3], and it
is widely used in radar [4–6]. High-precision DOA esti-
mation based on subspace has become the focus of research
[7–9]; for example, multiple signal classification (MUSIC)

and estimation of signal parameters via rotational invariance
techniques (ESPRIT) [10] can provide higher resolution to
estimate the direction of arrival of uncorrelated and partially
related signals [11–13]. But in practice, there are a large
number of coherent sources due to multipath propagation
and cofrequency interference [14]. When the signals are
coherent, the rank of the covariance matrix accepted by the
array will be deficient, so that the signal will be diffused to the
noise, and the performance of the DOA estimation will be
degraded [15, 16]. -e methods of decoherence include
spatial smoothing algorithms, such as forward smoothing,
backward smoothing, and forward and backward smooth-
ing, but they are usually only applicable to isometric uniform
linear arrays, and the corrected dimension is lower than the
original matrix dimension; that is, decoherence is in ex-
change for lower degrees of freedom [6, 14].
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Another problem to solve rank deficit is to construct an
algorithm based on vector and matrix reconstruction [14].
-is algorithm rearranges the elements by covariance pro-
cessing of the vector of the received signal and then con-
structs a Toeplitz matrix so that its rank is only the direction
of arrival is related without being affected by signal corre-
lation, so as to achieve the purpose of decoherence. Ref-
erence [17] proposed the ESPRIT-like algorithm by
constructing a special antenna array model to reconstruct a
Toeplitz matrix with the covariance matrix of the received
signal matrix and using rotation invariance to achieve
decoherence, but this method only works for the center array
of the covariance matrix. When the center row of the co-
variance matrix is selected for reconstruction, the noise term
is only a scalar quantity; otherwise, the denoising process
still needs to be used to estimate the DOA using the ESPRIT
algorithm. Because only one line of covariance is used, its
information utilization is incomplete and affects DOA es-
timation performance. Reference [6] extended [17] to the
two-dimensional DOA estimation of coherent sources.
Reference [18] proposed the REC-FBSS-ESPRIT algorithm
for reconstructing a covariant matrix, using the forward and
backward spatial smoothing method as a preprocessing
method to solve the problem of rank deficiency, and con-
structed an L-shaped matrix for two-dimensional DOA
estimation, but the signal is still affected by noise and re-
quires denoising. Reference [14] proposed an improved
algorithm based on Toeplitz matrix reconstruction, by
constructing a Toeplitz matrix set on the signal matrix,
processing the Toeplitz matrix and the signal matrix, and
then multiplying and summing by the conjugate transposed
matrix. -e matrix is corrected to obtain a full-rank matrix
to achieve decoherence, and no additional denoising is re-
quired, but it is only suitable for one-dimensional DOA
estimation.

Based on the literature [14], this paper proposes an
improved Toeplitz matrix set reconstruction algorithm
based on the two-dimensional reconstruction of the Toe-
plitz-like algorithms and uses cross arrays and L-shaped
arrays for the two-dimensional DOA estimation [19], further
extending to MIMO radar two-dimensional DOA estima-
tion, using the characteristics of MIMO radar, with fewer
array antennas to obtain higher DOA measurement accu-
racy. -e algorithm uses two even linear arrays of mutually
orthogonal array elements, through two permutation ma-
trices and the relationship between the signal subspace and

the direction vector, using rotation invariance, through two
one-dimensional processing and then angle matching. -us,
DOA estimation of two-dimensional coherent signals is
realized. Finally, simulation experiments verify the univer-
sality of the proposed algorithm for two-dimensional DOA
estimation. Compared with the traditional ESPRIT-like al-
gorithm and the REC-FBSS-ESPRIT algorithm in [18], the
successful resolution probability and DOA estimation ac-
curacy of the algorithm in this paper have better perfor-
mance in the case of low signal-to-noise ratio, does not
require spectrum peak search, and the amount of calculation
is small.

2. Materials and Methods

2.1. Cross Array. A cross-shaped array as shown in Figure 1
supposes the intersection of the cross-shaped array is the
origin of the coordinates, the array elements are evenly
distributed on the x-axis and y-axis, and the number of
array elements on the x-axis and y-axis is N� 2M+ 1. -e
total number of array elements is 4M+ 1. -e array element
spacing is d � (λ/2), where λ is the wavelength. Assuming
that P signals are incident on the antenna, the two-di-
mensional arrival angles of the ith signal are θi, ϕi (i� 1, 2,
. . ., P), and θi and ϕi are the azimuth angle and the pitch
angle, respectively.

-en, the received signals of x-axis and y-axis are

X � Axs + Nx,

Y � Axs + Nx,
􏼨 (1)

where Ax � [ax(θ1), ax(θ2), . . . , ax(θp)] and
Ay � [ay(θ1), ay(θ2), . . . , ay(θp)] are the x-axis and y-axis
direction matrices, respectively; the dimension is (2M+ 1)×

P, and ax(θp) � [e− j2πM d sin θp sin

ϕp/λ, . . . , 1, . . . , e− j2πM d sin θp sinϕp/λ], ay(θp) �

[e− j2πM d sin θp sinϕp/λ, . . . , 1, . . . , e− j2πM d sin θp sinϕp/λ];
s � [s1, s2, . . . , sp] is P× 1 dimension incident signal vector;
P signals can be independent, correlated, or coherent; Nx

and Ny are the additive Gaussian noise of the x-axis and
y-axis receiving models, respectively; the dimensions are
2M+ 1; and they are not related to the source.

First, construct the Toeplitz matrices and of the received
signal. As can be seen from [14], Toeplitz matrices Bx(t) and
By(t) can be expressed as follows:

Bx(t) �

X0(t) X1(t) · · · XM(t)

X− 1(t) X0(t) · · · XM− 1(t)

⋮ ⋮ ⋱ ⋮
X− M(t) X− M+1(t) · · · X0(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� ArxSA

H
rx + BNx(t),

By(t) �

Y0(t) Y1(t) · · · YM(t)

Y− 1(t) Y0(t) · · · YM− 1(t)

⋮ ⋮ ⋱ ⋮
Y− M(t) Y− M+1(t) · · · Y0(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� ArySA

H
ry + BNy(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)
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where Arx � [arx(θ1), arx(θ2), . . . , arx(θp)],
arx(θp) � [1, e− j2π d sin θp sinϕp/λ, . . . , e− j2π d sin θp sinϕp/λ], and
ary(θp) � [1, e− j2π d cos θp sinϕp/λ, . . . , e− j2π d cos θp sinϕp/λ] in the
same way; S � diag s1, s2, . . . , sp􏼈 􏼉 which means that S is a
full-rank diagonal matrix. In other words, the rank of S is
independent of the coherence between signals, and the
decorrelation can be achieved. BNx(t) and BNy(t) are
Toeplitz matrices composed of noise vectors.

2.2. L-ShapedArray. L-shaped array is shown in Figure 2: let
the coordinate origin of the L-shaped array be the reference
array element. -e array elements are evenly distributed on
the x-axis and the y-axis. -e numbers of array elements on
the x-axis and the y-axis are both N� 2M+ 1 and the total
number of array elements is 4M+ 1. -e array element
spacing is d � (λ/2), where λ is the wavelength. Assuming
that P signals are incident on the antenna, the two-

dimensional arrival angles of the ith signal are θi, ϕi (i� 1, 2,
. . ., P), and θi and ϕi are the azimuth angle and the pitch
angle, respectively.

Similarly, the received signals of the x-axis and y-axis are

X � Axs + Nx

Y � Axs + Nx

􏼨 (3)

In the same way, where Ax and Ay are the direction
matrix of the x-axis and y-axis, respectively, the dimension
is (2M+ 1)× P, where
ax(θp) � [1, e(j2π d sin θp sinϕp/λ), . . . , e(j2πM d sin θp sinϕp/λ)];
ay(θp) � [1, e(j2π d cos θp sinϕp/λ), . . . , e(j2πM d cos θp sinϕp/λ)]; and
S and N are the same as the cross array.

-e Toeplitz matrices Bx(t) and By(t) are constructed as
follows:

Bx(t) �

XM(t) XM+1(t) · · · X2M(t)

XM− 1(t) XM(t) · · · X2M− 1(t)

⋮ ⋮ ⋱ ⋮

X0(t) X1(t) · · · XM(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� C1ArxSA
H
rx + BNx(t),

By(t) �

YM(t) YM+1(t) · · · Y2M(t)

YM− 1(t) YM(t) · · · Y2M− 1(t)

⋮ ⋮ ⋱ ⋮

Y0(t) Y1(t) · · · YM(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� C2ArySA
H
ry + BNy(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Among them, C1 and C2 are constants; since S is a
diagonal matrix, the correlation matrix is not affected by the
constants. If S � CS, then Bx(t) and By(t) are the same.

2.3.MIMOArray. -e single-static MIMO array is shown in
Figure 3; set the number of transmitting array elements as
1×M and the number of receiving array elements as N× 1;

z

y

x

θi

φi

Si (t), i = 1, 2, ..., p

Figure 1: Cross array.

z

y

x

θi

φi

Si (t), i = 1, 2, ..., p

Figure 2: L-shaped array.
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that is, the total number of array elements is M+N. Due to
the nature of the MIMO array model, it can be virtualized.
-e number of arrays is M×N, and the array elements are
uniformly distributed on the x-axis and y-axis, respectively,
and the total number of array elements is M×N. -e ele-
ment spacing is d � (λ/2), where λ is the wavelength. As-
suming that P signals are incident on the antenna, the two-
dimensional arrival angles of the ith signal are θi, ϕi (i� 1, 2,
. . ., P), and θi and ϕi are the azimuth and elevation angles,
respectively.

-en, the output is

x(l) � at􏼂 θ1,ϕ1( 􏼁⊗ ar θ1,ϕ1( 􏼁, at θ2,ϕ2( 􏼁⊗ ar θ2,ϕ2( 􏼁, . . . ,

at θk, ϕk( 􏼁⊗ ar θk, ϕk( 􏼁􏼃S(l) + n(l),

(5)

where θk, ϕk are the elevation and azimuth angles corre-
sponding to the kth target; n(l) is theMN× 1 Gaussian white
noise vector, the mean is 0, and the covariance is σ2IMN; and
at(θk,ϕk) � aty(θk,ϕk)⊗ atx(θk,ϕk) and
ar(θk, ϕk) � ary(θk, ϕk)⊗ arx(θk, ϕk), where aty(θk, ϕk) and
atx(θk,ϕk) are the antenna steering vectors along the y-axis
and x-axis of the transmitting array (corresponding to the
kth target) and ary(θk,ϕk) and arx(θk,ϕk) are the same. So,
there are the following relations

aty θk, ϕk( 􏼁 � [1, 1, . . . , 1],

atx θk,ϕk( 􏼁 � 1, e
− jπ sin θk cosϕk , . . . , e

− jMπ sin θk cosϕk􏽨 􏽩,

ary θk,ϕk( 􏼁 � 1, e
− jπ sin θk sinϕk , . . . , e

− jNπ sin θk sinϕk􏽨 􏽩,

arx θk, ϕk( 􏼁 � [1, 1, . . . , 1].

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

-en, set x(l) to X � Axs + Nx. -e same is
Y � Ays + Ny.

Correlation calculation of Bx(t) and By(t) with the
corresponding received signals Xi(t) and Yi(t) of the ith
array element:

RXi � E Bx(t)X
∗
i (t)􏼂 􏼃 � ArxE Sx

∗
i (t)􏼂 􏼃A

H
rx + σ2nIx,(M+1),i

� Rxi + σ2nIx,(M+1),i,

RYi � E By(t)Y
∗
i (t)􏽨 􏽩 � AryE Sy

∗
i (t)􏼂 􏼃A

H
ry + σ2nIy,(M+1),i

� Ryi + σ2nIy,(M+1),i.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Let E[Sx∗i (t)] � Sxi and E[Sy∗i (t)] � Syi, where Rxi and
Ryi are correlation operations without noise; IM+1,i is the
(M+ 1)× (M+ 1) -dimensional matrix whose ith diagonal is
1. When i� 0, IM+1,0 � IM+1 is theM+ 1 dimension identity
matrix; E[•] represents mathematical expectation.

It can be obtained from equation (7) that, for the ESPRIT-
like algorithm in [17], the method is to use an optional set of
Toeplitz matrices RXi and RYi to achieve the purpose of
decoherence of coherent source signals. If i� 0 is selected as
the central array element to construct RXi and RYi, then IM+1,i

is an identity matrix, and after that the relationship between
the signal subspace and the direction vector can be used to
directly perform feature decomposition onRXi andRYi to find
the final DOA information, but when i≠ 0 is the central array
element, IM+1,i is not an identity matrix, so denoising is still
required. And ESPRIT-like only constructs one RXi and RYi,
so the complete information of the array is not fully utilized.
To solve the above problems, all RXi, RYi and their corre-
sponding RH

Xi, RH
Xi are multiplied and summed:

Cross array:

RXΣ � Arx 􏽘

M

k�0
Dxk 􏽘

M

i�− M

Cxi + 2σ2nRs
⎛⎝ ⎞⎠D

H
xkA

H
rx

+(M + 1)σ4nIx,M+1,0,

RYΣ � Ary 􏽘

M

k�0
Dy k 􏽘

M

i�− M

Cyi + 2σ2nRs
⎛⎝ ⎞⎠D

H
ykA

H
ry

+(M + 1)σ4nIy,M+1,0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

RX

TX

(a)

z

y

x

θi

φi

Si (t), t = 1, 2, ..., p

(b)

Figure 3: MIMO array. (a) Transmitting and receiving array model. (b) Virtual array model.
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L-shaped array:

RXΣ � Arx 􏽘

M

k�0
Dxk 􏽘

2M

i�0
Cxi + 2σ2nRs

⎛⎝ ⎞⎠D
H
xkA

H
rx

+(M + 1)σ4nIx,M+1,0,

RYΣ � Ary 􏽘

M

k�0
Dyk 􏽘

2M

i�0
Cyi + 2σ2nRs

⎛⎝ ⎞⎠D
H
ykA

H
ry

+(M + 1)σ4nIy,M+1,0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

-e same is for the MIMO array.
RXΣ and RYΣ obviously have a joint diagonalization

structure and span the same range of space of Arx and Ary,
where Rs � E[SSH] is the signal covariance matrix. For Dxk,
Dyk, Cxi, and Cyi, see literature [14].

From equations (8) and (9), it can be seen that the
reconstructed equivalent covariance matrix is a positive
definite matrix with rank P. -e rank is not affected by signal
correlation, but only related to the number of signals [14]. To
further improve accuracy, RXΣ and RYΣ are revised

Rx �
1
2

RXΣ + JR
∗
X 􏽘

J􏼠 􏼡,

Ry �
1
2

RYΣ + JR
∗
Y 􏽘

J􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where J is a permutation matrix with an antidiagonal of 1.
Since Arx and Ary are Vandermonde matrices and θi≠ θj,
Arx and Ary are full ranks, and because 􏽐

M
k�0 Dk

x(􏽐
M
i�− 1 Cx +

2σ2nRs)(Dk
x)H and 􏽐

M
k�0 Dk

x(􏽐
2M
i�0Cx + 2σ2nRs)(Dk

x)H are di-
agonal matrices, their feature decomposition can obtain P

large eigenvalues and M + 1 − P small eigenvalues, where
the eigenvectors corresponding to large eigenvalues con-
stitute the signal subspace Φs � span v1, v2, . . . , vp􏽮 􏽯 and the
eigenvectors corresponding to the small eigenvalues con-
stitute the noise subspace Φs � span v1+p, v2+p, . . . , vM􏽮 􏽯.

3. Two-Dimensional DOA Estimation of
Coherent Sources

Let Arx �
a1

ABx

􏼢 􏼣 �
AFx

aM+1
􏼢 􏼣, where a1 and aM+1 are the

first and last terms of Arx. Similarly, the signal subspace is

decomposed v1, v2, . . . , vp􏽮 􏽯 � USx �
u1

UBx

􏼢 􏼣 �
UFx

uM+1
􏼢 􏼣,

where u1 and uM+1 are the first and last columns of USx,
respectively. It is easy to get ABx � AFxΦx, where

Φx � diag e
− j2π d sin θ1 sinϕ1/λe

− j2π d sin θ2 sinϕ1/λ􏽮

· · · e
− j2π d sin θp sinϕ1/λ􏽯.

(11)

It is a rotation matrix. Since Arx and USx are the same
signal subspace, UFx � AFxT and UBx � ABxT, in which T is
a full-rank matrix; then,

UFxT
− 1ΦxT � AFxTT

− 1ΦxT � AFxΦxT � ABxT � UBx.

(12)

Let Ψx � T− 1ΦxT; then, UFxΨx � UBx. We can derive
e− (j2π d sin θk sinϕk/λ), k � 1, 2, . . . , p, by feature decomposition
of Ψx. Both sin θk sinϕk can be estimated, and cos θk sinϕk

can be estimated in the same way. -e following two-di-
mensional DOA angle can be estimated:

θk � tan− 1 sin θk sinϕk

cos θk sinϕk

􏼠 􏼡,

ϕk � sin− 1
���������������������������

sin θk sinϕk( 􏼁2 + cos θk sinϕk( 􏼁2
􏽱

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

In summary, the steps of the two-dimensional DOA
estimation method based on the Toeplitz matrix set pro-
posed in this paper are shown in Table 1.

4. Computer Simulation

In order to verify the universality of the proposed algorithm
for two-dimensional DOA estimation, the proposed algo-
rithm is compared with the cross-shaped array ESPRIT-like
algorithm in [6] and the L-shaped array REC-FBSS-ESPRIT
algorithm in [18]. Perform 100 Monte Carlo simulations on
each algorithm and define the root mean square error as

RSME �
1
K

􏽘

K

K�1

�������������������������������
1
100

􏽘
100
n�1

􏽢θk,n − θk􏼐 􏼑2 + 􏽢ϕk,n − ϕk􏼐 􏼑2􏽨 􏽩.

􏽲

(14)

-e DOA of the three sources used in the simulation are
(35°, 40°), (75°, 70°), (89°, 80°), and sources 1, 3 are related
signals. -e numbers of array elements on the x- and y-axis
are both 11, and the array element spacing is half a
wavelength.

Figure 4 shows the DOA estimation performance of each
algorithm, where Figures 4(a)–4(e) are the cross-shaped
ESPRIT-like algorithm, L-shaped array REC-FBSS-ESPRIT
algorithm, MIMO array, and the DOA estimation results of
the cross array, L-type array, and MIMO array using the
algorithm of this paper when the signal-to-noise ratio is
SNR� 10 and the number of snapshots is 1024. From the
figure, it can be seen intuitively that the algorithm of this
paper is closer to the actual angle and has better two-di-
mensional DOA estimated performance.

Figure 5 shows the performance comparison of azimuth
estimation using the cross array, L-shaped array, MMO
array, ESPRIT-like algorithm, and REC-FBSS-ESPRIT al-
gorithm using this algorithm and examines the RSME
variation of the algorithm under different signal-to-noise
ratios (SNR). When the signal-to-noise ratio is 0, the per-
formance of this algorithm is improved by about 40%
compared to the ESPRIT-like algorithm and improved by
about 25% compared to the REC-FBSS-ESPRIT algorithm.
By comparing RSMEs with different signal-to-noise ratios, it
is concluded that the proposed algorithm performs better
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Table 1: Algorithm steps in this paper.

Step 1: construct the received data X and Y from different matrix models and construct the Toeplitz matrix from equations (2) and (4)
Step 2: RXi and RYi are obtained from Toeplitz matrix and receiving matrix through formula (7)
Step 3: select all RXi and RYi to get RXΣ and RYΣ from formulas (8) and (9)
Step 4: R is calculated from the R � (1/2)(RΣ + JR 􏽐

∗
J) formula

Step 5: perform feature decomposition on R to obtain signal subspace US

Step 6: get the corresponding UB and UF from US, get the corresponding Ψ, and then perform feature decomposition
Step 7: match by equation (13) to obtain two-dimensional DOA estimation of P signals
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Figure 4: Continued.
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than the ESPRIT-like algorithm and REC-FBSS-ESPRIT
algorithm at low signal-to-noise ratios.

Figure 6 shows the comparison of the resolution
probability of the cross array, L-shaped array, MIMO array
ESPRIT-like algorithm, and REC-FBSS-ESPRIT algorithm
using this algorithm. Here, it is defined that if the estimated
􏽢θ1 and 􏽢θ2 directions of the two sources satisfy |􏽢θ1 − θ1| +

|􏽢θ2 + θ2|< |􏽢θ1 − 􏽢θ2| , it is said that the two sources are
correctly resolved. -e resolution probability refers to the
ratio of the number of correct resolutions to the total
number of experiments. -e experimental conditions were
10 experiments per group under the condition that the

number of snapshots was 1024 and the signal-to-noise ratio
SNR was 20. -e experimental results show that the
probability of successful resolution of this algorithm under
low azimuth interval is higher than that of ESPRIT-like
algorithm and REC-FBSS-ESPRIT algorithm, which shows
that the accuracy of DOA estimation of this algorithm is
higher than the other two algorithms, and, moreover, the
cross array, the L-shaped array, and theMIMO array all have
better successful resolution in the case of low azimuth
spacing.

Figure 7 shows the influence of correlation coefficients
on the performance of each algorithm. From Figure 7(a), we
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Figure 4: DOA estimation performance of each algorithm. (a) ESPRIT-like algorithm DOA estimation performance graph. (b) Per-
formance graph of DOA estimation of cross array in this paper. (c) REC-FBSS-ESPRIT algorithm DOA estimation performance graph.
(d) -e performance graph of DOA estimation of L-type array in this paper. (e) MIMO array DOA estimation performance graph.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RS
M

E

SNR

L-shaped array 
 MIMO array

 ESPRIT-like
 REC-FBSS-ESPRIT
 Cross array

–10 –5 0 5 10 15 20

Figure 5: Comparison of mean square error under different signal-
to-noise ratios.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
sfu

l r
es

ol
ut

io
n

Azimuth interval (degree)
0 1 2 3

L-shaped array 
MIMO array

 ESPRIT-like
 REC-RBSS-ESPRIT
 Cross array

Figure 6: Success resolution as a function of azimuth interval.

Security and Communication Networks 7



can see the successful resolution of the MIMO array using
this algorithm when the signal-to-noise ratio SNR is 10 and
the number of snapshots is 1024, and with the change of the
correlation coefficient, the success resolution is always 100%,
and the success rate of the L-shaped array using the algo-
rithm of this paper is only 99% to 100% when the correlation
coefficient is 0.9. -e success rate of the ESPRIT-like al-
gorithm and the REC-FBSS-ESPRIT algorithm is many
times between 99% and 100%. It can be seen from the
Figure 7(b) that the two arrays adopting the algorithm of this
paper have small changes in RSME when the correlation
coefficient changes and slightly rise when the correlation

coefficient is close to 1, while the ESPRIT-like algorithm has
both changes when the correlation coefficient changes. -e
square error is also small, but the performance is lower than
the algorithm in this paper. -e mean square error of the
REC-FBSS-ESPRIT algorithm under the change of the
correlation coefficient is lower than the ESPRIT-like algo-
rithm but higher than the algorithm in this paper. -e
experimental results show that the two-dimensional DOA
estimation algorithm in this paper is less affected by the
correlation coefficient, and the estimation performance is
higher than the ESPRIT-like and REC-FBSS-ESPRIT
algorithms.
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Figure 7: Influence of correlation coefficient on performance. (a) Relationship between the successful resolution and correlation coefficient.
(b) Relationship between mean square error and correlation coefficient.

Table 2: Main performance comparison.

Algorithm Snapshots: 100; SNR: 0; mean square error Snapshots: 20; SNR: 20;
mean square error

Snapshots: 1000; SNR: 10; correlation
coefficient: 0.5, mean square error

Cross array 1.6918 1.0116 0.2335
L-shaped array 1.7132 1.1364 0.2433
MIMO array 1.832 1.2451 0.2719
ESPRIT-like 2.9868 1.5782 0.4712
REC-FBSS-ESPRIT 2.2841 1.2821 0.3594

Table 3: DOA estimation time comparison.

Algorithm 100 experiments’ simulation time (s) 500 experiments’ simulation time (s) 1000 experiments simulation time (s)
Cross array 0.9045 4.1106 7.9423
L-shaped array 0.9769 4.4346 8.5693
MIMO array 1.0746 4.5571 8.7709
ESPRIT-like 0.7741 3.5709 7.0441
REC-FBSS-
ESPRIT 7.9567 40.5768 96.7324
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Table 2 shows the performance comparison of the cross
array, L-shaped array, ESPRIT-like algorithm, and REC-
FBSS-ESPRIT algorithm under different parameters using
this algorithm. Experiments show that the algorithm in this
paper has a low signal-to-noise ratio and a low number of
snapshots; the mean square error is lower than the ESPRIT-
like algorithm and the REC-FBSS-ESPRIT algorithm.

Table 3 shows the comparison of the time required for
different algorithms to perform 100, 500, and 1000 exper-
iments on 3 signals. -e results show that the simulation
time of the algorithm in this paper is similar to that of the
ESPRIT-like algorithm, only slightly slower, but compared
to the REC-FBSS-ESPRIT algorithm, it is much faster and
has a better real-time performance.

5. Conclusions

-is paper proposes a modified Toeplitz matrix set recon-
struction algorithm based on the two-dimensional recon-
struction of Toeplitz-like algorithms, which is based on the
incomplete information of traditional reconstruction Toe-
plitz algorithm and the need for denoising. -e Toeplitz
matrix set is multiplied and summed with the conjugate
transposed matrix to achieve solution coherence, avoiding
additional denoising. -e simulation experiment gives a
comparative analysis of the performance of this algorithm,
the ESPRIT algorithm, and REC-FBSS-ESPRIT algorithm
and utilizes the special performance of MIMO arrays to
simulate more arrays with fewer antennas, universality
under the array model.
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