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*e collection of fine-grained consumptions of users in the smart grid enables energy suppliers and grid operators to propose new
services (e.g., consumption forecasts and demand-response protocols) allowing to improve the efficiency and reliability of the grid.
*ese services require the knowledge of aggregate consumption of users. However, an aggregate can be vulnerable to rei-
dentification attacks which allow revealing the users’ individual consumption. Revealing an aggregate data is a key privacy
concern. *is paper focuses on publishing an aggregate of time-series data such as fine-grained consumptions, without indirectly
disclosing individual consumptions. We propose novel algorithms which guarantee differential privacy, based on the discrete
Fourier transform and the discrete wavelet transform. Experimental results using real data from the Irish Commission for
Regulation of Utilities (CRU) demonstrate that our algorithms achieve better utility than previously proposed algorithms.

1. Introduction

A smart city is a designation given to a city that incorporates
information and communication technologies to enhance
the quality and performance of urban services such as en-
ergy, transportation, and utilities in order to reduce resource
consumption, wastage, and overall costs. *e overarching
aim of a smart city is to enhance the quality of living for its
citizens through smart technology [1–3].

*e smart grid is an important part of the smart city.
Indeed, the smart grid allows greater penetration of highly
variable renewable energy sources such as solar and wind
power in the smart city.

*e smart grid modernizes the traditional electricity grid
by establishing a communication infrastructure in parallel to
the energy delivery network. *is infrastructure is used by
the grid operators and suppliers to remotely collect fine-
grained consumptions from household smart meters and to
provide new energy services such as consumption forecasts
or demand-response. *ese services are suitable for im-
proving the efficiency and reliability of the grid, saving
energy and, more generally, for optimizing energy usage. In

particular, forecasting enables the supplier to predict future
consumptions based on past aggregate data in order to
improve the grid and retail operations and enhance energy
trading [4], while demand-response (DR) aims to shift the
users’ consumption from peak to off-peak periods in order
to avoid consumption peaks in the smart city.

However, aggregates are vulnerable to reidentification
attacks, such as set difference attacks [5] in which two ag-
gregates that differ by a single consumer allow learning this
individual consumption. Since the individual consumption
data collected by smart meters reflect the use of all electric
appliances by inhabitants in a household over time and
enable to deduce the behaviors, activities, age, or preferences
of the inhabitants [6–11], revealing an aggregate is a key
privacy concern.

Differential privacy (DP) [12] allows publishing an ag-
gregate data while guaranteeing that an attacker does not
learn any individual inputs from the aggregate. However, the
noise added by DP often leads to a loss of utility. Moreover,
publishing time-series data such as users’ consumption,
which are correlated, by using DP, results in more noise
added than publishing a single aggregate for the same
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privacy guarantee. *us, disclosing time-series data leads to
more loss of utility. Utility can be improved by increasing the
size of the aggregate. Eibl and Engel [13] showed that for
real-world smart metering, the aggregation group size must
be of the order of thousands of smart meters in order to have
reasonable utility. *is paper shows how to obtain good
utility with a group size smaller than 600. We obtain a mean
relative error lower than 10% between the original data and
the published one, which is considered practically suitable by
energy experts for consumption forecasts.

*e Laplace mechanism [14] is a popular mechanism to
enable DP, by adding independent and identically distrib-
uted (IID) Laplace noise to each component of the time-
series. However, adding IID noise for correlated time-series
is not appropriate. In fact, an adversary can use refinement
methods, such as filtering, to sanitize the IID noise and
improve the probability of disclosing individual data
[15, 16].

*is paper focuses on disclosing an aggregate of users’
consumption data without learning individual data and
proposes methods with improved utility. We summarize our
contributions as follows:

(i) We revisit the Fourier perturbation algorithm
(FPA) [17] in order to correct somemistakes leading
to poor users’ privacy protection. We show that, in
order to ensure the desired budget of privacy ϵ, a
factor

���
2T

√
must be added to the noise, where T is

the size of the time-series. However, this reduces the
utility of FPA.

(ii) We propose the “clamping Fourier perturbation
algorithm (CFPA)” using the clamping mechanism
proposed in [18], for reducing the sensitivity, and
thus the noise introduced in FPA. *is new algo-
rithm is an improvement of the Fourier perturba-
tion algorithm (FPA). Experimental results show a
utility improvement by a factor more than 6.

(iii) We also propose the “clamping wavelet perturba-
tion algorithm” (CWPA), a similar adaptation of
wavelet perturbation algorithm (WPA) [19], with a
utility improvement by a factor 2.

(iv) We compare FPA, CFPA, WPA, and CWPA by
analyzing their relative errors on a real dataset, and
we explain why CFPA obtains the best utility.

*e remainder of this paper is structured as follows.
Section 2 provides an overview of the literature, while
Section 3 presents preliminaries. Section 4 correctly com-
putes the sensitivity of DFT in order to make FPA ϵ-dif-
ferentially private. Section 5 details our privacy-preserving
publication techniques using clamping mechanism, DFT,
and DWT. Section 6 reports our experimental results.
Section 7 concludes the paper.

Table 1 lists the acronyms used in this paper.

2. Related Work

Demand-response protocols [20–23], and secure aggrega-
tion protocols [24–30] aim to protect the privacy of users

while supporting energy services such as demand-response,
smart metering, billing, or forecasting.

In this paper, we investigate tools enabling forecasting
and demand-response. In particular, we are interested in
publishing an aggregate of individual consumptions, while
preserving privacy.

Differential privacy (DP), introduced by Dwork in 2006,
guarantees that the publication of an aggregate does not
indirectly reveal the individual data [12]. Moreover, DP
guarantees that two aggregates that differ by a single con-
sumer are almost indistinguishable. DP has evolved over-
time [31] and was adopted by organizations such as the US
Census Bureau [32], Google [33], Apple [34], and Microsoft
[35]. *e Laplace mechanism [14] is a popular mechanism
that allows guaranteeing DP by adding a noise drawn from
the Laplace distribution L(·) to the aggregate.

*e Laplace mechanism takes as input two parameters:
the privacy budget ϵ and the sensitivity of the function to
publish (in our case, the sum of users’ consumption).
Smaller values of ϵ lead to a better protection, but add a
bigger noise to the aggregate.

Utility can be improved by increasing the size of the
aggregate in order that the effect of noise is small enough
that the result can be utilized. Eibl and Engel [13] showed
that for real-world smart metering, the aggregation group
size must be of the order of thousand smart meters in order
to have reasonable utility. *is paper shows how to obtain
good utility with a group size smaller than a thousand.

DP is typically applied to static data, i.e., to a single
query. In this paper, we consider time-series consumption,
which is equivalent to multiple queries on correlated data.
Applying the Laplacemechanism independently to each data
point of the time-series is not appropriate. Indeed, an ad-
versary can use refinement methods, such as filtering, to
sanitize the Laplace noise and improve the probability
disclosing individual data [15, 16]. *us, the data points of
the time-series are correlated.*e composition theorem [14]
states that the privacy budget ϵ of T correlated queries adds
up, i.e., setting the privacy budget for a single query to
εq � 0.5, the privacy budget of T � 48 single queries (cor-
responding to a day profile with a time interval of 30min) is
ε � 0.5 × 48 � 24. In order to guarantee a global privacy
budget of ε, one solution is to set the privacy budget of each
query to ε/T. Of course, this leads to more noise in the
aggregate and a loss of utility.

One method to guarantee DP for correlated time-series
data publishing consists in transforming the original cor-
related time-series into another representation while

Table 1: List of acronyms.

Acronym Meaning
CFPA Clamping Fourier perturbation algorithm
CWPA Clamping wavelet perturbation algorithm
DFT Discrete Fourier transform
DP Differential privacy
DWT Discrete wavelet transform
FPA Fourier perturbation algorithm
MRE Mean relative estimation error
WPA Wavelet perturbation algorithm
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maintaining its major characteristics before adding the
Laplace noise. Rastogi and Nath [17] proposed the Fourier
perturbation algorithm (FPA) that combines discrete
Fourier transform (DFT) with DP to support time-series of
count queries while not disclosing any individual data and
ensuring good utility. We note that the sensitivity of count
queries is 1, and the global sensitivity is T for a time-series of
length T. Ács et al. [36] proposed an optimization of the FPA
allowing to release histograms, where the global sensitivity is
1. *ey show through experimental evaluation that their
scheme improves the utility of the initial FPA by a factor 10.
Lyu et al. [19] applied FPA to time-series consumptions and
proposed wavelet perturbation algorithm (WPA) by
replacing DFT by discrete wavelet transform (DWT). *e
authors show through experimental results that WPA en-
sures better utility than FPA.

We apply these approaches to time-series of con-
sumption data and refine them by reducing the sensitivity of
the queries in order to reduce the relative error of the final
result.

3. Preliminaries

3.1. System and 1reat Model. *e entities involved in this
paper are as follows:

(i) Trustworthy homes, which smart meter (SM) en-
ables to collect their true individual time-series
consumption.

(ii) A honest aggregator, which collects users’ indi-
vidual consumption, and which publishes an ag-
gregate time-series consumption of users to a
forecaster in a privacy-preserving way for the
forecaster not to be able to deduce any individual
consumption of users.

(iii) A forecaster, which predicts future consumptions
based on the aggregate consumption received in
order to improve the grid and retail operations and
enhance energy trading.*e forecaster is considered
honest-but-curious as it provides appropriate
forecasts, but it may attempt to infer the users’
individual consumption from the aggregate in order
to deduce the behaviors, activities, age, or prefer-
ences of the inhabitants.

Figure 1 depicts the system model. In a real scenario, the
aggregator can be an energy distributor, and the forecaster
can be a municipality that seeks to find out the total con-
sumption of the inhabitants of the municipality.

Considering the case where the aggregator and the
forecaster belong to two entities of the same energy provider,
the publication of aggregate users’ consumption to fore-
casters in a privacy-preserving way reduces the risk of
disclosing users’ individual consumption. Moreover, this
avoids the need for forecasters to ask for explicit consent
from customers in accordance with the GDPR [37] to
process their personal data.

Let N be the number of smart meters (SMs) in a district.
Let Xj � (x

j
1, x

j
2, . . . , x

j

T) be the time-series of energy

consumptions collected by SM j, where x
j
t is the con-

sumption at time slot t (t � 1, . . . , T) collected by SM j

(j � 1, . . . , N), with T being the time period considered.
Each time-series consumption Xj is sent to an aggregator
who computes the following aggregate:

S � S1, . . . , ST( 􏼁 � 􏽘

N

j�1
x

j
1, 􏽘

N

j�1
x

j
2, . . . , 􏽘

N

j�1
x

j

T
⎛⎝ ⎞⎠. (1)

To reveal S to a forecaster without indirectly disclosing
individual consumptions Xj (j � 1, . . . , N), the aggregator
can use differential privacy (DP).

3.2. Differential Privacy. Differential privacy is a framework
introduced by Dwork allowing quantifying the privacy
guarantees of a request on a database [38]. *is request can
be the publication of a database, or a more precise one, such
as “what is the sum of energy consumptions of users in this
database?”.

A request on databases is said to be differentially private
if this request makes two similar databases indistinguishable
from looking only at the output of the request. Differential
privacy relies on a parameter, noted ε, called the privacy
budget. *e formal definition of a differentially private al-
gorithm is given as follows.

Definition 1 (ε−differentially private). A request
A: D⟶S is ε−differentially private if and only if for all
databases D1,D2 ∈D differing by at most one record, and for
all subsets O⊂S,

Pr A D1( 􏼁 ∈ O( 􏼁≤ exp(ε)Pr A D2( 􏼁 ∈ O( 􏼁. (2)

*is definition can be applied not only to requests on
databases but also to any function, by considering the do-
main of the function as a database format.

Dwork also proposes the Laplace mechanism, which
allows making any (vectors of) real-valued function ε-dif-
ferentially private [38]. *is mechanism relies on the notion
of sensitivity of a function, which represents how a single
record of the database can influence the output of the
function.

Definition 2 (sensitivity). Let f: D⟶ Rd be a function;
the sensitivity of f is

Δ1(f) � max
D1 ,D2∈D s.t. d D1 ,D2( )≤ 1

f D1( 􏼁 − f D2( 􏼁
����

����1. (3)

*is sensitivity is also called L1-sensitivity due to the
L1−norm used in its definition and is denoted by Δ1(f).
Similarly, the L2-sensitivity used later and denoted by ε is
computed using the L2−norm (the L1−norm and the L2
norm of a vector S � (s1, . . . , sT) are respectively equal to
‖S‖1 � 􏽐

T
j�1 |sj| and ‖S‖2 �

������
􏽐

T
j�1 s2j

􏽱
).

*e Laplace mechanism consists of adding a random
value to the original result of the query, where the random
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value follows the Laplace distribution, where the parameter
depends on the chosen ϵ and on the sensitivity of the
function, as follows.

Theorem 1 (Laplacian mechanism). For all functions
f: D⟶ Rd, the algorithm A(D) � f(D) +(L1(Δ1
(f)/ε), . . . ,Ld(Δ1(f)/ε)) is ϵ−differentially private, where
L(·) is the distribution of Laplace and Δ1(f) is the sensitivity
of f.

DP introduces noise in order to guarantee privacy. *is
noise can decrease the utility of the function. We quantify
this loss usingmean relative estimation error (MRE), defined
as follows.

Definition 3 (mean relative estimation error). *e mean
relative estimation error (MRE) between two vectors a and b

of size T is 1/T · 􏽐
T
j�1 |aj − bj|/aj + 12 (we add 1 to the

denominator in order to avoid dividing by zero. *is def-
inition is also used in [27]).

Consider the aggregate S � (S1, . . . , ST) defined in (1).
Let M be the maximum consumption in the domain. One
naive solution to publish S without revealing any individual
consumption is to use the Laplace mechanism to add in-
dependent Laplace noise to each component of S and to
release the results: 􏽢S � (S1 + L(M · T/ε), . . . , ST+

L(M · T/ε)), where the sensitivity of the sum of time-series
consumption is M · T. However, this simple approach leads
to excessive noise rendering the aggregate useless [13].

Example 1. Figures 2(a) and 2(b), respectively, show the
aggregated consumption of 250 homes from December 30th,
2009, to January 5th, 2010, taken from the CER dataset [39],
and its noisy version using the naively applied Laplace
mechanism, with ε � 1 per day. Figure 2(a) shows two
consumption peaks at 12 am and 6 pm which respectively
correspond to lunch and dinner time. We also observe that
in the night (from 12 pm to 6 am) the consumption de-
creases. Figure 2(b) shows that the noisy version is com-
pletely different from the original aggregate (Figure 2(a)). In
this example, the MRE between the aggregate consumption
and the noisy version is 141%, which is not usable.

Moreover, the noisy version has inconsistent values such as
negative consumptions.

Rastogi and Nath [17] introduce the Fourier perturba-
tion algorithm (FPA) and show that is an effective tool for
reducing the noise introduced by the Laplace mechanism for
time-series. Section 3.3 presents the FPA. However, there are
some mistakes in this version relying on the estimation of
the FPA sensitivity. *ese mistakes are presented in Section
4, along with the corrected FPA.

Table 2 lists the symbols used in the rest of the paper.

3.3. Fourier Perturbation Algorithm. *e Fourier perturba-
tion algorithm (FPA) presented in [17, 19, 36] takes as input
a time-series S � (S1, . . . , ST) and an integer k≪T and
returns the noisy time-series 􏽢S � (􏽢S1, . . . , 􏽢ST), as shown in
Algorithm 1.

Rastogi and Nath [17] show that FPA is ε−differentially
private. However, there are some mistakes in their proof of
*eorem 4.1 of [17] which justified that FPA is ε-differen-
tially private. *ese mistakes rely on the estimation of the
FPA sensitivity and are presented in Section 4.

3.4. Wavelet Perturbation Algorithm. By replacing the DFT
with the discrete Haar wavelet transform (DWT), Lyu et al.
[19] proposed the wavelet perturbation algorithm (WPA)
and showed that WPA guarantees better utility than DFT.
Algorithm 2 describes WPA.

Figure 3 shows the same aggregated consumption presented
in Example 1 and its noisy version using WPA (Algorithm 2)
with Haar wavelet, ε � 1 per day and k � 5. In Figure 3, the
MRE is however higher than 10% (18%). In the noisy aggregate,
the first peak of the morning is masked and the peak of the
evening is truncated, as well as the trough of the night.

Theorem 2. Wavelet perturbation algorithm (WPA) is
ε-differentially private.

Proof. DWT is orthonormal [40], i.e., W has the same L2
norm as S, that is, Δ2(W) � Δ2(S). Furthermore,
Δ2(Wk)≤Δ2(S) (because T − k DWT coefficients of W are
set to 0). With the inequality of norm, Δ1(Wk)≤

�
k

√
Δ2(Wk).

*en, Δ1(Wk)≤
�
k

√
Δ2(S)≤M ·

���
kT

√
. *us, the noise

Aggregator

Homes Smart meters
(SMs)

Forecaster

......

Figure 1: System model.
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Table 2: List of symbols.

Notation Description
N Number of smart meters (SMs) in the district
M Maximum consumption in the dataset
T Time period during the collection of time-series consumption

Xj � (x
j
1, x

j
2, . . . , x

j

T)
Time-series of energy consumptions collected by SM j, where x

j
t is the consumption at time slot t (t � 1, . . . , T)

collected by SM j (j � 1, . . . , N)
S � (S1, . . . , ST) Sum of users’ time-series consumptions to be published, where St � 􏽐

N
j�1 x

j
t for t � 1, . . . , T

ε Budget of privacy
􏽢S Noisy version of S

k

Number of the first DFT or DWT coefficients conserved in the Fourier perturbation algorithm (FPA), wavelet
perturbation algorithm (WPA), clamping Fourier perturbation algorithm (CFPA), and clamping wavelet

perturbation algorithm (CWPA)
Δ1 L1-sensitivity
Δ2 L2-sensitivity
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Figure 2: Aggregated time-series consumption of 250 homes from December 30th, 2009, to January 5th, 2010, taken from the CER dataset
[39], and its noisy version using the naively applied Laplace mechanism, with ε � 1 per day. (a) Aggregated consumption. (b) Noisy version
using the naive solution.

Inputs: S � (S1, . . . , ST), k, the maximum consumption M of the domain, and the privacy budget ϵ.
(1) Compute the discrete Fourier transform of S: F � DFT(S).
(2) Keep only the first k coefficients of F, denoted by Fk.
(3) Generate the noisy version of Fk, denoted by 􏽢F

kby adding a Laplace noise L(M
���
Tk

√
/ε) to each coefficient in Fk.

(4) Pad 􏽢F
k to a T-dimensional vector, denoted by PADT(􏽢F

k
) by appending T − k zeroes.

(5) Apply the inverse DFT to PADT(􏽢F
k
) to obtain a noisy version of S denoted by 􏽢S.

ALGORITHM 1: Fourier perbutation algorithm [17].

Inputs: S � (S1, . . . , ST), k, the maximum consumption M of the domain, and the privacy budget: ε
(1) Compute the DWT coefficients of S :W � DWT(S).
(2) Keep only the first k coefficients of W, denoted by Wk.
(3) Generate the noisy version of Wk, denoted by 􏽢W

k by adding a Laplace noise L(M
���
Tk

√
/ε) to each coefficient in Wk.

(4) Pad 􏽢W
k to a T-dimensional vector, denoted by PADT( 􏽢W

k
) by appending T − k zeroes.

(5) Apply the inverse DWT to PADT( 􏽢W
k
) to obtain a noisy version of S denoted by 􏽢S.

ALGORITHM 2: Wavelet perbutation algorithm [19].

Security and Communication Networks 5



introduced in Step 3 is justified and WPA guarantees
ε−differential privacy. □

4. Correctly Estimating the Sensitivity of FPA

In [17], authors show that FPA, as described in Section 3,
guarantees ε−differential privacy. *e authors estimated the
sensitivity of DFT to be M

���
Tk

√
, while it should be MT

��
2k

√
,

with T being the size of the time-series and M being the
maximum consumption in the domain. *us, for a given
privacy budget ε, the utility of FPA is worse than presented
in [17].

*is section correctly computes the sensitivity of DFT,
which allows to make render FPA ε−differential private.
Before that we recall the definition of DFT.

4.1. Discrete Fourier Transform (DFT). Let S � (S1, . . . , ST)

be a time-series. DFT takes S as input and returns a time-
series of T complex numbers F � (F1, . . . , FT) such that

Fk �
1
��
T

√ 􏽘

T

j�1
Sje

− 2πi(j− 1)(k− 1)/T for k � 1, . . . , T, (4)

where i2 � −1. *e inverse of the DFT is computed as
follows:

Sk �
1
��
T

√ 􏽘

T

j�1
Fje

− 2πi(j− 1)(k− 1)/T
, for k � 1, . . . , T. (5)

*is version of the DFT is normalized, that is,
‖DFT(S)‖2 � ‖S‖2.

DFTcan be defined in other ways, for instance, the 1/
��
T

√
,

present in both the DFT and the inverse definitions above,
can be replaced by a factor 1 in the DFT and 1/T in the
inverse DFT. In that case, the DFT is not normalized.

In [17, 19, 36], the authors use the latter version of DFT,
which is not normalized. However, the sensitivity computation
relies on the equality ‖DFT(S)‖2 � ‖S‖2, while it should be
‖DFT(S)‖2 �

��
T

√
· ‖S‖2. *us, the correct total privacy budget

is
��
T

√
· ε instead of ε. *is is the first mistake in this approach

and can be resolved by using the normalized DFT.
Another error lies in the fact that the Laplacian mech-

anism is only applied to the real part of the Fourier coef-
ficients, which are complex numbers. *is mistake can be
resolved by applying the Laplace mechanism to both real and
imaginary parts of the Fourier coefficients.

*e following section computes the sensitivity of the
DFT, and thus of FPA, and takes into account those two
errors.

4.2. Sensitivity of the DFT. Let DFTk be the function which
takes a time-series S � (S1, . . . , ST) as input and returns the
first k DFT coefficients of S. *is function can be seen as a
DFTk: RT⟶ R2k, the function which returns the real and
imaginary parts of the first k Fourier coefficients. *is
function is a real-valued function, we can thus use the
Laplace mechanism on it. First, we need to compute the
L1-sensitivity of DFTk.

Lemma 1. Let DFTk be defined as follows:

DFTk
: R

T⟶ R
2

􏼐 􏼑
k

S⟼DFTk
(S) � a1, b1( 􏼁, . . . , ak, bk( 􏼁( 􏼁.

(6)

We denote cj � aj + ibj the j-th coefficient of DFT(S),
with i2 � −1 and j � 1, . . . , k. aj and bj respectively repre-
sent the real and imaginary parts of cj.

*e L1-sensitivity of DFTk, ‖DFTk(S)‖1, is M ·
����
2Tk

√

when the DFT is normalized (respectively, MT ·
��
2k

√
when
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Figure 3: Aggregated consumption of 250 homes from 30th December 2009 to 5th January 2010 of dataset from CER [39] and its noisy
version using WPA (Algorithm 2), with Haar wavelet, ε � 1 per day and k � 5.
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the DFT is not normalized), with M as the maximum value
in the dataset.

Proof. Let DFTk be defined as in Lemma 1.

DFTk
(S)

�����

�����1
� a1, b1, . . . , ak, bk( 􏼁

����
����1

� 􏽘
k

j�1
aj, bj􏼐 􏼑

�����

�����1
≤

�
2

√
􏽘

k

j�1
aj, bj􏼐 􏼑

�����

�����2
(Minkowski inequality))

≤
�
2

√
􏽘

k

j�1
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤
�
2

√
c1, . . . , ck( 􏼁

����
����1

≤
�
2

√ �
k

√
c1, . . . , ck( 􏼁

����
����2(Minkowski inequality)

≤
��
2k

√
s1, . . . , sT( 􏼁

����
����2 asT Fourier coefficients have the sameL2 norm as S .

Then,

Δ1 DFTk
􏼐 􏼑≤

��
2k

√
Δ2(S) � M

����
2Tk

√
.

(7)

□

*is result is true when the DFT is normalized (2) as in
our case. In [17, 19, 36], the L2 norm of Fourier coefficients
equals to

��
T

√
times the L2 norm of S (Parvesal’s theorem).

*is result is valid when the normalized DFT (2) is used as in
our case. When the DFT is not normalized, as is the case in
[17, 19, 36], the sensitivity of the first k DFT coefficients
should be Δ1(DFTk) �

��
T

√
× M

����
2Tk

√
� MT

��
2k

√
instead of

(M
���
Tk

√
). *us, using the normalized DFT, the function

then becomes
􏽧DFTk

: R
T⟶ R

2
􏼐 􏼑

k

S⟼ 􏽧DFT(S) � a1, b1( 􏼁, . . . , ak, bk( 􏼁( 􏼁 + y1,1, y1,2􏼐 􏼑, . . . , yk,1, yk,2􏼐 􏼑􏼐 􏼑,

(8)

which is ε−DP, with yj,ℓ � L(M
����
2Tk

√
/ε), for all

j � 1, . . . , k and ℓ � 1, 2.
For simplicity, in the following, we write

cj + L(M
����
2Tk

√
/ε) instead of (aj, bj) + (L(M����

2Tk
√

/ε),L(M
����
2Tk

√
/ε)), meaning that two independent

Laplace noises L(M
����
2Tk

√
/ε) are added to the real and

imaginary parts of cj.
Algorithm 3 shows the Fourier perturbation algorithm

(FPA) revisited.

4.3. Differences between the Initial, yet Incorrect, FPA, and the
Corrected FPA. For a budget of privacy ε, the differences
between the initial incorrect FPA and the corrected one can
be highlighted as follows:

(1) *e DFTused in the initial incorrect FPA [17] is not
normalized, while it is normalized in the corrected
FPA. *us, a factor

���
2T

√
is missing in the Laplace

noise in Algorithm 1.
(2) In the initial incorrect FPA [17], Laplace noises are

only added to the real part of the DFT coefficients,

while they should be added to the real and imaginary
parts of the DFT coefficients as in the corrected FPA
(Algorithm 3). *us, k imaginary coefficients are not
noised in Algorithm 1.

Figure 4 shows the same aggregated consumption pre-
sented in Example 1 and its noisy version using the corrected
FPA (Algorithm 3) with ε � 1 per day and k � 5. Figure 4
shows that the corrected FPA obtains a large MRE (84%),
making it useless. *e noisy aggregate has negative con-
sumptions and does not contain the peaks present in the
original aggregate.

For the sake of simplicity, in the following sections, we
use FPA to talk about the corrected version.

5. Clamping Transform
Perturbation Algorithm

*e intuition behind our approach, “Clamping transform
perturbation algorithm,” lies in the perturbation error,
caused by the Laplace mechanism, which depends on the
sensitivity of the sum of consumptions. As such, by reducing
the sensitivity, we expect to reduce the perturbation error.

To estimate the sensitivity of consumptions, we split our
database of N users into two almost equal parts: D1 cor-
responding to the consumptions of the first half of users (a
training dataset) and D2 containing the second half of users’
consumptions (a validation dataset). Using D1, we compute
the distribution of users’ consumptions in the frequency
domain. We denote by M � (M1, . . . , Mk) the maximum
magnitude (by ignoring outliers) of the k first coefficients.

For example, using the Irish consumption database [39],
the distribution of the individual consumption of the first
half customers (from 1 to 1818) in the frequency domain is
given in Figure 5. In Figure 5, the maximum magnitudes
(rounded) of the 5 first coefficients are
M � (M1, M2, M3, M4, M5) � (9, 4, 3, 2, 2).
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*e database D2 is used for testing our methodology. Let
X � (X1, . . . , Xn) with Xj � (xi

1, . . . , xi
T) for all j � 1, . . . , n

be the users’ individual consumptions. To publish the sum of
consumptions S � (S1, . . . , ST) � (􏽐

n
j�1 x

j
1, . . . , 􏽐

n
j�1 x

j

T),
our methodology, which can be applied to either the Fourier
transform or to wavelet transforms, is described as follows:

(1) For all individual consumptions Xj (j � 1, . . . , n),
compute the corresponding magnitude in the

domain of the transform and keep the first k coef-
ficients denoted by Cj � (C

j
1, . . . , C

j

k).
(2) If the modulus of coefficient C

j

ℓ is greater than Mℓ
(1≤ ℓ ≤ k), replace C

j

ℓ with C
j

ℓ · Mℓ/|Cℓ| so that all
coefficients have a modulus smaller than Mℓ and
their phase, if the coefficient is complex, is
unchanged.

(3) Compute the sum of coefficients
C � (􏽐

n
j�1 C

j
1, . . . , 􏽐

n
j�1 C

j

k).
(4) Add a noise following the distribution of Laplace

L(·), depending on the sensitivity of the transform,
to each coefficient Cℓ(1≤ ℓ ≤ k) of C. *e result is
denoted by 􏽢C. We note that the Laplace noise is
added to the real and imaginary parts of each co-
efficient when the DFT is used.

(5) Pad the vector 􏽢C by n − k zeroes and compute the
inverse transform to obtain the noisy version of the
consumption 􏽢S.

Section 5.1 presents an adaptation of this methodology
using the discrete Fourier transform.

5.1. Clamping Fourier Perturbation Algorithm. *is section
describes the clamping Fourier perturbation algorithm
(CFPA) detailed in Algorithm 4. *is algorithm allows an
aggregator to compute and publish an aggregate guaran-
teeing ε−differential privacy.

CFPA takes as inputs the individual time-series con-
sumptions of n consumers, the maximum magnitudes of
DFT coefficients of individual consumptions M (computed
over database D1), the number k of DFT coefficients to be
considered, and the privacy budget ε, and it returns the noisy
time-series sum of consumptions of n consumers.

Step 1, called clamping, computes the first k DFT co-
efficients of each individual time-series consumption. If the
magnitude of a coefficient F

j

ℓ is greater than the maximum
magnitude Mℓ, then this coefficient is clamped and replaced
by F

j

ℓ · Mℓ/|F
j

ℓ|, in which magnitude is |F
j

ℓ| · Mℓ/|F
j

ℓ| � Mℓ.
*us, for all individual consumptions Xj, the maximum
magnitude of the k first DFTcoefficients Fj � (F

j
1, . . . , F

j

k) is
M � (M1, . . . , Mk), i.e., the final values of the coefficients
have the same phase as the initial values, but their magni-
tudes are bounded by (M1, . . . , Mk).

After computing the first k DFT coefficients
Fj � (F

j
1, . . . , F

j

k) of each individual time-series consump-
tion of consumers (j � 1, . . . , n), Step 2 consists in com-
puting the sum (F1, . . . , Fk) � (􏽐

n
j�1 F

j
1, . . . , 􏽐

n
j�1 F

j

k) of

Inputs: S � (S1, . . . , ST), k, the maximum consumption M of the domain, and the privacy budget ε.
(1) Compute the normalized DFT coefficients of S :F � DFT(S).
(2) Keep only the first k coefficients of F, denoted by Fk.
(3) Generate the noisy version of Fk, denoted by 􏽢F

k by adding a Laplace noise L(M
����
2Tk

√
/ε) to each coefficient in Fk.

(4) Pad 􏽢F
k to a T-dimensional vector, denoted by PADT(􏽢F

k
) by appending T − k zeroes.

(5) Apply the inverse DFT to PADT(􏽢F
k
) to obtain a noisy version of S denoted by 􏽢S.

ALGORITHM 3: Fourier perturbation algorithm (FPA) revisited.
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Figure 4: Aggregated consumption of 250 homes from 30th
December 2009 to 5th January 2010 of dataset from CER [39] and
its noisy version using the corrected FPA (Algorithm 3), with ε � 1
per day and k � 5.
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these coefficients using the Laplacian mechanism. *e result
is denoted by 􏽢F

k
� (􏽢F1, . . . , 􏽢Fk).

Finally, the noisy sum of consumptions is equal to the
inverse of the noisy DFT coefficients padded with T − k

zeros.

Theorem 3. Algorithm CFPA is ε-differentially private.

Proof. To prove that Algorithm 4 is ε-differentially private,
we need to prove that the sensitivity of the sum of DFT
coefficients of users’ individual consumptions F1 (resp.
F2, . . . , Fk) is

�
2

√
· M1 (resp.

�
2

√
· M2, . . . ,

�
2

√
· Mk). *is is

done in Lemma 2.
*en, as a Laplacian noise L(Mℓ

�
2

√
/ε/k) is added to

each component Fℓ (ℓ � 1, . . . , k), the resulting 􏽢F1 (resp.
􏽢F2, . . . , 􏽢Fk) is ε/k-differentially private. Finally, the com-
position theorem [14] guarantees that any computation on
the k components of (􏽢F1, . . . , 􏽢Fk) is ε-differentially private;
thus, the inverse DFT of those coefficients is ε-DP. □

Lemma 2. Let Fj � (DFT(Xj)1, . . . ,DFT(Xj)k) �

(F
j
1, . . . , F

j

k) be the first k DFT coefficients of the individual
consumption of consumer j (j � 1, . . . , n), obtained after the
clamping mechanism. 1e sensitivity of the sum of each DFT
coefficient F

j

ℓ (ℓ � 1, . . . , k) of n consumers’ individual con-
sumptions is Mℓ ·

�
2

√
.

Proof. Let Fj � (DFT(Xj)1, . . . ,DFT(Xj)k) � (F
j
1, . . . ,F

j

k).
After the clamping, the magnitude of each DFTcoefficient F

j

ℓ
is smaller than Mℓ for ℓ � 1, . . . ,k, and the sensitivity of the
function fℓ: D

n⟶C≡R2 defined by fℓ: (X1, . . . ,Xn)⟼
􏽐

n
j�1 F

j

ℓ ≡ (􏽐
n
j�1 a

j

ℓ ,􏽐
n
j�1 b

j

ℓ), with F
j

ℓ � a
j

ℓ + ib
j

ℓ being equal to

Δ1 fℓ( 􏼁 � max
a

j

ℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, b

j

ℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

n

j�1
a

j

ℓ , 􏽘
n

j�1
b

j

ℓ
⎛⎝ ⎞⎠ − 􏽘

n

j�2
a

j

ℓ , 􏽘
n

j�2
b

j

ℓ
⎛⎝ ⎞⎠

����������

����������1

� max a
1
ℓ , b

1
ℓ􏼐 􏼑

�����

�����1

≤max
�
2

√
a
1
ℓ , b

1
ℓ􏼐 􏼑

�����

�����2
(Minkowski inequality)

� max
�
2

√
�����������

a
1
ℓ􏼐 􏼑

2
+ b

1
ℓ􏼐 􏼑

2
􏽲

� max
�
2

√
F
1
ℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� Mℓ
�
2

√
.

(9)

□

*us, Lemma 2 proves *eorem 3, and algorithm CFPA
guarantees ε-differential privacy.

For example, Figure 6 shows the same aggregated con-
sumption presented in Example 1 and its noisy version using
CFPA (Algorithm 4) with ε � 1 per day and k � 5. Figure 6
shows that CFPA obtains a good utility with an MRE equal to
9.7%. *is good utility of CFPA can be explained by the fact
that Laplace noise added in CFPA depends on the amplitude
of each coefficient, while in FPA, the same noise L(M ·����
2Tk

√
/ε) is added to every DFT coefficients, where M is the

maximum consumption in the dataset.

5.2. Clamping Wavelet Perturbation Algorithm. *e
clamping wavelet perturbation algorithm (CWPA), as pre-
sented in Algorithm 5, is obtained by replacing DFT with
DWT in Algorithm 4. *e computation of DWT is based on
multiresolution analysis which determines the number of

Inputs:
(i) Consumptions: X � (X1, . . . , Xn) with Xi � (xi

1, . . . , xi
T) for all i � 1, . . . , n

(ii) k

(iii) *e maximum magnitudes of k first DFT coefficients: M � (M1, . . . , Mk) ∈ Rk
+

(iv) Privacy budget: ε
(1) Clamping: for each individual time-series consumption Xj,
(i) compute the k first DFT coefficients of Xj: Fj � (DFT(Xj)1, . . . ,DFT(Xj)k) � (F

j
1, . . . , F

j

k)

(ii) if |F
j

ℓ|>Mℓ, then replace F
j

ℓ with F
j

ℓ · Mℓ/|F
j

ℓ| for all ℓ � 1, . . . , k

(2) Laplacian mechanism: compute the sum of noisy consumptions of each DWTcoefficient: 􏽢Fℓ � 􏽐
n
j�1 F

j

ℓ + L(Mℓ
�
2

√
/ε/k) for all

ℓ � 1, . . . , k. We denote 􏽢F
k

� (􏽢F1, . . . , 􏽢Fk). We note that the noise is added to the real and imaginary parts of the sum of
coefficients.

(3) Pad 􏽢F
k with T − k zeros; the result is denoted by PADT(􏽢F

k
)

(4) Compute the inverse DFT of PADT(􏽢F
k
) to get the noisy sum of consumptions denoted by 􏽢S � (􏽢S1, . . . , 􏽢ST) of the initial sum

S � (􏽐
n
j�1 x

j
1, . . . , 􏽐

n
j�1 x

j

T).

ALGORITHM 4: Clamping Fourier perturbation algorithm (CFPA).
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approximation coefficients (scaling functions) and detail
coefficients (wavelet functions) [40]. DWT takes as input a
time-series of length a power of 2. If the input’s length is not
a power of 2, we can pad it with zeroes [41].

Algorithm 5 takes as inputs the maximummagnitudes of
the first k DWT coefficients which are obtained in the
training process on D1, by computing the distribution of
DWT coefficients of individual consumptions.

We note that there are multiple DWTs, such as Haar,
Daubechies, Symlets, and Coiflets. In this paper, we use Haar
and Daubechies wavelets as shown in Section 6, because they
give a low reconstruction error, as will be discussed in
Section 6.1.

Theorem 4. 1e clamping wavelet perturbation algorithm
(CWPA), Algorithm 5, is ε-differentially private.

Proof. *e proof is similar to the one for *eorem 3. We
need to prove that the sensitivity of the sum of DWT co-
efficients of users’ individual consumptions W1 (resp.
W2, . . . , Wk) is M1 (resp. M2, . . . , Mk). *is is done in
Lemma 3.

*en, as a Laplacian noise L(Mℓ/ε/k) is added to each
component Wℓ (ℓ � 1, . . . , k), the resulting 􏽢W1 (resp.
􏽢W2, . . . , 􏽢Wk) is ϵ/k-differentially private. Finally, the com-
position theorem [14] guarantees that any computation on
the k components ( 􏽢W1, . . . , 􏽢Wk) is ϵ-differentially private;
thus, the inverse DWT of those coefficients is ϵ-DP. □

Lemma 3. Let Wj � (DWT(Xj)1, . . . ,DWT(Xj)k) �

(W
j
1, . . . , W

j

k) be the first k DWTcoefficients of the individual
consumption of consumer j (j � 1, . . . , n), obtained after the
clamping mechanism. 1e sensitivity of the sum of each DWT
coefficient W

j

ℓ (ℓ � 1, . . . , k) of n consumers’ individual
consumptions is Mℓ.

Proof. Let Wj � (DWT(Xj)1, . . . ,DWT(Xj)k) � (W
j
1, . . . ,

W
j

k). After the clamping, the magnitude of each DWT

coefficient W
j

ℓ is smaller than Mℓ for ℓ � 1, . . . , k, and the
sensitivity of the function wℓ: D

n⟶ R defined by
wℓ: (X1, . . . , Xn)⟼ 􏽐

n
j�1 W

j

ℓ is equal to

Δ1 wℓ( 􏼁 � max
W

j

ℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

n

j�1
W

j

ℓ − 􏽘
n

j�2
W

j

ℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� max W
1
ℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� Mℓ.

(10)

□

For example, Figure 7 shows the same aggregated
consumption presented in Example 1 and its noisy version
using CWPA (Algorithm 5) with Haar wavelet, ε � 1 per day
and k � 5. However, Figure 3 shows that the MRE of CWPA
is still higher than 10%. We explain this result in Section 6.

6. Experimental Results

*is section compares FPA, CFPA, WPA, and CWPA and
explains through experimentations whyCFPA achieves a better
utility than other publication techniques. After presenting the
raw results, we explain them by decomposing themean relative
error into a perturbation error, caused by the clamping
mechanism and the Laplace mechanism, and a reconstruction
error, due to ignoring T − k coefficients of the transform. *e
analysis of the error is thus conducted in the next two Sub-
sections 6.1 and 6.2. Section 6.1 analyzes the reconstruction
error, while Section 6.2 analyzes the perturbation one.

Conditions: the experiments rely on data originating
from the Irish Commission for Energy Regulation
(CER) [39]. *is dataset contains real time-series
consumptions. *e achieved results are valid for this
very specific case, for Irish consumptions with an Irish
weather being never too hot or too cold. *e results
show that the approach is good, but will probably have
to be adapted for other datasets, i.e., by computing the
maximum magnitudes of the k first coefficients of the
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Figure 6: Aggregated consumption of 250 homes from 30th December 2009 to 5th January 2010 of dataset from CER [39] and its noisy
version using CFPA (Algorithm 4), with ε � 1 per day and k � 5.
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considered transform over a subpart of the dataset.
Consumption data from the CER were collected every
30 minutes from 2009 to 2010 with the participation of
more than 5, 000 Irish homes and businesses. *is
experiment only considers homes. We divided the
database in two parts:D1, corresponding to the first half
of consumers (1 to 1818), and D2, corresponding to the
second half (1819 to 3639). D1 is used to calibrate the
algorithms by computing the maximum magnitudes
M � (M1, . . . , Mk) of the first k coefficients in the
frequency domain, and D2 is used to test the publi-
cation techniques FPA, CFPA, WPA, and CWPA.
Notations: we note N as the number of homes or smart
meters considered in the district to compute the time-
series of the sum of consumptions. For each day (48 time
slots), we compute the sum of consumptions of 50
different districts of N random homes, and we execute
FPA, WPA, CFPA, and CWPA with privacy budget
ε ∈ 1; 3{ } for each day and k ∈ 5; 8; 12{ }. *e discrete
wavelet transforms used here are Haar transform (which

represents the same wavelet as Daubechies with order 1,
noted db1), Daubechies with order 2, and Daubechies
with order 3, respectively, noted db2 and db3.
Raw results and analysis: Figures 8 and 9 show the
distribution of the mean relative estimation error
(MRE) according to the number of homes in the district
(N from 50 to 450) and k from 5 to 12 for the budget of
privacy ε � 1 and ε � 3, respectively. *e boxes extend
from the lower to upper quartile values of the MRE,
with a line at the median and a triangle representing the
mean. *e whiskers extend from the box to show the
range of the MRE. In order to make consumption
forecasts, an MRE lower than 10% is required in
practice by experts in the energy sector. In this section,
an MRE of less than 10% is therefore considered useful.

In Figures 8 and 9, the first column corresponds to the
comparison between the FPA and the CFPA. *e other
columns correspond to the comparison between the WPA
and the CWPA using Haar wavelet with 2 approximation
coefficients, Daubechies 2 (db2) with 5 approximation co-
efficients, and Daubechies 3 (db3) with 10 approximation
coefficients, respectively.

Figures 8 and 9 show that CFPA has a better utility than
FPA. For example, for ε � 1 (Figure 8), when k � 5 and the
number of homes N � 350, the MRE of CFPA is 12%, while
the MRE of FPA is 75%. In that configuration, the MRE of
CFPA is 6.25 times lower than that of FPA. Similarly, the
CWPA obtains a better utility than the WPA. For example,
for k � 5 and the number of homes N � 350, the MRE of
CWPA using Haar wavelet is 15%, while the MRE of the
WPA is 30%. In that configuration, the MRE of CWPA is 2
times lower than that of WPA.

Generally, the larger the size of the district N, the smaller
the MRE is. Similarly, the larger the budget of privacy ε, the
smaller the MRE is; Figure 9 (ε � 3) shows a better utility
than Figure 8 (ε � 1). However, Figures 8 and 9 show that
WPA and CWPA using db3 are not useful for k � 5 because,
as shown in Section 6.1, the reconstruction error is high
(between 70% and 80%).

Figures 8 and 9 show that for larger k, the MRE of WPA
and CWPA using db3 is smaller. Moreover, in Figure 9, for

Inputs:
(i) Consumptions: X � (X1, . . . , Xn) with Xj � (x

j
1, . . . , x

j

T) for all j � 1, . . . , n

(ii) k

(iii) *e maximum magnitudes of k first DWT coefficients: M � (M1, . . . , Mk) ∈ Rk
+

(iv) Privacy budget: ε
(1) Clamping: for each individual time-series consumption Xj,
(i) compute the first k DWT coefficients of Xj: Wj � (DWT(Xj)1, . . . ,DWT(Xj)k) � (W

j
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j

k)

(ii) if |W
j

ℓ|>Mℓ, then replace W
j
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j

ℓ · Mℓ/|Wi
j| for ℓ � 1, . . . , k

(2) Laplacian Mechanism: compute the sum of noisy consumptions of each DWTcoefficient: 􏽢Wℓ � 􏽐
n
j�1 W

j

ℓ + L(Mℓ/ε/k) for all
ℓ � 1, . . . , k. We denote 􏽢W

k
� ( 􏽢W1, . . . , 􏽢Wk)

(3) Pad 􏽢W
k with T − k zeroes; the result is denoted by PADT( 􏽢W

k
)

(4) Compute the inverse DWTof PADT( 􏽢W
k
) to get the noisy sum of consumptions denoted by 􏽢S � (􏽢S1, . . . , 􏽢ST) of the initial sum
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ALGORITHM 5: Clamping wavelet perturbation algorithm (CWPA).
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Figure 8: Mean relative estimation error (MRE) of FPA vs CFPA vs WPA vs CWPA, using DFTand DWTwith Haar, Daubechies 2 (db2),
and Daubechies 3 (db3) wavelets, according to k, and the number of smart meters (N) in the district, with ε � 1.
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Figure 9: Mean relative estimation error (MRE) of FPA vs CWPA vs WPA vs CWPA with Haar, Daubechies 2 (db2), and Daubechies 3
(db3) wavelets, according to k, and the number of smart meters (N) in the district, with ε � 3.

Security and Communication Networks 13



k � 12 and when the number of homes is higher than 250
and ε � 3, CWPA using db3 has the median of MRE smaller
than 11%.*e CWPA using Haar wavelet obtains the second
best utility, with the median of MRE smaller than 10% when
N is greater than 250, while the CFPA gets the best utility,
with the median of MRE decreasing to 5% when N � 550
and k � 8.

However, the utility of FPA and WPA decreases when k

increases. *is is caused by the perturbation error; indeed,
the greater the k, the greater the Laplacian noise added to
each coefficient is. *is noise is attenuated by the clamping
as shown by the CFPA. Indeed, when k goes from 5 to 8, the
reconstruction error decreases and the clamping also de-
creases the perturbation error leading to the total error
reduction. However, when k goes from 8 to 12, although the
reconstruction error decreases, clamping does not reduce
the perturbation error sufficiently. *is explains why the
MRE of CFPA is a little bigger when k � 12 compared to
k � 8.

In Figures 8 and 9, we notice that the median of MRE of
WPA and CWPA converge to a threshold and never goes
below it. For example, for ε � 3 and k � 5, the median of
MRE of WPA and CWPA using db2 converges to 23%. *is
is caused by the reconstruction error.

6.1. Reconstruction Error. *e reconstruction error is due to
considering only the k first transform coefficients, thus
removing the precision brought by coefficients
(k + 1, k + 2, . . .). To measure this error, a first solution
consists in computing the cumulative distribution function
(CDF) of the coefficients as a first assessment of the impact
of the transform coefficients and, then, to get confirmation
through some experimental reconstruction error measure-
ments. Intuitively, if the CDF of some coefficients k is close
to 1, it means that the coefficients after k (k + 1, k + 2, . . .)
have less impact on the reconstruction, and thus, when set to
zero, lead to a smaller reconstruction error.

*e CDF is computed for a district of 50 homes of several
transformations: discrete Fourier transform (DFT), discrete
wavelet transform (DWT) usingHaar, and Daubechies 2 and
Daubechies 3 wavelets. *e closer to 1 the cumulative
distribution function at k is, the smaller the reconstruction
error is. Figure 10 compares the cumulative distribution
function of DFTandDWTwith different wavelet transforms.
*is figure shows that DFT has a higher cumulative dis-
tribution than DWT for the considered range value of k

(k≤ 10).
In order to analyze this error more precisely, we define

formally the reconstruction error below, and we then
compute it experimentally.

Definition 4 (reconstruction error). Let S � (S1, S2, . . . , ST)

be a sum of time-series consumptions and
C � (C1, C2, . . . , CT) be the coefficients in the frequency
domain of this time-series. We denote
PADT(Ck) � (C1, . . . , Ck, 0, . . . , 0) as the first k coefficients
padded with zeros and 􏽥S � (􏽥S1,

􏽥S2, . . . , 􏽥ST) as the inverse of
PADT(Ck) (in the time domain). *e reconstruction error

(RE) of PADT(Ck) is equal to the mean relative estimation
error between S and 􏽥S given by (we add 1 to the denominator
in order to avoid the division by zero)

RE PADT
C

k
􏼐 􏼑􏼐 􏼑 �

1
T

· 􏽘
T

j�1

Sj − 􏽥Sj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Sj + 1
. (11)

Figure 11 shows the reconstruction error for DFT and
DWT with different wavelet transforms for a district of 50
and 450 homes. *is figure shows that the DFT obtains the
smallest relative error (lower than 10% when k is greater
than 5) followed by Haar and Daubechies. We note that the
reconstruction error of Daubechies 2 is higher than 23%
when k � 5, which leads to a total error higher than 23% and
justifies the relative error obtained in Figures 8 and 9.

Moreover, when k � 5, the reconstruction error of Dau-
bechies 3 is higher than 70%, which justifies why its total error
is higher than 70% when k � 5, according to Figures 8 and 9.

According to the database from the Irish Commission
for Energy Regulation (CER) [39], the discrete Fourier
transform gets the smaller reconstruction error, followed
respectively by Haar (which is the same as Daubechies 1) and
Daubechies 2 and Daubechies 3 wavelets.

6.2. Perturbation Error. *e perturbation error is caused by
the Laplace mechanism, applied on the first k transform
coefficients. *e higher the transform coefficients, the lower
the impact of this perturbation in terms of relative error, and
thus the lower the perturbation error.

We note that the amplitude of the Laplace noise in-
troduced by the Laplace mechanism is different for CFPA
and CWPA; it is

�
2

√
times greater for CFPA than for CWPA.

Indeed, for all ℓ � 1, . . . , k, the parameter for the Laplace
noise is L(Mℓ

�
2

√
/ε/k) for CFPA and L(Mℓ/ε/k) for

CWPA. Moreover, in the CFPA, 2k coefficients (the real and
imaginary parts of the k DFT coefficients) are noisy while
only k coefficients are noisy in the CWPA.
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Figure 10: Comparison of cumulative distribution function of
DFT and DWT with Haar, and Daubechies 2 and 3 wavelets for a
district of 50 homes.
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For a district of 50 homes, we compute the distribution
of the magnitude of DFT and DWT with Haar amd Dau-
bechies 2 and 3 wavelets, and we compare their coefficient
distribution median in Figure 12.

Figure 12 shows that the coefficient values vary
according to the values of k and the considered transforms.
For instance, when k is in the interval [7, 10], Daubechies 3
obtains the highest magnitudes of coefficients, followed by
Daubechies 2 and DFT.

In clamping perturbation algorithms (CFPA, CWPA),
the clamping mechanism allows to add a noise proportional
to the modulus of the coefficients of the considered trans-
form (DFT, DWT). *is reduces the impact of noise
compared to perturbation algorithms (FPA, WPA); how-
ever, at the price of a perturbation error induced by the
clamping of the coefficients. Formally, the perturbation error
of clamping perturbation algorithms (CFPA, CWPA) is
defined as follows:

Definition 5. Perturbation error for clamping perturbation
algorithms (CFPA, CWPA).

Let X1, . . . , XN be the individual time-series of energy
consumptions of N homes, with Xi � (xi

1, . . . , xi
T) for

i � 1, . . . , N. *e sum of time-series consumptions is noted
as S � (S1, . . . , ST) � (􏽐

N
i�1 xi

1, . . . , 􏽐
N
i�1 xi

T). For all
i � 1, . . . N, we note C

i
� (ci

1, . . . , ci
k, ci

k+1, . . . , ci
T) as the

result of the considered transform of the time-series con-
sumption Xi whose first k coefficients (ci

1, . . . , ci
k) have been

clamped. We note M � (M1, . . . , Mk) as the maximum
magnitude of the first k coefficients of the considered
transform. Let C � (􏽐

N
i�1 ci

1 + L(δ1/ε/k), . . . ,

􏽐
N
i�1 ci

k + L(δk/ε/k), 􏽐
N
i�1 ci

k+1, . . . , 􏽐
N
i�1 ci

T) be the sum of
coefficients of the considered transform by perturbing only
the first k coefficients, with δj � Mj

�
2

√
(respectively

δj � Mj) for CFPA (respectively for CWPA), for
j � 1, . . . , k.

Let S � (S1, . . . , ST) be the inverse transform of C. *e
perturbation error of C equals to the mean relative esti-
mation error (MRE) between S and S, given by(we add 1 to
the denominator in order to avoid the division by zero). For
CWPA, the Laplace noise L(Mj

�
2

√
/ε/k) must be replaced

by L(Mj/ε/k) for j � 1, . . . , k and the DFT by the DWT,

PE(C) �
1
T

􏽘

T

ℓ�1

Sℓ − Sℓ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Sℓ + 1
. (12)

*e perturbation error depends on the following pa-
rameters, k, Mj, ε, and N for j � 1, . . . , k. k, Mj

(j � 1, . . . , k) and ε are parameters of the Laplace distri-
bution, so they have a direct impact on the amplitude of the
added noise. Let ε and Mj be fixed; the bigger the k, the
smaller the Laplace distribution parameter δk/ε/k is, and
thus, the bigger the noise added on the k first coefficients is.
*is makes the perturbation error more significant. *e
choice of Mj is important to define the clamping threshold
and it directly impacts the perturbation of the Laplace
mechanism.*e greater the Mj, the bigger the Laplace noise
is, and thus, the more the perturbation error is. *e smaller
the Mj (close to zero), the less the Laplace noise is, but the
more the coefficients are clamped, and thus, the more the
perturbation error is. *e number of homes N indirectly
plays a role in the perturbation error; the larger the N, the
more diluted the added noise is. *is leads to decrease the
perturbation error.

Figure 13 (respectively, Figure 14) shows the distribution
of the perturbation error of the clamping perturbation al-
gorithms (CFPA and CWPA) according to k, N, with ε � 1
(respectively, ε � 3).
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Figure 11: Comparison of reconstruction error of DFTandDWTwith Haar amdDaubechies 2 and Daubechies 3 wavelets for a district of 50
and 450 homes. (a) N� 50. (b) N� 450.
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Figure 13: Distribution of perturbation error according to clamping perturbation algorithms CFPA and CWPA, with Haar, Daubechies 2,
and Daubechies 3, and according to k and the number of homes N, for a fixed privacy budget, ε � 1. Note that the scales in (a)–(d) are
different. (a) N� 50. (b)N� 250. (c) N� 450. (d). N� 550.
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Figures 13 and 14 show that the perturbation error of
CFPA is higher than that of CWPA. *is result is explained
by

(1) *e number of coefficients to be noised in CFPA is
twice as many as the number of coefficients to be
noised in CWPA. Indeed, in CFPA, the DFT coef-
ficients are complex numbers, so both real and
imaginary parts must be noised.

(2) *e absolute value of the noise added in the CFPA is�
2

√
times greater than that in the CWPA.

In addition, the greater the N, the more the added noise
is diluted in the aggregate, causing the perturbation error to
decrease. E.g., for ε � 1 (Figure 13), when k � 5, the median
of the perturbation error of CFPA (respectively, CWPA with

Haar) goes from 70% to 7% (respectively from 32% to 4%)
when N goes from 50 to 550. Likewise, for ε � 3 (Figure 14),
when k � 5, the median of perturbation error of CFPA
(respectively, CWPA with Haar) goes from 25% to 2.7%
(respectively from 11% to 2.1%) when N goes from 50 to
550. We notice that, the greater the N, the smaller the
difference of the perturbation error between CFPA and
CWPA is. *is result is also true when ε increases. *is can
be explained by the decrease of the noise introduced on the
coefficients of the transforms.

Figures 13 and 14 show that the perturbation error
increases when k increases. *e larger the k, the smaller the
budget ε/k allocated to each coefficient is. *is leads to a
noise increase on each coefficient and thus on the pertur-
bation error.
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Figure 14: Distribution of perturbation error according to clamping perturbation algorithms CFPA and CWPA, with Haar, Daubechies 2,
and Daubechies 3, and according to k and the number of homes N, for a fixed privacy budget, ε � 3. Note that the scales in 14(a)–14(d) are
different. (a) N� 50 (b) N� 250. (c) N� 450. (d). N� 550.
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6.3. Summary of the Experimental Results. *e combination
of the reconstruction error (Figure 11) and the perturbation
error (Figures 13 and 14) enables to determine which
transform is appropriate according to the number of homes
N and the budget of privacy ε, for getting a total error as
small as possible.

Lemma 4. 1e mean relative error (MRE) of CFPA (re-
spectively, CWPA) is lower than or equal to the sum of the
reconstruction error and the perturbation error of CFPA
(respectively, CWPA).

Proof. *e proof of the above lemma deferred to the
appendix. □

Section 6.1 shows that the reconstruction error of DFT is
lower than that of the considered DWT. For example, when
N � 450 and k � 5, the median of the reconstruction error is
6% for DFT, while it is 13% for the Haar and Daubechies 2
transforms.

However, Section 6.2 shows that algorithms based on
DFT (e.g., CFPA) have a higher perturbation error than
those based on DWT (e.g., CWPA).

According to Lemma 4, the total error (MRE) is less than
or equal to the sum of reconstruction error and perturbation
error. *us, if the reconstruction error or perturbation error
is greater than 10%, there is a high probability that the final
error will not be less than this threshold.

As the reconstruction error of the DWT is greater than
9%, there is a high probability that the final error of CWPA
will not be less than this threshold, even if the Laplace noise
decreases, i.e., when the number of homes N or the privacy
budget ε increases. However, as the reconstruction error of
the DFT is small (the median is between 2% and 3% when
k � 7, 8, 9), then the total error of the CFPA may be lower
than that of the CWPA when the impact of Laplace noise
decreases. For example, the median of the perturbation error
of CFPA is between 3% and 5% when k � 7, 8, 9, N � 550,
and ε � 3. *is analysis explains why, for ε � 1, the CWPA
obtains a better utility than the CFPA when the number of
homes N is less than 250. For example, when N � 50 and
k � 5, the median of the perturbation error (respectively, the

reconstruction error) of CFPA is 70% (respectively, 10%)
against 32% (respectively, 18%) for CWPA using Haar.*us,
the median of MRE of CFPA is between 70% and 80%
against 32% and 50% for CWPA.

When N is higher than 250, CFPA gets a better utility
than CWPA. For example, when N � 450 and k � 5, the
median of the perturbation error (respectively, the recon-
struction error) of CFPA is 8.5% (respectively, 6.5%) against
4.5% (respectively, 16%) for CWPA using Haar. *us, the
median of MRE of CFPA is between 8.5% and 15% against
16% and 20.5% for CWPA.

In this use case, by comparing the different techniques
for publishing time-series consumption, it appears that
clamping perturbation algorithms (CFPA, CWPA) get a
better utility than unbounded algorithms (FPA, WPA),
which shows that the clamping mechanism reduces the total
error. Furthermore, when the number of homes is greater
than 250, CFPA obtains the best utility, with a mean relative
error of less than 10% when ε � 3. When the budget of
privacy ϵ � 1, the mean relative error of CFPA is less than
10% for N � 450 homes.

*e CWPA gets the best utility when the number of
homes N is smaller than 150 and the budget of privacy ε is 1.
*is is justified by its low perturbation error.

Table 3 summarizes the publishing algorithm with the
smallest MRE according to the budget of privacy ε and the
number of homes in the district (N). Based on the dataset
from the Irish Commission for Energy Regulation (CER)
[39], Table 3 shows that the clamping Fourier perturbation
algorithm (CFPA) achieves a lower MRE than the clamping
wavelet perturbation algorithm (CWPA) for N> 150.
Hence, CFPA gets a better utility than CWPA for N> 150.

7. Conclusion

*e large deployment of smart meters provides users and
suppliers with the capacity to optimize the energy con-
sumption through forecasting and demand-response ser-
vices. *is paper proposes an original and efficient approach
to mitigate privacy leakages of users’ consumptions. *is
approach uses differential privacy and time-series trans-
formations for supporting high privacy guarantees and
utility.*e clamping Fourier perturbation algorithm (CFPA)

Table 3: Publishing algorithm with the smallest MRE according to the budget of privacy ε and the number of homes in the district (N).

Number of homes (N) Budget of privacy, ε Best algorithm Coefficients, k Median of MRE (%)

50 1 CWPA-Haar, db2 5 35
3 CWPA-Haar 21

150 1 CWPA-Haar 5 19
3 CFPA 11

250 1 CFPA 5 16
3 8

350 1 CFPA 5 12
3 8 7

450 1 CFPA 5 10
3 8 6

550 1 CFPA 5 9
3 8 5

18 Security and Communication Networks



we propose achieves an error 6 times lower than the Fourier
perturbation algorithm (FPA). Similarly, the clamping wavelet
perturbation algorithm (CWPA) achieves an error 2 times
lower than the wavelet perturbation algorithm (WPA).*anks
to our algorithm, the publication of aggregate time-series
consumptions is now possible while guaranteeing that the
aggregate does not reveal any individual consumptions and
while achieving better utility than existing algorithms. *ese
privacy-preserving aggregate time-series consumptions can
then be used as a building block, enabling services such as
forecasting and demand-response, which are suitable for im-
proving the efficiency and reliability of the electric grid.

In the future, we plan to investigate how to decentralize our
clamping transform perturbation algorithm in order to resist to
malicious aggregators. We plan to examine how to combine
secure multiparty computation (SMC) with differential privacy
(DP). SMC enables parties to compute a joint function without
learning any individual inputs. SMC combined with DP could
allow homes to compute and publish their aggregated con-
sumptions without relying on an aggregator. However, SMC
incurs a communication cost, which might have an impact on
the running time performance.

Appendix

Proof of Lemma 4

Lemma Appendix (Lemma 4). 1e mean relative error
(MRE) of CFPA (respectively, CWPA) is lower than or equal
to the sum of the reconstruction error and the perturbation
error of CFPA (respectively, CWPA).

Proof. Let S � (S1, . . . , ST) be the aggregate consumption to
be published by using CFPA or CWPA. Let C � (c1, . . . , cT)

be the coefficients of the considered transform of S. For
simplicity, we consider that we use the CFPA5; we have
S � IDFT(c1, . . . , cT), where IDFTmeans the inverse of the
DFT transform. We note cj as the clamped coefficient of cj

for j � 1, . . . , k. Let 􏽢S � IDFT(c1 + L(M1
�
2

√
/ε/k), . . . , ck +

L(Mk

�
2

√
/ε/k), 0, . . . , 0) be the result of the aggregate

consumption, where M � (M1, . . . , Mk) is the maximum
magnitude of the first k DFTcoefficients. Let dj � cj − cj for
j � 1, . . . , k:

􏽢S � IDFT c1 + L
M1

�
2

√

ε/k
􏼠 􏼡, . . . , ck + L

Mk

�
2

√

ε/k
􏼠 􏼡, 0, . . . , 0􏼠 􏼡

� IDFT d1 + c1 + L
M1

�
2

√

ε/k
􏼠 􏼡, . . . , dk + ck + L

Mk

�
2

√

ε/k
􏼠 􏼡, 0, . . . , 0􏼠 􏼡

� IDFT c1, . . . , cT( 􏼁 + IDFT d1 + L
M1

�
2

√

ε/k
􏼠 􏼡, . . . , dk + L

Mk

�
2

√

ε/k
􏼠 􏼡, 0, . . . , 0􏼠 􏼡

− IDFT 0, . . . , 0, ck+1, . . . , cT( 􏼁.

(A.1)

Let 􏽥S � (􏽥s1, . . . ,􏽥sT) � IDFT(c1, . . . , ck, 0, . . . , 0)− IDFT
(c1, . . . , cT) � −IDFT(0, . . . , 0, ck+1, . . . , cT) corresponding
to the difference between the aggregate consumption where
the last T − k DFT coefficients are replaced by zeros and the
initial aggregate consumption (corresponding to the re-
construction error). Let S � (s1, . . . , sT) � IDFT(c1 + L
(M1

�
2

√
/ε/k), . . . , ck + L (Mk

�
2

√
/ε/k), ck+1, . . . , cT)− IDFT

(c1, . . . , cT) � IDFT(d1+ L((M1
�
2

√
/ε/k)), . . . , dk + L

(Mk

�
2

√
/ε/k), 0, . . . , 0) corresponding to the difference

between the aggregate consumption where the first k DFT
coefficients are clamped and noisy and the initial aggregate
consumption (corresponding to the perturbation error).
*en, we obtain 􏽢S � S + S + 􏽥S. Let A � (a1, . . . , an) and B �

(b1, . . . , bn) be two vectors of the same size; we note
A/B � (a1/b1, . . . , an/bn). Let S + 1 � (s1 + 1, . . . , sT + 1),
􏽢S − S/S + 1 � S/S + 1 + 􏽥S/S + 1. *en,

􏽢S − S

S + 1

��������

��������1
�

S

S + 1
+

􏽥S

S + 1

��������

��������1

≤
S

S + 1

��������

��������1
+

􏽥S

S + 1

��������

��������1
.

(A.2)

*us, the MRE of CFPA (respectively, CWPA) is lower
than or equal to the sum of the reconstruction error and the
perturbation error of CFPA (respectively, CWPA). □
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