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Most existing face authentication systems have limitations when facing the challenge raised by presentation attacks, which
probably leads to some dangerous activities when using facial unlocking for smart device, facial access to control system, and face
scan payment. Accordingly, as a security guarantee to prevent the face authentication from being attacked, the study of face
presentation attack detection is developed in this community. In this work, a face presentation attack detector is designed based on
residual color texture representation (RCTR). Existing methods lack of effective data preprocessing, and we propose to adopt DW-
filter for obtaining residual image, which can effectively improve the detection efficiency. Subsequently, powerful CM texture
descriptor is introduced, which performs better than widely used descriptors such as LBP or LPQ. Additionally, representative
texture features are extracted from not only RGB space but also more discriminative color spaces such as HSV, YCbCr, and CIE
1976 Lxaxb (LAB). Meanwhile, the RCTR is fed into the well-designed classifier. Specifically, we compare and analyze the
performance of advanced classifiers, among which an ensemble classifier based on a probabilistic voting decision is our optimal
choice. Extensive experimental results empirically verify the proposed face presentation attack detector’s superior performance

both in the cases of intradataset and interdataset (mismatched training-testing samples) evaluation.

1. Introduction

Face authentication technology is widely deployed in real
life. However, most existing face authentication systems are
vulnerable to presentation attacks (PAs). For clarity, the
bona fide and the PA samples are illustrated in Figure 1.
Generally speaking, compared with the bona fide faces, the
PA samples are generated by presenting spoofing artifacts
toward face authentication system.

Since deep learning (DL) shows its outstanding potential
in resolving image classification tasks, numerous DL-based
methods are proposed by utilizing deep networks to extract
deep features from images such as [1-6]. It is known that
DL-based methods can achieve excellent performance when
obtaining enough training data, but in face presentation
attack detection task, the diversity and amount of training
data is often not satisfied, and overfitting is also a vexing
problem. To enable a presentation attack detection system be
applicable to various environment, domain adaptation [7]

manner is explored to resolve the overfitting. Moreover,
similar to the two-stream strategy utilized in copy-move
forgery [8], there is also two-stream-based method for
learning fusion features to resolve PA detection problem [9].

Compared with DL-based methods, hand-crafted fea-
ture-based methods pay more attention to extract predefined
specific patterns, which are more explainable. We can
mainly divide these techniques into three categories: mo-
tion-related cue [10-13], image quality [14-16], and texture-
based analysis [17-24]. Motion-related cue-based methods
are highly robust in some specific cases, but the general-
ization ability is not satisfactory. Image quality artifact-based
methods are not robust enough and computationally
complex. By contrary, the performances of texture-based
analysis methods are more preferable.

It is known that, in image forensics field, effective data
preprocessing can obviously improve the algorithm’s per-
formance. For example, in [25], a Laplacian filter is used for
input enhancement. And, in [26], the Schmid filter is used to
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FI1GURE 1: Cropped example face images extracted from the FASD. From the left to the right: genuine face, print attack, and replay attack,

respectively.

enhance texture information. However, to the best of our
best knowledge, in face antispoofing field, there is still a lack
of effective measure of preprocessing. In this work, a novel
perspective is introduced that nuisance noise can interfer-
ence extracting representative features from face images, and
we introduce a wavelet-based filter to preprocess the original
image, which can successfully make the model perform
better. The assumption is inspired by that in the process of
using image sensors such as CCD and CMOS to capture
images; due to the influence of the sensor material prop-
erties, electronic components, and circuit structure, various
noises will be introduced, such as Gaussian noise, salt and
pepper noise, speckle noise, shot noise, and white noise.
However, such noise does not seem to be helpful for face PA
detection. Therefore, analytical experiments are conducted
to investigate how the difference changed between the bona
fide and the PA faces by using residual (noise-free) images
instead of original images (see Tables 1 and 2 ). For more
intuitive, discrete wavelet transform is applied to conduct a
similarity-based analysis, which is specifically described in
Figure 2. By applying a discrete wavelet filtering (DW-fil-
tering), compared with the original image, the similarity
between the bona fide face and the PA from residual image is
the lowest, meaning that the features extracted from both
bona fide face and PA from residual image can be more
discriminative than the others. Besides, since the effective-
ness of texture analysis in color spaces is verified in [21],
which utilizes two local texture descriptors (CoALBP and
LPQ) and one classifier such as SVM, an assumption can be
further drawn that if a high efficient classifier such as en-
semble one, together with more discriminative descriptors
for color residual texture representation is adopted, the
performance of the detector can be further improved. The
contributions of this paper can be summarized as follows:

In RGB space, luminance and chrominance informa-
tion cannot be effectively characterized. However, the
concerning color information stored in different
channels is of importance for generating more dis-
criminative color features. Therefore, many works
consider extracting features by using HSV, YCbCr
space, or fusion of them. Nevertheless, for the differ-
entiability of various color channels and the best
combination of them, there is still a lack of deep

TaBLE 1: The Chi-square distances (i.e., dXz) for different color
channels in original images. Larger d,. value is indicated in bold
compared to Table 2.

Color channel FASD RAD MSU
RGB-R 154.0 115.1 94.5

RGB-G 278.3 120.7 103.6
RGB-B 3233 130.3 114.1
HSV-H 1062.7 766.0 717.0
HSV-S 404.4 242.4 304.7
HSV-V 188.1 115.4 100.8
YCbCr-Y 253.6 198.2 103.8
YCbCr-Cb 191.6 3114 141.3
YCbCr-Cr 147.5 206.3 127.5
LAB-L 235.6 120.1 102.3
LAB-A 151.2 177.7 146.8
LAB-B 182.7 212.3 151.8

TaBLE 2: The Chi-square distances (i.e., dxz) for different color
channels in residual images. Larger d,» value is indicated in bold
compared to Table 1.

Color channel FASD RAD MSU
RGB-R 165.0 118.6 99.3

RGB-G 289.4 122.9 106.6
RGB-B 328.9 130.6 114.4
HSV-H 11234 942.6 818.7
HSV-S 482.2 239.7 307.2
HSV-V 203.7 126.7 99.4

YCbCr-Y 253.1 199.3 103.6
YCbCr-Cb 200.7 313.0 253.4
YCbCr-Cr 246.9 212.8 250.1
LAB-L 239.6 120.0 107.4
LAB-A 418.7 325.3 287.5
LAB-B 198.7 213.8 262.6

exploration. In the following sections, we have con-
ducted extensive analytical experiments and in-depth
discussions on this issue. A total of four color spaces are
taken into account, namely, RGB, HSV, YCbCr, and
LAB.

Existing methods lack of effective data preprocessing. In
fact, an effective preprocessing operation can signifi-
cantly improve the performance of the detector. In the
preprocessing stage of this work, we propose to adopt
DW-filter for obtaining residual image, which effectively
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FiGure 2: The CS of the bona fide and the PA samples. Residual image is obtained by DW-filter, where “Residual Image = Original
Image — Noise Image.” 0 is the angle corresponding to the CS, which is inversely proportional to the image similarity.

alleviates the interference caused by nuisance noise while
retaining valuable information for presentation attack
detection. Meanwhile, extensive analytical experiments
are conducted to further verify the effectiveness of the
utilization of the residual image.

Among texture-based arts, the optimal choice of the de-
scriptor is not well investigated. Thus, we mainly describe
and analyze five widely used texture descriptors, namely,
the CM, LBP, CoALBP, LPQ, and BSIF. According to the
experimental results, the CM feature outperforms others in
color spaces. Accordingly, our proposed RCTR is con-
structed relying on the powerful CM feature extracted in
color channels of the residual image.

Most existing hand-crafted feature-based methods use
single classifier such as SVM, which cannot always
perform well. In this work, the performance of three
widely adopted classifiers is well investigated, including
LDA, SVM, and XGBoost. And, an ensemble classifier
based on the probabilistic voting decision is designed.
In the case of inter- or intradataset testing, our RCTR-
based detector that employs the ensemble classifier
shows satisfactory performance.

The remainder of this paper is organized as follows. In
Section 2, the related works are presented. In Section 3, our
proposed approach is described in detail. Three benchmark
face presentation attack datasets are introduced in Section 4.
In Section 5, we provide comprehensive experimental results
and analysis. Last but not least, concluding remarks are
drawn in Section 6.

2. Related Works

To address the challenge introduced by face presentation
attacks, many presentation attack detection techniques have
been proposed, which can be arbitrarily formulated into two
categories: deep learning-based methods and hand-crafted
feature-based methods. The specific overview is extended as
follows.

2.1. Deep Learning-Based Methods. Deep learning can
achieve promising results in the field of computer vision,
which is also very effective when tackling face presentation
attack detection task. In [2], CNN is utilized to extract deep
features, and SVM is employed instead of fully connected
layers for classification. Atoum et al. [27] present a two-
stream network architecture to learn patch-based and depth-
based features, and the classification result is determined by
the fusion scores of both two streams. Rather than merely
extracting spatial feature, a 3D-CNN structure is proposed
in [6] to exploit the spatial-temporal features, which can
capture more visual cues that are indeed useful for face
presentation attack detection task. Meanwhile, a domain
generalization regularization approach is incorporated for
further enhancing the model generalization ability. Previous
deep learning-based face presentation attack detection ap-
proaches formulate the task as a binary classification
problem. Liu et al. [28] emphasize the importance of aux-
iliary supervision. Specifically, a CNN-RNN architecture is
proposed to utilize depth map information and rPPG



(remote Photoplethysmography) signs, which can both
exploit spoof patterns across spatial and temporal domains.
In [29], an augmented dataset is collected in a specific image
synthesis way, which can further improve the robustness of
the model.

DL-based methods usually have superior classification
accuracy when training and testing samples belong to similar
scenes. However, due to heavily relying on a large-scale well-
designed dataset, the performance of many DL-based
methods will sharply decrease when dealing with mis-
matched training and testing samples. Poor generalizability
is more serious in earlier DL-based methods [3]. And, in
recent works [30-32], such defect is significantly improved.

2.2. Hand-Crafted Feature-Based Methods. The methodol-
ogies in this category mainly rely on defining specific pat-
terns in advance for extracting discriminative features.
Given that face presentation attack samples tend to be static,
motion analysis-based schemes are developed, such as eye
blinking [10], mouth movement [11], and just holistic face
region movement analysis [13]. In general, the biometric
information can be successfully obtained by analyzing the
optical flow in specific areas of the image. Although the
motion-related cue-based methods perform well when
dealing with print attack, they may fail to complete the task
of replay attack detection, where the motion-related cue for
presentation attack detection can be easily inferred. Besides,
image quality also can be a vital measurement toward face
presentation attack detection. Galbally et al. [15] propose to
resolve presentation attacks by calculating prominent factors
among 25 image quality metrics. Di et al. [16] introduce an
image distortion analysis countermeasure by evaluating four
presentation attack patterns: specular reflection caused by
display device, image blurriness, chromatic distribution
variation, and poor color diversity. However, due to heavy
computation, these methods are not efficient enough. It is
worth mentioning that although various hand-crafted fea-
ture-based methods are proposed, there is still a lack of
effective preprocessing to further improve the performance
of the detector.

In addition, the effectiveness of texture descriptors in
resolving face presentation attack problems has been verified
by some works. For instance, multiscale local binary pattern
(MSLBP) descriptor is designed for face presentation attack
detection in [17], and a novel facial texture representation is
introduced by using the spatial and temporal extensions of
the local binary pattern (LBP-TOP) [33]. Besides, it is worth
noting that Boulkenafet et al. [21] present a novel and ap-
pealing face presentation attack countermeasure by using
color texture features, based on the assumption that gray-
scale images are often used to display illuminance infor-
mation, while more helpful color information are discarded.
In fact, the RGB image cannot completely separate the lu-
minance and chrominance signals while color texture fea-
tures can be well extracted from HSV and YCbCr spaces. It is
well-known that print attacks utilize photos of legitimate
users to fool the face recognition system, while replay attacks
often utilize electronic device such as mobile or tablet. Due
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to the restriction of the limited color gamut, the fake faces
presented on the display device often show color
degradation.

The effectiveness of texture descriptors and color space
features in resolving face presentation attack detection task
are verified. However, the discriminative features are gen-
erally extracted from original pixels in spatial domain, which
are more or less impacted by nuisance noise introduced
during image capturing. Besides, the study of combining
various texture features within different color spaces to
achieve the optimal color texture features still remains open
in this community. Additionally, to the best of our
knowledge, one single classifier cannot always bring optimal
prediction results, compared with the powerful ensemble
classifier. In virtue of our theoretical and empirical analysis
in this paper, those negative factors can lead to bad detection
results when training samples are mismatched with testing
samples. To address those challenges, dependent of residual
image via DW-filtering, it is proposed to design a high ef-
ficient ensemble face presentation attack detector based on
RCTR.

3. Proposed Method

In this section, we specifically present the RCTR-based face
presentation attack detection method. For clarity, let us first
illustrate the overall framework in Figure 3. First of all, face
alignment is applied to calibrate the face region from full
frame. Next, a DW-filter is utilized to process the high-
frequency coefficients in order to obtain more discriminative
residual image. Then, the residual image is transformed from
RGB into another color space (e.g., YCbCr). Subsequently,
texture descriptor is applied to extract rich texture infor-
mation, in which a comprehensive representation is con-
structed by combining optimal descriptor feature vectors,
namely, RCTR. Finally, we design an ensemble classifier with
the effective strategy of probabilistic voting decision, which
can successfully complete the task of face presentation attack
detection.

3.1. Analysis of Color Space. The samples of PA face are
passed through different cameras or printing mediums (such
as photos, mobiles, and tablets), so they can actually be called
a kind of recaptured image. Therefore, we can assume that
when generating PA samples, inherent differences in color
channel between the bona fide and PA images are intro-
duced during the recapturing process. This is due to the
color gamut caused by the display medium and other defects
in color reproduction, such as display imperfection, or noise
signals. Compared to bona fide face samples, the camera
used to capture the target face photos also brings about
imperfect color reproduction. Thus, it is reasonable to use
color images instead of gray-scale images for face presen-
tation attack analysis. RGB is widely used, but other color
spaces are also worthy of attention. Because color compo-
nent and luminance component cannot be perfectly char-
acterized in RGB space, it can be better discriminated in
other space such as HSV. There are various color spaces
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FIGURE 3: A pipeline of our proposed face presentation attack detection method, and YCbCr space is used here as an instance.

which have been proposed, and we consider analyzing bona
fide face and PA images in four different color spaces: RGB,
HSV, YCbCr, and LAB. Therefore, a metric is designed to
examine which color space or channel is more distin-
guishable and details of the metric are as follows.

Firstly, for given image I with the size I x I, the corre-
lation coeflicient between the adjacent pixels in each color
component I° (c € {R,G,B,,H,S,V,Y,Cb,Cr, L, A, B,}) are
calculated, which can be formulated as

Zl] 10 icl()(I;k _TC)(I;’+1,I<+1 _TC)
\/ZJ =0 k 0 ]k -1 ) Z ilo(ll]:'ﬂ,kﬂ - TC)Z

1

where I° represents the mean pixel value of I¢. For simplicity,
we only consider the diagonally adjacent pixels. It can be
drawn that the larger the my, the higher | the relevance be-
tween the adjacent pixel values of given T

Subsequently, for given bona fide face image set, m; of
each image is calculated and the corresponding histogram
Hj, ; can be constructed. And, for the given PA image set, the
histogram H, can be obtained in the same way. Then, Chi-
square distance is used to measure the similarity between the
two histograms, which can be formulated as

Hi; (b) - HY, (b))

¢ e vl
dXz(Hbf’Hpu)_; Hzf(b)+H;a(b) ' @

where b is the bin index of the histogram. Similarly, the
larger the d », more significant the difference between the
bona fide images and the PA images.

To evaluate the disparities between the bona fide face and
the PA face in each color component, 10000 bona fide face
images and 10000 PA face images are extracted from FASD,
RAD, and MSU dataset, respectively, to perform analytical
experiments. As introduced above, m{s of all images is
calculated, the corresponding histograms Hj ; and H¢ are
obtained, and their dXzS are also calculated, which can be
seen in Table 1. Throughout the results of the three datasets,
the d,» values in RGB space are relatively stable (the
maximum is 323.3, and the minimum is 94.5); this is because
color components and luminance components are not well
separated. As for the results on FASD, it can be observed that
when using H channel, the d,. value is 1062.7, which is

significantly larger than any other channel. And, the result of
the S channel is 404.4, which is the second largest. As for the
V channel, the d , value is relatively small. This is meaning
that the bona fide faces and the PA images are more dis-
tinguishable in color components (i.e., H and S channel)
than in luminance component (i.e., V channel). As for
YCbCr and LAB spaces, the differences between color
component and luminance component are not as obvious as
in HSV space. Similar conclusions can also be drawn from
the results of RAD and MSU dataset.

Besides, only conducting analytical experiments are not
enough to predict the actual situation; thus, extensive ex-
periments are conducted to further investigate the benefit of
color spaces transforming for face presentation attack de-
tection (see Figure 4, for details).

3.2. Generation of the Residual Image. Face presentation
attacks are implemented by printing human faces on various
display media, such as A4 paper, mobile, and tablet screen.
Though bona fide or PA samples are presented toward face
authentication system, the nuisance noise is unavoidably
introduced during image capturing process. A reasonable
assumption can be made that nuisance noise existing in the
face image, including bona fide and PA samples, might more
or less impact the effectiveness of presentation attack de-
tection, while the features extracted from the residual face
image are more discriminative than that of original face
image. Therefore, we propose to apply DW-filter for residual
image extraction. It is important to study whether applying
DW-filtering preprocessing operation in our scheme is ef-
fective to suppress nuisance noise from face image and
meanwhile helpful to learn color texture features for pre-
sentation attack detection. To visually verify our hypothesis,
we conduct the face image similarity-based analysis (see
Figure 2 for illustration). By applying DW-filter, we segment
the original face image to residual and noise one. Meanwhile,
the statistical histogram of the pixels of each image is used to
evaluate the similarity between two classes of face images,
which is measured by the CS (cosine similarity):

X.Y n=255
CS(X,Y) _ Zz 0 Xi Xyz

I XY \/Zn 255 (¢ ) X\/Zn 255 ‘2
(3)
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FIGURE 4: The EER results of the CM feature extracted in various color spaces from both original images and residual images. (a) FASD. (b)
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where | - | denotes the 2-norm and x; or y; represents the
frequency in ith gray level of histogram from compared
images. In Figure 2, we can observe that the CS between the
noise images of bona fide and PA faces is 0.841. Meanwhile,
we also observe that the CS between original images is 0.809,
larger than 0.759 from residual images. That is because the
noise components in face images are filtered out, which
makes the inherent defects introduced by presentation at-
tack operation to be more discriminative. In addition, we can
also notice that the CS of noise image is higher than that of
the original images, which further proves the interference
effect of nuisance noise.

To further verify the effectiveness of the use of residual
image, similar analytic experiments following the settings in
Section 3.1 are conducted; the only difference is that the
residual image is used instead of the original image (see
Table 2, for illustration). It can be observed that compared to
Table 1, most d,, values for residual images are generally
larger than that f)(()r original images; only a few color channels
show a slight decrease (all larger d,. values are indicated in
bold in the table). Specifically, when using original images on
RAD, the d > value of H channel is 766.0, and this value is
increased to 942.6 when using residual images. Furthermore,
for residual images, color components become more dis-
tinguishable in YCbCr and LAB spaces. Specifically, the d »
value of Cb channel for residual images is 246.9, while the
counterpart for original images is 147.5. And, the d,» value of
A channel for residual images is 418.7, while the counterpart
for original images is just 151.2.

Based on the above analysis, we can draw that the
discrimination between the bona fide and the PA faces can
be further enhanced by adopting residual image instead of
the original one. That is undoubtedly beneficial for pre-
sentation attack detection. Thus, prior to feature extraction
such as residual color texture representation in this paper, it
can hold true that we first proceed the preprocessing by
using an effective filter.

The proposed algorithm needs to preprocess an inquiry
face image by filtering. DW-filter serves as a useful tool to
preliminary acquire the residual image (see Figure 2 for
instance). DW-filter has performed its powerful advantage at
decomposing high and low frequencies [34]. The application
of 2D-DWT in image processing is mainly to decompose the
inquiry image through multiscale decomposition. A 2D-
DWT process over an original image I with the size I x I can
be formulated by

ILL IHL ] (4)

ILH IHH

fZD—DWT (I) = [

where the original image I is decomposed into four sub-
images: Iy, Iy, Ipy, and Igy with the size 1/2 x1/2. Iy
corresponds to the approximation component (low fre-
quency) of the image, while the remaining three Iy, Iy,
and Iy correspond to the horizontal detail component,
vertical detail component, and diagonal detail component,
respectively. As shown in Figure 2, when performing DWT
filtering, the similarity between genuine face and fake face is
reduced. In this case, the noise component is weakened after
filtering, while the valuable information for presentation
attack detection is preserved.

In particular, let us conduct DW-filtering proposed in
[35], which can be formulated by

o _{Sgn(lwl -0,
Yo, lw| <A,

lwl>A,

(5)

where W represents the wavelet coefficients to be filtered,
sgn (-) is the sign function, and A is the given threshold. In
this work, we take the thresholding as a filter to preprocess
face images. For instance, the sqtwolog threshold can be

calculated by
A =242 log (1). (6)
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Specifically, let us introduce the process of the DW-
filtering based on 2 layer decomposition in three steps:

The widely adopted haar wavelet base is selected, and
the given original face image is decomposed by ap-
plying MALLAT decomposition algorithm [34]. Ac-
cordingly, the wavelet coeflicients of each layer are
successfully obtained.

Based on the given threshold A, the high-frequency
components obtained by decomposing each layer are
quantized, while the low-frequency component re-
mains unchanged.

By means of MALLAT reconstruction algorithm, the
low-frequency component of the 2nd layer after de-
composition and the high-frequency components of
each layer are reconstructed by inverse DWT, and fi-
nally, the residual face image by wavelet thresholding is
generated.

3.3. Feature Extraction by Texture Descriptor. Based on the
previous analysis, we decide to extract texture features from
multiple color channels in residual images. It should be
noted that color texture features are obtained by applying
descriptors not only in gray-scale image but also in color
channels. That is because the color image can provide more
valuable information for presentation attack detection,
which is beneficial to improve detector’s robustness and
accuracy. In this work, the co-occurrence matrix [36] is
employed, which is widely used in image texture analysis.
Moreover, widely adopted descriptors such as the LBP [37],

CM(6;,6,,...

1
,Gd)=NZl[T(x,y):91,T(x+Ax,y+Ay)=02,...,

LPQ [38], CoALBP [39], and BSIF [40] are also introduced.
In this section, we mainly overview these descriptors.

3.3.1. CM. The co-occurrence matrix (CM) describes the
distribution of intensity and information about the relative
position of adjacent pixels in the image, which can measure
the correlation among adjacent pixels and hence gather
valuable information from recurrent micropatterns. Before
calculating CM, for given image I, first-order differential
operator is applied to suppress the image content, namely,

I1(x,y)=1(x,y) - 1(x,y +1), (7)

where (x,y) denotes the pixel coordinate and T is the
resulting image. It should be noted that only horizontal
difference is considered here. As a result, the dynamic range
of the image content is much narrower so that more reliable
statistical description can be carried out. Subsequently, a
truncating operation is conducted because there are too
many distinct element values in the original image, which
could result in huge dimension of the CM feature vector. The
truncated image is calculated as follows:

7, I(x,y)2y,
T(x,y) =14 T(x,y), -y<I(xy)<y, (8)
-y, I(x,y)< -y,

where y >0 is the truncation threshold, and the result T is
then used to compute the CM. Typically, a d order CM of the
2D array T can be obtained by

(9)

T(x+(d-1)Ax,y+(d-1)Ay) =6,],

where 6,,0,,...,0,; are the index, 1(-) is the indicator
function, N is the normalization factor, and Ax and Ay are
the offsets. The effectiveness of the CM is validated in
steganography detection [36] and face recognition [41].
However, in face presentation attack detection field, the use
of the CM is not well explored.

3.3.2. LBP. The Local Binary Patterns (LBP) perform very
well when depicting image structure information such as
edges. The LBP is obtained via comparing each central pixel to
its neighborhood one in the block, where the LBP features are
described as a binary sequence, which can be formulated by

= 1, ifk>0,
LBP,, (x,y.) = ) s(g,—g.)2",s(k) =«}
pr (e o) I,Z:;‘) (gp g ) 0, otherwise,
(10)
where g, denotes the value at the central pixel coordinate
(%, yc), while g,, p€{0,1,2,...,P—1}, represents the

value of the neighboring pixel in the block, and » denotes the
radius. For instance, when r = 1, P equals to 8. Then, the
binary patterns are collected by statistical histograms to
represent the image texture information. In general, high
robustness toward luminance variation, rotation invariance,
and low-computational complexity are the advantages of
LBP descriptor. When a face image is tested, we cannot
guarantee that it is correctly presented in front of a digital
camera of presentation attack detector. Thus, the robustness
of resisting rotation attack is crucial. However, the LBP
feature contains only intensity relationships between adja-
cent pixels and lack of spatial relationship information,
which raises the performance limitation.

3.3.3. CoALBP. For the sake of compensating the missing
spatial relationship information in the LBP features, the co-
occurrence of adjacent local binary patterns (CoALBP) is
proposed in [39]. In this method, two simplified LBP
configurations, denoted as LBP (+) and LBP (x), are



introduced. LBP (+) considers two horizontal and two
vertical pixels, while LBP(x) considers four diagonal pixels.
Before calculating the co-occurrence information of LBPs,
each LBP is transformed to its vector form by using Kro-
necker delta:

Vi(B) = 81 1bp By

5 { 1, ifa+b, (11)
b 0, otherwise,
where i € {0,1,2,...,n— 1}, n is the number of neighbor

pixels, B is the position vector in an image intensity I, and
I(Ibp(+)) denotes a decimal number label of Ibp(-). For
example, if the given binary sequence is 0010, the corre-
sponding label is 2. If all possible LBP label values are in the
range [0,N] (N =2"), an N x N autocorrelation feature
matrix H can be calculated by

H(D)= ) V(BV(B+D)', (12)
Bel

where D is the displacement vector between two LBPs. Four
displacement vector are set as follows: D, = (AB,0)’,
D, = (AB,AB)", D, = (0,AB)", and D, = (-AB,AB)7,
which correspond to the direction of 0°, 45°, 90°, and 135°. At
last, the four resulting matrices are concatenated to form the
final CoALBP feature. It should be noted that although the
CoALBP descriptor preserves more spatial information than
LBP, the high dimension of CoALBP feature increases the
computation cost of training a classifier.

3.3.4. LPQ. The local phase quantization (LPQ) is originally
proposed by [38] to solve the problem of inaccurate clas-
sification caused by image blurring. The LPQ descriptor uses
local phase information, which is extracted through the
short time Fourier transform (STFT) based on the square
region. The resulting STFT within the region of g x g sur-
rounding the central pixel position m from the given image
is defined by

F,(m) = w'x, (13)

where w,, represents the basis vector of the 2D discrete
Fourier transform at the frequency u and x denotes the
vector containing all pixels in the region of I x . Specifically,
the Fourier complex coeflicients are calculated at four 2D
frequencies: u, = (s, 0)7, u; = (s, 97, u, = (0, s)T, and
u; = (s, )T, where s is a small scalar and s < 1. Then, the
basic LPQ feature can be formulated by

Q(m) =[RC{Q" (m)},IC{Q" (m)}],

(14)
Q (m) ={F, (m),F, (m),F, (m),F, (m)},

where RC{-} and IC{-} mean to return the real component
and imaginary component of a complex number, respec-
tively. In addition, each element of Q () is quantized as a
binary sequence by a preliminary defined function. At last,
the resulting binary sequence is represented as decimal
integer values in the range [0, 255] and collected into feature
histogram, which is similar to LBP. While LPQ is known to
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possess invariance to blurring effects, as discussed in [16], it
is possible that image blurring is relevant to face presen-
tation attack.

3.3.5. BSIF. Without loss of generality, the optimal selection
of local features can effectively capture the relevant structure
characteristics of the image. Alternatively, the binarized
statistical image features (BSIF) [40] are adopted in a
manner, in which an inquiry image is convolved with a
linear filter, and then, the binary code of the filter response is
obtained. By means of independent component analysis
(ICA), the weight values of the filters are learned from a set
of natural image patches by maximizing the statistical in-
dependence of the filter responses. Given an image block C
and a bank of linear filters with the same size, the con-
volutional response r; is computed by

r;=CxW, (15)

where W; denotes the filter, i € {1, ...,n}. Specifically, in this
work, 8 filters are used (i.e., n = 8). And, then, the binarized

feature is obtained:
1, ifr;>0,
b, = (16)
0, otherwise.

It should be noted that the filter W, has been well-trained
by learning a set of heterogenous natural images which is
different from the face images. Therefore, the BSIF features
can avoid tedious filter design and parameter tuning.
Moreover, the BSIF descriptor is capable of serving as a
general descriptor to deal with various presentation attack
scenarios in the practical detection.

3.4. Design of the Classifier. After extracting valid features, an
efficient and accurate classifier is supposed to design.
Various classifiers are adopted in face presentation attack
detection (see [12, 42-44], for instance). In general, the
monotone classifier structure equipped with fixed param-
eters possibly leads to the deviation of classification results.
In order to achieve high level detection accuracy and gen-
eralization ability, we intend to investigate the following
classifiers and select the optimal scheme of designing a
classifier based on the proposed color residual texture
representation.

3.4.1. LDA. Linear discriminant analysis (LDA) is a su-
pervised approach that is widely adopted in the field of face
recognition [45] and face presentation attack detection [12],
which can be used for both dimensionality reduction and
classification. The objective of LDA is to find a proper
projection that maximizes the between-class scatter matrix
and minimizes the within-class scatter matrix in the pro-
jective feature space. In the past, the image data was directly
used as input, but when dealing with the high-dimensional
face data, LDA often suffers from the small sample size
problem. In this work, we extract texture descriptors with
strong expressiveness from face images and relatively low
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dimension features are extracted. Then, LDA can also be
used as a classifier to be considered.

3.4.2. SVM. Support vector machine (SVM) is a kind of
classifier of generalized model for binary classification tasks
based on supervised learning. By utilizing the kernel
method, nonlinear classification tasks can also be accom-
plished. Due to the outstanding property of sparsity and
robustness, SVM is often used when resolving face recog-
nition missions [46]. The decision boundary of SVM is the
maximum margin hyperplane for the solution of learning
samples. Furthermore, SVM uses hinge loss functions to
calculate empirical risks and adds regularization terms to the
solution system to optimize structural risks. Face presen-
tation attack detection can be considered as a binary clas-
sification task, and support vector machines are classifiers
with the potential to cope with such task. More importantly,
the feature size obtained by our hand-crafted feature-based
method is relatively large, and SVM performs well when
learning high-dimensional feature vectors.

3.4.3. XGBoost. By optimizing the boosting algorithm on
the basis of gradient boosting decision tree (GBDT), extreme
gradient boosting (XGBoost) has been employed to resolve
the classification and regression problems in many fields
[47]. In fact, XGBoost is still based on the tree model.
Hundreds of tree models with low classification accuracy are
combined to iterate continuously, and each iteration gen-
erates a new tree. XGBoost adds a regular term to the cost
function to control complexity. From the perspective of bias-
variance trade off, the regular term reduces the variation of
the model, makes the learned model simpler, and prevents
overfitting. When conducting face presentation attack de-
tection, a detector based on XGBoost classification possibly
produces superior generalization ability dealing with het-
erogenous data.

3.4.4. Ensemble Classifier. As [48] states, to make an en-
semble decision, constituent classifiers should be heterog-
enous, and meanwhile, their classification performances
should be comparable. Accordingly, three base classifiers
(LDA, SVM, and XGBoost) are selected in our well-designed
ensemble classifier. Actually, we have also tried other kinds
of classifiers, such as Naive Bayesian and Decision Tree.
However, these two classifiers are not adopted in our design
due to unsatisfying performance. The scheme of voting
decision can be referred to as a soft voting, which is not a
simple majority rule. Specifically, the average of the prob-
ability that all model prediction samples are in a certain class
is taken as the threshold, and the corresponding class with
the highest probability will bring the final prediction result.
As Figure 5 illustrates, Classifier 1 and Classifier 2 both
predict the test sample “Bona Fide,” and only Classifier 3
outputs “PA,” while after the soft voting decision, the final
result is still “PA.” The experimental results in Section 5.4
also can verify that our carefully designed voting scheme
produces better performance than using single classifier.

oo ® oo ® oo ®
) (% :. ) (% :' ) (% :.
0%/ %o/ %o/
e /00 % /00 % L
BonaﬁdNA A
70% 60% | 40%

P(Real) = (0.7 + 0.6 + 0.15)/3 = 0.483
Predict: PA
‘ P(Fake) = (0.3+ 0.4 + 0.85)/3 = 0.517

FIGURE 5: A toy example of the voting decision. For clarity, three
base classifiers are used here.

15% 85%

4. Description of the Benchmark Datasets

In this work, four challenging benchmark datasets are used
to evaluate our proposed detector: CASIA Face Antispoofing
Dataset (FASD), Replay-Attack Dataset (RAD), MSU Mo-
bile Face Spoof Dataset (MSU), and ROSE-YOUTU Face
Liveness Detection Dataset (ROSE). For clarity, a summary
of the four datasets is illustrated in Table 3. Detailed de-
scriptions of the four datasets are given as follows.

4.1. CASIA Face Antispoofing Dataset. The CASIA Face
Antispoofing Dataset [49], released in 2012, consists of 600
video clips from 50 different clients. There are three attack
types involved. (1) Warped Photo Attack. The photograph of
the legitimate client is presented to the camera, and the
movement of the face is simulated by bending the photo. (2)
Cut Photo Attack. The eye area in the face photo is cut out
and a person blinks behind the paper hole. (3) Replay Video
Attack. High-resolution video of face is displayed on a tablet.
There are three imaging quality level used to record the
whole real accesses and spoofing attacks. (1) Low-quality,
with 640 X 480 resolution, captured by a cheap USB-camera.
(2) Normal-quality, with 480 x 640 resolution, captured by
another USB-camera better than the former. (3) High-
quality, with 1280 x 720 resolution, captured by a Sony
NEX-5 camera. The recordings of the total 50 clients are
established, in which 20 clients are split into training set and
remaining 30 clients into testing set.

4.2. Replay-Attack Dataset. The Idiap Replay-Attack Dataset
[19], released in 2012, includes 1200 video recordings of both
real accesses and spoofing attacks from 50 subjects. The
video recordings are collected at two different stationary
conditions. (1) Controlled. Uniform background scenes and
lighting equipment are applied. (2) Adverse. Background is
not uniform and only natural day-light illuminates. Under
the same environments, each client is taken two high-res-
olution photos with Canon PowerShot SX150 IS and iPhone
3GS, respectively. These recordings are utilized to fabricate
the spoofing attack samples. In total, there are three attack
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TaBLE 3: A summary of the four publicly available face spoofing datasets FASD, RAD, MSU, and ROSE.
Dataset Release time Subjects Video number Acquisition camera Attack scenarios
Low-quality camera (640 x 480) (1) Warped photo
FASD 2012 50 600 (150 genuine, 450 fake) Normal-quality camera (480 x 640) (2) Cut photo
Sony NEX-5 camera (1280 x 720) (3) Replay video
(1) Print
RAD 2012 50 1200 (200 genuine, 1000 fake) MacBook 13" camera (320 x 240) (2) Mobile
(3) High-def
. . MacBook air 13" camera (640 x 480) (1) Printed photo
MSU 2014 55 (35 available) 280 (110 genuine, 330 fake) Google nexus 5 camera (720x 480)  (2) Replayed video
Hasee phone (640 x 480) (1) Printed paper
Huawei phone (640 x 480) (2) Video replay
ROSE 2018 20 3350 (500 genuine, 2850 fake) iPad 4 (640 x 480)

iPhone 5s (1280 x 720)
ZTE phone (1280 x 720)

(3) Masking

scenarios. (1) Print. High-resolution face photos are printed
on A4 papers and displayed in front of the camera. (2)
Mobile. High-resolution pictures and videos are displayed
on an iPhone screen. (3) High-def. The photographs and
videos are shown on an iPad screen with 1024 x 768 reso-
lution. All recordings of 50 clients are partitioned into three
disjoint subsets: (1) Train, (2) Development, and (3) Test,
with 15, 15, and 20 clients, respectively.

4.3. MSU Mobile Face Spoof Dataset. The MSU Mobile Face
Spoof Dataset [16], released in 2014, consists of 440 video clips
of genuine and fake faces taken from 55 clients in total, while
280 recordings corresponding to 35 clients’ subset are available.
Two types of cameras are used to collect the data: a built-in
camera of Macbook Air 13,” referred to as laptop camera, with
640 x 480 resolution and a front-facing camera of Google
Nexus 5, referred to as Android camera, with a resolution of
720 x 480. There are two spoofing attack types included. (1)
Printed Photo. To generate the printed attack samples; a HD
photograph of the client’s face is captured by the Canon 550D
camera, with 5184 x 3456 resolution. Then, the photo is
printed on an A3 paper using a HP color printer. (2) Video
Replay. The video of the client’s face is first recorded using a
Canon 550D camera and an iPhone 5S back-facing camera.
The Canon camera is used to capture a HD video with 1920 x
1088 resolution, which is replayed on an iPad Air screen. And,
the iPhone 5S is used to capture another HD video with 1920 x
1080 resolution, which is replayed on the iPhone 5S screen.

4.4. ROSE-YOUTU Face Liveness Detection Dataset. The
ROSE-YOUTU Face Liveness Detection Dataset [7], re-
leased in 2018. ROSE dataset consists 3350 videos from 20
clients. For each client, there are 150-200 video clips with
the average duration about 10 seconds. Five types of mobiles
are used to collect the dataset: a Hasee smart-phone with the
resolution of 640 x 480, a Huawei smart-phone with a
resolution of 640 x 480, an iPad 4 with the resolution of
640 x 480, an iPhone 5s with resolution of 1280 x 720, and a
ZTE smart-phone with resolution of 1280 x 7200. Three
spoofing attack types are considered: (1) printed paper at-
tack: to generate fake samples; still printed paper and
quivering printed paper (A4 size) are used, (2) video replay

attack: face videos are displayed on Lenovo LCD screen and
Mac screen, and (3) masking attack: masks with and without
cropping are presented.

5. Experimental Results and Analysis

5.1. Experimental Setup. As prior works [19, 21, 50], the face
video recordings in FASD, RAD MSU, and ROSE datasets are
split into single-face region frame, and frame-based experi-
ments are conducted. All face images are normalized into 64 x
64 size after face alignment; the facial landmarks are localized
by using Dlib 19.14.0 [51]. The parameter settings of the de-
scriptors are shown as follows: when extracting the CM feature,
two first-order differential operators are applied (in horizontal
direction and vertical direction), the truncation threshold
y = 2, and the order is set as d = 3. And, the offsets are chosen
as (Ax,Ay) € {(0,1), (1,0)}. As for LBP feature, the param-
eters P = 8 and R = 1. As for CoALBP feature, LBP (+) is used
with radius R =1 and the corresponding AB = 2. The pa-
rameters for the LPQ descriptor are g = 7 and s = 1/7. At last,
the filter size of BSIF features is set as 7 x 7. The dimension of
the texture feature extracted by using the CM, LBP, CoALBP,
LPQ, and BSIF on single channel is 75, 59, 1024, 256, and 256,
respectively. Additionally, scikit-learn toolkit [52] is used for
model training and parameter fine-tuning.

In the following experiments, equal error rate (EER) is
used as a metric. In general, a threshold is adopted to cal-
culate the false reject rate (FRR) and the false accept rate
(FAR). When these two rates are equal by adjusting the
threshold, the common value is referred to as EER. Besides,
HTER also serves as another metric for evaluation (advised
on RAD), which can be formulated by

FAR(1, D) + FRR(7, D)

5 (17)

HTER =

where 7 is the value of the EER estimated on the dataset D. It
should be noted that the smaller EER or HTER represents
the better detection result.

5.2. Validation of the Residual Color Texture Representation.
In this section, the CM descriptor is used as an instance to
verify the effectiveness of employing RCTR. Both
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benchmark FASD and MSU are used for testing. In Figure 4,
the EER of the CM features extracted from gray-scale image,
RGB, HSV, YCbCr, and LAB spaces are presented, where the
SVM classifier is used. As can be clearly observed, the results
obtained by using residual images are generally better than
that of using original images both on the two datasets. Thus,
it can hold true that, by using the residual image instead of
the original image, the interference of nuisance noise can be
effectively reduced, while more discriminative features for
presentation attack detection can be extracted. More im-
portantly, the effectiveness of color space transforming can
also be verified in Figure 4. When considering the EER of the
CM features extracted from residual images, the worst result
is shown in the case of gray scale both on FASD and MSU.
Besides, the lowest EER on FASD is 4.5% when using HSV
space, and the best performance on MSU is 5.6% in the case
of YCbCr.

5.3. Performance Comparison of Different Texture Descriptors.
In this part, the performance of the LBP, CoALBP, LPQ,
BSIF, and CM descriptors are evaluated on FASD, where
SVM classifier is employed, as shown in Figure 6. It can be
observed that the EERs of the CM descriptor (brown col-
umn) is obviously lower than that of the other four types of
descriptors in the cases of RGB, HSV YCbCr, and LAB, and
the CoALBP descriptor (red column) performs best in the
case of gray scale. Since the performance of all descriptors is
relatively poor in gray-scale space, we only consider using
RGB, HSV, YCbCr, and LAB spaces. Thus, the CM de-
scriptor is selected to construct the final RCTR.

5.4. Evaluation of Different Classifiers. Subsequently, the
EER results of the CM features on benchmark FASD by
employing different classifiers are presented, as shown in
Table 4. And, for fair comparison, the average EERs of each
classifier is also presented. It can be observed that, basically,
our proposed ensemble classifier maintains the lowest EER
in most cases except in gray scale. Moreover, the average
EER of ensemble classifier is 10.7%, which is still the lowest
among four powerful classifiers. Obviously, our proposed
probabilistic decision-based ensemble classifier can perform
better than using single classifier such as LDA, SVM, or
XGBoost.

5.5. Fusion of the Residual Color Texture Representation.
In this section, the fusion performance of color spaces for
RCTR is well-explored. A total of four color spaces are
considered, namely, RGB, HSV, YCbCr, and LAB. As dis-
cussed above, the CM descriptor is selected to extract texture
features from residual images to construct the RCTR, and
the ensemble classifier is employed. Extensive experiments
based on different color space fusions are conducted, in
which the benchmark FASD and MSU are used for evalu-
ation, as can be seen in Table 5. Furthermore, the perfor-
mance of the combination of only color components is also
explored. Specifically, {H,S,Cb,Cr} means the RCTR
extracted from H, S, Cb, and Cr channels.
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FiGure 6: The EER results of the LBP, CoALBP, LPQ, BSIF, and
CM features extracted from various color spaces.

TaBLE 4: The EER results of the CM features extracted from various
color spaces when using LDA, SVM XGBoost, and Ensemble
Classifier.

Color space LDA SVM XGBoost Ensemble
Gray 30.6 27.4 26.1 27.2
RGB 8.3 7.6 6.9 6.3
HSV 5.5 4.7 5.6 4.4
YCbCr 9.7 9.1 9.0 8.1
LAB 8.5 7.8 9.7 7.5
Average 12.5 11.3 11.5 10.7

TaBLE 5: The performance of various color space combinations of
RCTR when employing ensemble classifier.

Color space fusion FASD MSU Average
EER EER EER
RGB + HSV 2.4 53 3.95
RGB + YCbCr 3.5 3.2 3.35
HSV + YCbCr 2.1 2.3 2.20
RGB +HSV + YCbCr 1.6 2.5 2.05
HSV +YCbCr+ LAB 2.0 2.3 2.15
All spaces 1.8 2.0 1.90
{H,S,Cb,Cr} 4.9 55 5.20

As shown in Table 5, when combining the features of all
four color spaces, the optimal performance of RCTR can be
achieved on MSU (with the EER of 2.0%). As for FASD,
when combining RGB, HSV, and YCbCr spaces, the lowest
EER (1.6%) is obtained. Meanwhile, the EER of the RCTR
extracted from {H,S,Cb,Cr} is 4.9% and 6.5%, respectively,
which is not as good as combining all color spaces.

When considering the average value, the EER when
combining all four spaces is the lowest (1.9%). And, it can be
clearly observed that when combining three color or four
spaces, the EERs of the detector are generally lower than
those only combining two spaces. Then, we can draw that, in
most cases, by combining the RCTR features of more color
spaces, the performance of our face PA detector can be
further improved.
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5.6. Intradataset Performance in Comparison with the State of
the Art. In this section, we evaluate the performance for
identifying the bona fide and the PA images in the case that
the training and testing data are matched. Tables 6-8 present
the experimental results of our proposed method and the
state-of-the-art techniques ([12, 16, 21, 33, 53, 54, 55, 56, 57]
for  hand-crafted  feature-based = methods  and
[2,3,9,27,58, 59] for DL-based methods). The results of the
RCTR combining four color spaces are used for comparison.
It should be noted that, as reported in [16], because only a
portion samples (high-quality) of FASD were used for
evaluation, for fair comparison, the result is not listed in
Table 6. And, since the EER is not adopted in [16, 55], we
only cite HTER results on RAD.

From Table 6, we can observe that DRL-FAS [59] out-
performs other methods both on FASD and RAD. Our
method outperforms most methods except [59] on FASD
and shows competitive performance on RAD. Motion Mag
algorithm [12] also achieves the best HTER on RAD, but
suffers significant degradation when testing on FASD.
Meanwhile, it can be seen that the performance of most
hand-crafted feature-based approaches and DL-based
methods are satisfactory on RAD. The reason lies on that
when collecting the data of RAD; the photo capture con-
dition is relatively simple, i.e., only one kind of camera is
adopted.

As can be clearly observed in Table 7, our RCTR-based
detector achieves the lowest EER on MSU (2.0%). And, from
Table 8, it is observed that DRL-FAS [59] achieves best
performance on ROSE, with an EER of 1.8%. Our method
gets the second place, with an EER of 10.7%, which is the best
performance among hand-crafted feature-based methods
[21, 57] and better than DL-based method [60]. In con-
clusion, these results indicate that the bona fide and the PA
images can be accurately identified by employing our
proposed RCTR-based ensemble classifier.

5.7. Interdataset Performance Comparison with the State of the
Art. To evaluate the performance of the detector when
training and testing samples are mismatched, cross testing
among all three datasets is conducted. The HTER results of
our RCTR-based detector when combining all four spaces
and only using H, S, Cb, and Cr channels are presented in
Table 9. It is observed that SSR-FCN [61] performs best when
training on FASD and testing on RAD (with an HTER of
19.9%), but in another case, the performance of SSR-FCN is
relatively poor (41.9%). When training on RAD and testing
on FASD, auxiliary [28] outperforms other methods (with
the EER of 28.4%). As for our proposed method (RCTR-{H,
S, Cb, Cr}), the HTER is 31.8% and 39.6%, respectively,
which significantly outperforms the methods proposed in
[3, 12, 33, 55] while comparable with outstanding arts in
[9, 28,29, 59, 60]. It is worth noting that the HTER of RCTR-
all spaces is higher than RCTR-{H,S,Cb,Cr}. This phe-
nomenon can be explained as follows: when capturing the
face records, the scene’s brightness condition of different
datasets is not consistent, so the RCTR feature extracted in
complete color spaces containing the luminance
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TaBLE 6: Performance comparison with the state-of-the-art
methods on FASD and RAD. “-” represents that the results are not
available.

Method FASD RAD
EER EER HTER

LBP-TOP [33] 10.0 7.9 7.6
LDP-TOP [53] 8.9 2.5 1.8
Motion Mag [12] 14.4 0.2 0.0
IDA [16] — 7.4 —
Dynamic [54] 21.8 53 3.8
Spectral cubes [55] 14.0 — 2.8
CVLBC [56] 6.5 17 0.8
Color LBP [57] 7.1 0.9 49
Color [21] 2.1 0.4 2.8
Deep CNN [3] 7.4 6.1 2.1
Partial CNN [2] 45 2.9 4.3
LBP-Net [58] 25 0.6 1.3
Fusion CNN [27] 2.7 0.8 0.7
MobileNet + attention [9] 4.2 0.1 0.3
ResNet + attention [9] 3.1 0.2 0.4
DRL-FAS [59] 0.2 0.0 0.0
RCTR-all spaces (ours) 1.8 0.7 2.1

TaBLE 7: Performance comparison with the state-of-the-art
methods on MSU.

Method EER
LBP + SVM baseline 14.7
DoG-LBP + SVM baseline 23.1
IDA [16] 8.5
LDP-TOP [53] 6.5
Color LBP [57] 10.6
Color [21] 4.9
RCTR-all spaces (ours) 2.0

TaBLE 8: Performance comparison with the state-of-the-art
methods on ROSE.

Method EER
LBP + SVM baseline 34.1
Color LBP [57] 27.6
Color [21] 13.9
De-spoofing [60] 12.3
DRL-FAS [59] 1.8
RCTR-all spaces (ours) 10.7

TasLE 9: Interdataset testing comparison on the FASD dataset
versus the RAD in terms of HTER.

Train Test Train Test

Method FASD RAD RAD FASD Average
LBP-TOP [33] 49.7 60.6 55.2
Motion Mag [12] 50.1 49.7 49.9
Spectral cubes [55] 34.4 50.0 422
Deep CNN [3] 48.5 45.5 47.0
Auxiliary [28] 27.6 28.4 28.0
De-spoofing [60] 28.5 41.1 34.8
STASN [29] 315 30.9 31.2
MobileNet + attention [9] 30.0 334 31.7
ResNet + attention [9] 36.2 34.7 355
DRL-FAS [59] 28.4 33.2 30.8
SSR-FCN [61] 19.9 419 27.0
RCTR-all spaces (ours) 37.1 42.0 39.6
RCTR-{H,S,Cb,Cr} (ours) 31.8 39.5 35.7
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TaBLE 10: Interdataset testing comparison with color texture-based methods on FASD, RAD, and MSU datasets in terms of HTER.

Training FASD
Testing RAD MSU

Method

FASD

RAD
MSU

MSU
Average

FASD RAD

Color LBP [57] 47.0 36.6
Color [21] 30.3 20.4
RCTR-{H,S,Cb,Cr} (ours) 31.8 19.1

39.6 35.2 49.6 42.0 41.7
37.7 341 46.0 33.9 33.7
39.5 29.0 41.3 344 32,5

information is not as good as in the color component, i.e., H,
S, Cb, and Cr.

Besides, it can be observed that when training on FASD
and testing on RAD, the result is better than training on
RAD and testing on FASD. The reason lies in FASD which
has more types of cameras and more attack scenarios; thus,
the detector is more robust. However, the manner of col-
lecting the recordings of RAD dataset is relatively simple,
and the lack of diversity in training data leads to poor
performance of the detector when testing on new dataset.

In Table 10, more comprehensive experiments are
conducted to compare our method with other color texture-
based methods [21, 57]. It can be seen that when training on
FASD and testing on MSU, the HTER of our proposed
detector is lowest. Similarly, our proposed method performs
best in half of the cases. In addition, the average HTER of our
proposed detector is 32.5%, which is also the lowest. The well
performance of our proposed algorithm using color residual
texture representation when testing on mismatched samples
can be attributed to the generalization ability of the CM
feature and the highly robust ensemble classifier.

5.8. Performance versus Training Set Scale. In this part, we
investigate on how the scale of training data impacts the
performance of the proposed method. Specifically, the
training set scale is increased from 10% to 90%, with a step of
10%, and the remaining data are used for validation. 10-
folds’ validation experiments are conducted, and each ex-
periment randomly selects face images to form the training
set; the average of the results are taken as the final result.
Prediction accuracy (ACC for short) is used as metric, that
is, the ratio of correct predictions to the total testing samples.
As illustrated in Figure 7, as the scale of training data in-
creases, the ACC of our proposed presentation attack de-
tector is gradually improved. And, when using only 10%
training data, the ACC of our RCTR-based detector on all
three datasets is higher than 95.5%. The empirical study
indicates that our proposed method can achieve excellent
prediction accuracy with a small-scale training data. In
addition, since DL-based methods are data-driven, so the
performance of them is likely to be unsatisfactory when
there is insufficient training data.

5.9. Time Complexity Analysis. We conduct time con-
sumption statistical experiments to analyze the processing
time. All methods considered are implemented by using
Matlab2017a and Python 3.6 on an Intel Core i7 2.8 GHz
CPU and 16 GB RAM PC. A total of 500 videos are used, and
the number of frames of each video is between 300 and 400.

98.0 4

97.5 4

97.0 4

ACC (%)

96.5 4

96.0 4

95.5 4

10 20 30 40 50 60 70 80 90
Training set scale (%)

—o— FASD

—— RAD
—4— MSU

FIGURE 7: Performance of the proposed method versus the training
set scale.

TaBLE 11: Processing time (per video) of our method and some
baseline methods.

Method Time (second)
LBP + SVM baseline 10.3
Color LBP [57] 12.2
Color [21] 21.9
RCTR-all spaces (ours) 15.6

The average processing time of each video is recorded, which
is shown in Table 11. It can be observed that our method can
achieve a competitive time consumption compared with
other methods (with an average processing time of 15.6
second), which indicates the good real-time detection ability
of the proposed method. Furthermore, our method has
better detection accuracy compared with other methods.

6. Conclusion

In this paper, we propose a RCTR-based detector to address
the challenge raised by face PA. First, by considering the
nuisance noise existing in face image, a DW-filter is applied
to eliminate such interference, after which more discrimi-
native residual images are obtained. Next, the RGB image
should be transformed to more representative spaces such as
HSV, YCbCr, and LAB. Dependent on the powerful texture
descriptor CM, the RCTR feature is extracted from multiple
color channels. Besides, an ensemble classifier is carefully
designed based on a probabilistic voting rule to make the
prediction. Extensive analytical experiments are conducted
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to verify the effectiveness of transforming color space and
employing residual image. Four challenging benchmark
datasets FASD, RAD, MSU, and ROSE are used to evaluate
our proposed method, and our proposed RCTR-based de-
tector shows preferable performance in the cases of both
intradataset and interdataset testing.
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