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With the increase of Internet visits and connections, it is becoming essential and arduous to protect the networks and different
devices of the Internet of /ings (IoT) from malicious attacks. /e intrusion detection systems (IDSs) based on supervised
machine learning (ML)methods require a large number of labeled samples. However, the number of abnormal behaviors is far less
than that of normal behaviors, let alone that the shots of malicious behavior samples which can be intercepted as training dataset
are actually limited. Consequently, it is a key research topic to conduct the anomaly detection for the small number of abnormal
behavior samples./is paper proposes an anomaly detection model with a few abnormal samples to solve the problem in few-shot
detection based on convolutional neural networks (CNN) and autoencoder (AE). /is model mainly consists of the CNN-based
supervised pretraining module and the AE-based data reconstruction module. Only a few abnormal samples are utilized to the
pretrain module to build the structure of extracting deep features. /e data reconstruction module simply chooses the deep
features of normal samples as training data. /ere also exist some effective attention mechanisms in the pretraining module.
/rough the pretraining of small samples, the accuracy of abnormal detection is improved compared with merely training normal
samples with AE. /e simulation results prove that this solution can solve the above problems occurring in network behavior
anomaly detection. In comparison to the original AE model and other clustering methods, the proposed model advances the
detection results in a visible way.

1. Introduction

Network application plays an indispensable role in people’s
lives with a large number of devices connected to the Internet;
network security is attracting greater attention. With the
continuous development of network technology, cyber threats
are increasingly complex. According to the statistical pre-
diction, the devices of the Internet of /ings will increase
from 27 billion to 75 billion by 2025, constituting a huge scale
of network access devices [1]. Meanwhile, the number of
network attacks will rise rapidly as well, which explains why
network attack detection is widely concerned by researchers.

/ere are some intrusion detection systems especially for
identifying malicious behaviors on the Internet and raising
alarms [2]. However, the detection process tends to be
complicated in the real production network environment. For
the time being, most methods, such as ML-based models,
always require a large number of labeled samples to ac-
complish the training process. Nevertheless, only a limited
number of malicious behaviors can be intercepted to be the
training data. Hence, few-shot detection is urgently needed.
More seriously, a new attack pattern can hardly be predicted
previously before it appears, which requires good sensitive
detection ability of the model for unknown types of malicious
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network traffic. Focusing on this problem, this paper also
adopts a large number of samples of normal behavior and a
few abnormal behavior samples in pretraining, which is
applicable to the actual few-shot learning scenario.

/ere are two major methods for malicious network
behavior detection, traditional business approaches and ML-
based ones [3]. Generally speaking, both of them need to
extract the necessary information or features based on pro-
fessional awareness. Deep Packet Inspection- (DPI-) based,
port-based, behavior-based, and statistic-based methods are
several frequently used traditional approaches [4, 5]. /ese
methods rely on strong single service characteristics, being
excellent at identifying specific threats accurately. However, if
some new threats occurred, the new business features and
rules need to be extracted as well, making it difficult for
traditional methods to identify malicious behaviors with
unstable rules and features. By contrast, ML methods usually
take out business features from more various dimensions,
which therefore provides better generalization.

However, from a business perspective, there is a limitation
that the performance of an ML model always depends on the
feature engineering results based on manual analysis, which
makes our feature mining task heavy. At the same time, the
training data also rely on specialized knowledge concerning
cyber security and attacks. As a result, researchers need to be
more concentrated on feature engineering work, whichmeans
a great challenge to the efficiency of anomaly detection.
Besides, some methods try to encrypt in the process of in-
formation transmission [6, 7], which makes the feature ex-
traction of encrypted trafficmore difficult. Compared with the
traditional machine learning algorithm, the deep learning
(DL) model has its own advantages in extracting features. For
example, the CNN-based model can directly obtain the deep
features without manual feature engineering, the data pro-
cessed by which displays a better spatial distribution. /is is
one of the reasons why CNN is selected for the pretraining
process. In common with all deep learning algorithms, the
model proposed in this paper also eliminates the manual
process of feature extraction. Except for this, themodel will no
longer require a mass of abnormal samples to carry out
supervised learning. During the detection process, the pre-
training model only needs a small number of abnormal
samples to achieve a good performance of the subsequent
unsupervised anomaly detection. By doing so, the problems of
few-shot detection can be worked out as well.

/e contributions of this paper can be summarized as
follows:

(1) Proposing a network malicious behavior detection
model based on CNN and AE (DFAE), which can not
only achieve a good detection result in the case of a
small number of abnormal training samples but also
provide a certain guiding significance for the real
abnormal detection scenario in which the number of
normal samples is much larger than that of abnormal
samples.

(2) Improving the AE detection results by a large margin
by using the output of deep features from the CNN-
based pretraining model as the training data.

(3) Enhancing the anomaly detection results on preci-
sion, recall, and F1-score in three available datasets
by adding an effective attentionmechanism into each
block of CNN.

/e remainder of this paper is arranged as follows. Some
related works are arranged in Section 2. In Section 3, we
introduce the detailed structure of the models and the
specific process of the method. /ere is also some basic
knowledge regarding the proposedmodel. Section 4 analyzes
the results produced by the proposed model and some
comparative experiments. Section 5 summarizes the paper
on the whole.

2. Related Work

Network traffic as an essential means to record the network
behavior process contains almost all the information of a
complete access from the source host to a destination host
[8] and can be captured and collected in a packet capture
(PCAP) file [9] in most implementations. /is is because of
its data retention and general integrity [10, 11]. In general,
extracting efficacious information and valid business fea-
tures from source data is the first step in network abnormal
behavior detection [12]. Similarly, this paper picks out PCAP
files of three different datasets and extracts effective infor-
mation from files for the following anomaly detection.

At present, there are a number of network traffic
anomaly detection methods based on machine learning.
Many of them pay attention to business features and adopt
the approach of traditional machine learning. Meanwhile,
some researchers are inclined to use neural networks to
extract deep features for detection without any artificial
process [5]. Also, there are studies focusing on distinct
anomaly detection results output from different traditional
algorithms on dataset NSL-KDD [13, 14]. Negandhi et al.
employed the supervised learning algorithm to train a
network attacks detection model based on random forests.
/e model reduces the number of input features under an
effective feature selection mechanism, not only improving
the running speed but also realizing a high accuracy [15].
Sarker et al. proposed an ML-based multilayered framework
for the purpose of promoting the security of network system,
which aims at the applicability towards data-driven intel-
ligent decisions and protects network systems and devices
from network attacks [16]. Atli proposed a traffic classifi-
cation method that identifies the normal traffic and
encrypted traffic by analyzing network flow based on de-
cision tree (DT) and K-Nearest Neighbor (KNN) algorithms
[17]. /e work by D’hooge and Kayes concluded that the
results of anomaly detection with machine learning algo-
rithms as a basis are not ideal among different datasets [18],
which provides a research impetus to increase the gener-
alization of the model with limited data. Without exception,
these methods cost a lot of time in feature extraction. /at is
why the methods rooted in the neural networks are ex-
tensively utilized in anomaly detection tasks.

/e research by Zeng et al. proposed a light-weight
framework without manual intervention and private
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information but with the aid of deep learning for encrypted
traffic classification and intrusion detection [19]. /e model
in [20] studied by/apa et al. was based on classification and
regression tree (CART) and CNN and performed well in 10-
fold cross-validation and independent testing on dataset
CIC-IDS2017 [21]. Compared with some other methods, the
model brought forward by Javaid employs a self-taught
learning technique on NSL-KDD and, as a result, improves
the precision and recall rates [22]. Chen et al. proposed a
network traffic classification model on the basis of metric
learning, which gained a better performance on some
available datasets by adding additive angular margin loss
embedded on CNN [23]. /e traffic classification method
based on text convolution neural network was projected by
Song et al., in which the model performs better because of
adding a new loss function [24]. Zhu et al. proposed a long
short-term memory- (LSTM-) based anomaly detection
method [25]. Du et al. put forward a packet-based malicious
payload detection and identification algorithm based on
object detection deep learning network [26]. At the same
time, reinforcement learning (RL) [27, 28] which is widely
used in resource scheduling is applied to anomaly detection
[29]. /ese methods based on deep learning make a lot of
contributions to the network security anomaly detection
tasks. However, none of them raised a good solution to the
problems mentioned in Section 1, including the lack of
abnormal sample markers as well as the recognition of new
abnormal behaviors.

In the fields of network anomaly detection and other
similar ones, some methods try to solve the class imbalance
by modifying the model structure formed byML algorithms.
/e problem of too few labeled samples of abnormal be-
haviors reveals the imbalance between negative samples and
positive ones. Buda et al. analyzed the imbalance problem in
image classification tasks and investigated some solutions
[30]. As for Rodda and Erothi, they exerted the traditional
ML methods to evaluate the effect of class imbalance on the
benchmark NSL_KDD dataset [31]. Gu et al. presented a
semisupervised weighted K-means detection method to
tackle the problem that supervised learning methods need
abundant labeled data [32]. On the foundation of variational
autoencoder (VAE), Xu et al. concluded an unsupervised
anomaly detection algorithm named Donut, which re-
markably advanced the results of anomaly detection [33].
Also, some data augmentation methods are put to use to
solve this problem in detection applications [34, 35]. In this
paper, under the theory of data augmentation and the idea of
unsupervised learning, we propose a network traffic anomaly
detection model with supervised pretraining, which uses a
few abnormal samples.

3. Model and Methods

3.1. Anomaly Detection Framework. /is model targets
attaching a superior anomaly detection result on the net-
work traffic data in the circumstance of a few malicious
behavior negative samples. In order to complete the ex-
perimental demonstration and explanation, we divide the
whole procedure into three parts. As shown in Figure 1,

there are data processing, supervised pretraining, and
autoencoder training process. Besides, there are some
comparative experiments as well. /e similarity-based and
K-means-based methods are explained later. In the figure
here, one of the comparative methods, AE method men-
tioned in the experiment, is the third part training process
whose input is the raw data without pretraining. Another
one is the whole deep-feature-based autoencoder without
any attention mechanisms. We also take advantage of the
similarity of raw data to measure the distance between the
test sample and benign sample center to identify whether the
tested one is abnormal. What is more, K-means clustering
model is used as the comparative method in the same way.
/e effectiveness of the proposed model is proved by the
comparison of its results with the results of the four
methods.

/e network behavior is usually recorded as PCAP files
by the means of network traffic. PCAP files consist of a series
of hexadecimal numbers. Generally, it does not come easy to
understand original numbers in a short time. /e numbers
in rigid positioning always represent particular meanings,
the business significance of which thus needs to be perceived
by some analysis software. Data processing is designed to
convert raw data from PCAP into matrixes. /e numbers
with a certain length will be taken out from PCAPs to shape
the data matrixes. After this step, the supervised pretraining
process will train a classifier to seek for the feature space with
a larger distance among samples from different categories.
/en, deep features output from the pretraining module will
be fed into autoencoder for data reconstruction with benign
data only. When the data reconstruction model converged,
samples could be imported into the model to evaluate the
reconstruction effect and detect the abnormal samples. As
can be seen from Figure 1, the outputs of abnormal samples
(the red sample outputs from AE in the figure) are usually
more different from inputs than those normal ones (the blue
sample outputs from AE in the figure). Because only normal
traffic data is used for training in this process, the model
learns nothing but the reconstruction ability of normal
traffic, which means the reconstruction process for abnor-
mal data cannot be completed. In the autoencoder training
process, the reconstruction rate threshold will be set, such as
90%, which is from 0 to 100%. If the sample reconstruction
rate is not smaller than the threshold value, the sample will
be regarded as a normal one; otherwise, it will be regarded as
an abnormal one. /ese three processes mentioned above
are followed by the realization of detection results. Also
worth noting is the fact that just a few abnormal samples in
the second pretraining process actualize the goal of
achieving the anomaly detection with a small number of
negative samples.

3.2. Model Structure of Deep-Feature-Based Autoencoder

3.2.1. Introduction of CNN and AE. /is section will in-
troduce the basic structure of CNN, AE, and the basic net of
the proposed model. CNN has outstanding performance in
many applications, especially in the image area [36, 37].
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Autoencoder is an unsupervised model and is widely ap-
plied in data dimensionality reduction and feature ex-
traction as well as data augmentation [38]. Figures 2 and 3
illustrate the simple structures of CNN and AE. A typical
CNN network always contains several convolutional layers,
pooling layers, and fully connected layers. Roughly
speaking, the main function of a convolutional layer is to
extract features, and it can obtain many effective ones
without any manual intervention. Convolutional layers
always serve as the beginning structure of the whole net-
work. /e convolution kernel size can be defined to extract
local features with different sizes and different convolution
kernels can represent different features. /en the results
output from the convolutional layer are mapped by a
nonlinear operation, which is usually achieved through the
activation function such as rectified linear unit (ReLU),
Tanh, and Sigmoid function [39, 40]. /e main purpose of
the pooling layer is to reduce the dimension of current data,
which is actually the process of sampling. Pooling layer not
only retains the main features but also greatly reduces the
computation of the model. Max pooling and average
pooling are two major operations in this layer. One cal-
culates the maximum of local units and the other figures
out the average in the feature map. FC layer decides which
category is the true result.

An AE is made up of two layers, namely, an encoder and
a decoder. AE is a genre of unsupervised learning method for
dimension reduction and feature extraction. /e encoder
mainly encodes original data and outputs samples of di-
mension reduction, while the decoder mainly decodes the
encoded vector to restore the original sample. Such two

processes can be regarded as a data reconstruction process.
CNN, FC, LSTM, and so forth are feasible to be chosen as the
basic network of AE.

3.2.2. Attention Mechanism. In this paper, the model that
combines CNN with AE has already reached a good result in
most testings. However, it does not show outstanding
performance in a tiny fraction of datasets, and there is still
room for improvement /erefore, effective attention
mechanisms are added to the model. When the attention
mechanism is proposed in the DL model, it draws lessons
from the human attention mechanism. After observing the
whole situation, people tend to pay attention to some more
important areas, which is just the skill the model needs to
master and improve in a further step under the attention
mechanism. In this paper, channel attention is attached to
the end of the convolutional block [41]. We try to use three
global pooling methods at the beginning of the net, namely,
max pooling, average pooling, and max pooling with average
pooling. Figure 4 unfolds the operation process of the at-
tention mechanism.

According to the details, the input of a convolutional
block can be defined as X ∈ RH′×W′×C′ and the output is
M ∈ RH×W×C, where W′, W, H′, and H are the widths and
heights of the input and output results of the convolutional
blocks. C′ and C denote the input and output channel sets of
a block. We useV � [v1, v2, v3, . . . , vc] to refer to the learned
set of filter kernels, where vc is the parameter of the c-th
filter. Hence, the output can be written as M � [m1,

m2,m3, . . .mc], where
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Figure 1: Framework of anomaly detection process. Data processing converts raw data with hexadecimal numbers to matrixes. Supervised
pretraining accomplishes few-shot training and provides deep features that can be used in autoencoder training process and the data
reconstruction process can be completed.
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/e symbol ∗ represents the convolution;
vc � [v1c , v2c , v3c , . . . , vC′

c ]. Next, the output of the convolutional
block M is fed into the attention module. Firstly, the pooling
operation converts M to size 1 × 1 × C as
Z1 � [z1

1, z2
1, z3

1, . . . , zC
1 ], where zC

1 is calculated by

z
C
1 �

1
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􏽘
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z
C′
1 � Max mi,j􏼐 􏼑. (3)

Equations (2) and (3) denote two different global pooling
methods: average pooling and max pooling. Figure 4 shows
the evaluation of the effects under the three different situ-
ations of using merely max pooling, using merely average
pooling, and using average pooling with max pooling to-
gether in experiments. /e average pooling is turned out to
be the best one. /erefore, the other two methods will not be
discussed in detail here. After that, the data will cross two
fully connected layers with ReLU and Sigmoid. We define
them as Z2 � [z1

2, z2
2, z3

2, . . . , zC/r
2 ] and Z3 � [z1

3,

z2
3, z3

3, . . . , zC
3 ] , where r is the parameter and it is defined as

16 here. If Ffc is the fully connected operation, Frelu denotes
ReLU activation process and Fsigmoid denotes Sigmoid ac-
tivation process; Z2 and Z3 can be calculated as

Convolutional layer Pooling layer Full connection layer

Output

Figure 2: CNN basic model.

… …

Encoder Decoder 

Features 

Figure 3: AE basic model.
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Figure 4: Structure of channel attention in the proposed model. Attention mechanism with average pooling adopted in the paper is
indicated with solid rectangles and other attention mechanisms with max pooling or max and average pooling not used are indicated with
dotted rectangles.
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Z2 � Frelu Ffc Z1( 􏼁( 􏼁, (4)

Z3 � Fsigmoid Ffc Z2( 􏼁( 􏼁. (5)

Finally, we define Fscale as the channel-wise multiplica-
tion between the scalar zC

3 and the input feature map mc.
Moreover, the output of the attention module is
􏽥M ∈ RH×W×C, which can be calculated as

􏽥M � Fscale Z3( 􏼁. (6)

Here, we employ the mean squared error (MSE) Lmse as
the loss function, which can be calculated as

Lmse(y) � 􏽘
i

yi
′ − yi( 􏼁

2
, (7)

where i is the prediction probability of i-th category, yi

signifies prediction result, and yi
′ indicates the true result.

/rough attention mechanism, a feature map with channel
weight Y can be acquired, which can be regarded as a self-
attention function on channels whose relationships are not
confined to the local receptive field to which the convolu-
tional filters are responsive.

3.2.3. Deep-Feature-Based Autoencoder. Sections 3.2.1 and
3.2.2 depict the basic structure of the proposed model in
detail. We can divide the model into four processing
modules. /ey are supervised deep feature extraction
module (SDFE), unsupervised data reconstruction module
(USDR), channel attention module (CA), and detection
results output module (DROut). Actually, CA is a part of
SDFE and DROut is the decision part of USDR./is detailed
process is described at length in Figure 5.

As Section 4.2 described, raw data will be converted into
a matrix with the data ranging from 0 to 255 whose width is
28 and height is 28. /us, the input can be written as
X ∈ R28×28. Next, the data will cross the first convolution
layer. /e output channel is set to 32 and the convolution
kernel size is 9. ReLU is the activation function here. Besides,
the first pooling kernel size is 2. After all these processes
mentioned above, we have M1 ∈ R10×10×32. /e calculation
process of each layer can be generalized as follows:

M1 � Fpooling×2 Frelu Fconv×32×9(X)( 􏼁( 􏼁, (8)

where M1 ∈ R10×10×32 denotes the results, Fconv means a
convolution operation, and Fpooling×2 refers to a pooling
operation with 2-size pooling kernel, the result of which will
be fed into the channel attention, and the corresponding
output result is 􏽦M1 ∈ R10×10×32 with the channel attention
weight depicted in Section 3.2.1.

After that, there is the second convolutional layer with
ReLU and the second pooling layer, where the convolution
kernel size is 9, the channel size is 64, and pooling kernel size
is 2. What is mentioned above can be described as follows:

M2 � Fpooling×2 Frelu Fconv×64×3
􏽦M1􏼐 􏼑􏼐 􏼑􏼐 􏼑, (9)

where M2 ∈ R4×4×32 is the output from the second convo-
lution block. /e samples then cross the attention layer and

obtain the result 􏽦M2 ∈ R4×4×64 with channel attention
weight. Finally, 􏽦M2 is entered into a fully connected layer to
acquire the supervised classification results. When the su-
pervised classifier training converges, a large amount of
benign data will be sent to the supervised model and receive
the deep features Y ∈ R1×1024 reshaped from M2 for each
sample. In SDFE, average cross entropy error (ACE) is used
to be the model loss Lace, which can be calculated as

Lace(y) � 􏽘
i

yi
′log yi( 􏼁, (10)

where i is the prediction probability of i-th category, yi

indicates the prediction result, and yi
′ conveys the true result.

By way of this treatment, Y will be imported into USDR.
/ere is an encoder and a decoder in it, as stated in Section
3.2.1. Moreover, three fully connected layers are designed in
both encoder and decoder. /e sizes of each output feature
are 256, 64, and 20 in the encoder and 64, 256, and 1024 in
the decoder where the activation functions are ReLU after
the first five FC and Sigmoid after the last FC. /en the final
reconstructed feature vector can be represented as
􏽥Y ∈ R1×1024.

In the output module, the model will evaluate the effect
of the reconstruction process. During the training process,
we only use benign data as the training data. When the
model converges, the model will have a good reconstruction
ability for benign samples, which is followed by adding test
data including normal and abnormal ones into the trained
model. At this time, there will be a significant difference
between normal samples and abnormal ones./is paper uses
Spearman’s rank correlation coefficient and Pearson cor-
relation coefficient to portray the reconstruction probability
between the input Y and 􏽥Y of USDR. A reasonable threshold
will also be set to identify whether the sample is normal or
abnormal.

4. Experiments Process and Results

4.1. Data Description. In this paper, PCAP files are the raw
data format from which the model gets the input value.
PCAP files can be translated into a group of hexadecimal
numbers. Specific hex numbers or their combination at a
specific location represents a specific business significance.
Generally speaking, a PCAP file consists of a certain number
of traffic packets. /e structure of a PCAP file and the
meaning of its various positions are illustrated in Figure 6.

/ere is a global header in a PCAP file. As Figure 6
shows, the 4-Byte Magic content represents the beginning
and tells the recognition sequence of Byte in this file. /e 2-
Byte Major content means the major file version number.
/e 2-Byte Minor content is the minor file version number.
/e 4-Byte/isZone refers to the local standard time./e 4-
Byte SigFigs is the accuracy of the timestamp. /e 4-Byte
SnapLen represents themaximum storage length./e 4-Byte
LinkType content is the link type. /e length of the packet
header is 16 Bytes, defining the 4-Byte high-order position of
capture timestamp, the 4-Byte low-order position of capture
timestamp, 4-Byte data length of currently captured, and 4-
Byte actual data length. Accordingly, there is a packet data
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area that always includes Internet Protocol (IP) information
and Transmission Control Protocol (TCP) information and
will be splicing of a certain number of traffic packets.

PCAP files with many traffic packets are selected as the
original data source in this paper. /ere are three different
open-source network attack datasets throughout the whole
experiment, namely, CIC-IDS2017, CIC-IDS2012, and
USTC-TFC2016, and they are all available through open-
source addresses. In detail, CIC-IDS2017 contains over 2.2
million pieces of benign flow data and about 550 thousand
pieces of malicious behavior flow data containing five
major attacks: Denial of Service (DoS) attack, web attack,
infiltration attack, port scan attack, and brute-force (BF).
CIC-IDS2012 contains about 1.5 million pieces of benign
flow data and no more than 50,000 pieces of abnormal flow
data with 4 types: brute-force, infiltration, Hyper Text
Transfer Protocol (HTTP) DoS, and Distributed Denial of

Service (DDoS). At the same time, USTC-TFC2016 merges
about 300,000 pieces of benign and 600,000 pieces of 10
types of Trojan horse attack abnormal flow data. As for
these abnormal types, DoS attack is an attack that causes
denial of service whose purpose is to make the computer or
network unable to provide normal services. Web attack
often attacks websites or web applications and causes the
application not to work normally. Infiltration attack is a
systematic and progressive comprehensive attack mode
whose attack target is often clear, but the purpose is not so
single. Port scan is the common way to search target
computer by hackers that can find out some potential
intrusion ports. Brute-force attack means that hackers use
the password dictionary to guess the user’s password by
exhaustive method, which is one of the most widely used
attack methods. HTTP DoS and DDoS are two special DoS
attacks.

Pcap Header Pkt Header1 Pkt Data1 Pkt Header2 Pkt Data2

Magic 4B

Major 2B Minor 2B

�isZone 4B

SigFigs 4B

SnapLen 4B

LinkType

Timestamp 4B

Timestamp 4B

Caplen 4B

Len 4B

Pkt data information

Ethernet information

IP information
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Data

……

Figure 6: Structure of a PCAP file. It always consists of a file header, some packet headers, and some packet data.
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4.2.Data Processing. It is described in Section 4.1 that PCAP
files are original data of experiments. But the neural network
model cannot identify these data types. Traffic packets need
to be converted into vectors with the same length. It can be
seen from Figure 7 that the data processing covers four steps
of data split, data clean, data transfer, and data trimming.
Once this process is finished, the data can be sent to the
model as an input value.

Data Split: A PCAP file records the network behavior
information spanning for a period of time, which means
that a file contains a large number of different access
connections. In general, people take a combination of
source IP address, source port, destination IP address,
destination port, and transport protocol as a single
access behavior, which is also called 5-tuple./erefore, it
is necessary to divide a large PCAP file into a number of
small PCAP files that only contain one 5-tuple data./is
small PCAP file is named a traffic flow as well.
Data Clean: Almost all the data generated by practical
applications will inevitably have redundancy, and so
does network traffic. In this step, empty flows, duplicate
flows, and interferential flows are picked out and de-
leted to produce the available data.
Data Transfer: DL model cannot analyze PCAP files, so
they need to be transferred into text files with hexa-
decimal number as content. /is step will not lose any
information, just the conversion of the storage form.
Data Trimming: /is step will determine the length of
hex data. Normally, the length depends on business
experience, packets average length, flows average
length, and suchlike factors. In this paper, we select 784
bytes of data and reshape them to a 28× 28 matrix. If a
PCAP file is larger than 784 bytes, it will be trimmed to
784 bytes. Or if it is smaller than 784, 0× 00 will be
increased into the end of the flow.

4.3. Results and Analysis

4.3.1. Detection Results Output from the Model. As same as
in other classification tasks, we collect four evaluation in-
dexes to evaluate the effect of the model, macro-f1,
weighted-f1, recall, and precision, which are written as Imf1,
Iwf1, Irecall, and Ipre and are explained as follows:

Irecall �
1
N

􏽘

N

i�1

TP
TP + FN

, (11)

Ipre �
1
N

􏽘

N

i�1

TP
TP + FP

, (12)

Imf1 �
1
N

􏽘

N

i�1

2∗ Ipre ∗ Irecall

Ipre + Irecall
, (13)

Iwf1 �
1
N

􏽘

N

i�1
w
2∗ Ipre ∗ Irecall

Ipre + Irecall
, (14)

where TP represents the number of correctly identified
positive samples, TF represents the number of correctly
identified negative samples, FP denotes the number of
wrongly identified positive samples, and FN denotes the
number of wrongly identified negative samples. N refers to
the category number in data and w is the weight of this
category to the total data quantity.

Under the experiment, the model results are verified on
three datasets described in Section 4.1. At the same time, we
set up four groups of comparative experiments on each
dataset. In a further step, the training set and test set use the
same data to ensure the effectiveness and the reference value
of the four comparison experiments shown in Tables 1–3.

(1) Similarity Measure Method. /is method exerts the
Pearson correlation coefficient to calculate the distance
between the test sample and the center samples of benign
data in the training set. Only benign data are employed to
find the center of the training samples. When calculating, we
choose n samples randomly and calculate the nearest center
vector to them as the center sample. /e abnormal behavior
is detected by the similarity distance between the test sample
and the normal data center obtained via the training process.
/is method attempts to use the most primitive data dis-
tribution to distinguish outliers. Due to the complex dis-
tribution of the original data, it can be predicted that its
accuracy will not be ideal.

(2) K-Means Method. K-means method applies the unsu-
pervised clustering to the detection of anomalies directly.
/e unsupervised process means that a lot of labeled data is
not required in this process. K-means is a distance-based
algorithm selecting the centroids of each category and
comparing the distance between the test samples to each
centroid. /e sample will eventually be classified into the
category with the nearest centroid. Assuming that we have 2
categories, normal and abnormal, there are 2 cluster centers.
According to the principle of minimum distance from the
initial center point, all observations are divided into the
categories, where each center point is located./en themean
value of the observation points in each category is calculated
as the center of the next iteration until convergence. /e
unsupervised method is always sensitive to data. Because
there is a lot of information redundancy in traffic data, it will
have a greater impact on the clustering process.

(3) AE Method. As part of the proposed model, AE re-
constructs the data directly with the original data resource,
the advantage of which is that it needs no abnormal behavior
data and simply makes use of the normal traffic data. But the
effects are often decided by the original distribution of data.

(4) CNN with AE. CNN with AE also belongs to the pro-
posed model without adding the attention mechanism.
Section 3.2 and Figure 5 concretely reveal these treatment
processes. Only 2,000 malicious samples produce a marked
effect in the supervised classifier of each dataset, by virtue of
which the unsupervised autoencoder can reach a state of
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perfection. More than 80,000 test samples are put into use,
including 30,000 benign samples and other abnormal ones.

Tables 1–3 present the experiment results among three
datasets. Each method adopts two types of test data. One
only contains samples of known categories trained in the
surprised classifier and the other also embodies quite a lot of
unknown categories. It can be concluded that there is an
obvious improvement in every dataset with the proposed
model. It is proved that the pretraining with a small number
of malicious samples can significantly improve the subse-
quent data reconstruction process. As for USTC-TFC2016
and CIC-IDS2012, the supervised training process enhances
the recall, precision, and f1-score over 10%. /e improve-
ment of CIC-IDS2017 is lightly inferior to others. Mean-
while, the effect of the attention mechanism on CIC-
IDS2017 is more obvious by reforming the results over 10%,
especially on the test samples with unknown categories.
From the results of three datasets, we can see that the
proposed method is very effective. As for better distributed
dataset such as USTC-TFC2016, the detection accuracy is
more than 99%. As for the dataset with general experimental
results such as CIC-IDS2017, its accuracy also reached 95%.
/is also shows that the model has made a significant im-
provement on different distribution of data. /e proposed
method has strong generalization ability and provides the
possibility for the application in the actual data.

4.3.2. Some Other Discussion. Apart from the enhancement
of the overall effect, we also observed the classification of
normal and abnormal samples. Figure 8 manifests the con-
fusionmatrix of the results output fromDFAE on each dataset.

In view of the effect of each category, the detection accuracy of
the normal flow is better than that of the abnormal ones. From
the perspective of confusion matrix results, the accuracy is
relatively balanced between positive and negative samples. It is
particularly valuable to achieve this result in few-shot learning
tasks. Our experiment emerged the imbalance that the number
of normal samples is much larger than abnormal ones.
However, the proposed model can well solve this problem./e
findings suggest that the detection rate performs efficaciously in
both categories.

In order to investigate the effect of the model more deeply,
we analyze the reconstruction results of the original data with
and without the deep features. From Figure 9, we can see the
reconstruction rate of different datasets. On the red arrow’s left
side is the data reconstruction of original data based on AE. On
the right side of the red arrow is the data reconstruction process
using the deep features output from a supervised classifier
based on CNN. It can be easily discovered that the recon-
struction rate of the right figure is obviously better than that of
the left one./ere is a clear reconstruction rate between normal
samples and abnormal samples in terms of the right figure.
Every row in the graph is the result of a dataset. In each dataset,
1,000 samples are randomly picked up to compare the re-
construction result in the figure./e green rectangles represent
the rate of direct reconstruction using the original samples and
the blue ones denote the reconstruction rate of deep-features-
based results. We can see an apparent dividing line between
green and blue in the figure to the right of the red arrow. It can
be safely concluded that the proposed method has verified the
feasibility of the model in the small sample anomaly detection
task from both theory and effect.

Table 1: Experiments results of dataset CIC-IDS2017.

Methods
With unknown categories Known categories

Recall Precision Macro-f1 Recall Precision Macro-f1
Similarity measure 0.5233 0.5134 0.5103 0.4134 0.4230 0.4071
K-means cluster 0.6428 0.5554 0.3228 0.6163 0.6962 0.4721
AE 0.6226 0.5929 0.6042 0.8510 0.8148 0.8196
CNN with AE 0.6718 0.6399 0.6539 0.8626 0.8262 0.8323
DFAE 0.8593 0.8738 0.8579 0.9519 0.9508 0.9513
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Figure 7: Data processing outputs data matrixes with shape n.
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Table 2: Experiments results of dataset CIC-IDS2012.

Methods
With unknown categories Known categories

Recall Precision Macro-f1 Recall Precision Macro-f1
Similarity measure 0.5545 0.5567 0.5555 0.4996 0.4996 0.4996
K-means cluster 0.2394 0.3367 0.2798 0.4595 0.3238 0.3799
AE 0.8066 0.8713 0.8335 0.7908 0.8372 0.8068
CNN with AE 0.9455 0.9522 0.9488 0.9418 0.9519 0.9465
DFAE 0.9490 0.9668 0.9576 0.9480 0.9649 0.9557

Table 3: Experiments results of dataset USTC-TFC2016.

Methods
With unknown categories Known categories

Recall Precision Macro-f1 Recall Precision Macro-f1
Similarity measure 0.4525 0.4502 0.4514 0.2693 0.2630 0.2660
K-means cluster 0.7965 0.6003 0.5557 0.6535 0.6861 0.5465
AE 0.8105 0.9654 0.8692 0.8573 0.9050 0.8751
CNN with AE 0.8765 0.8410 0.8576 0.9565 0.9675 0.9617
DFAE 0.9552 0.9675 0.9613 0.9983 0.9965 0.9973
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5. Conclusion

/is paper proposes an anomaly detection model with a few
abnormal samples to solve the problem in few-shot detection
based on CNN and AE. /is is a very common scenario in
the application of network abnormal behavior detection. In
the actual production and application, the number of normal
behaviors is far greater than the number of abnormal be-
haviors. /e model proposed in this paper can solve this
problem and improve the detection results. As described
above, the results demonstrate the improvements under this
module of detection recall, precision, and f1-score in three
datasets. What is more, the experiment proves that, through
a small number of malicious samples for pretraining, the
data reconstruction task will become easier, and the few-shot
detection effect can also be improved in an obvious way.
Sufficient comparative experiments verified the effectiveness
of the proposed method. With regard to the network traffic
detection, it is not easy to detect the anomaly directly
through an unsupervised model, which can be easily

reflected from comparative experiments. /erefore, it is
necessary to deal with the limited amount of labeled ab-
normal behavior samples. /e few-shot malicious traffic
detection task plays a crucial role in practical applications.

In the foreseeable future, we will continue to raise the
few-shot malicious traffic detection results by different
methods and to increase the possibility of applying this
model into the actual and real-time network traffic. As for
actual network traffic anomaly detection, it is always difficult
to find out malicious behaviors when a series of new attacks
occur. It is unrealistic to focus on training and learning new
categories. But few-shot detection is meaningful here. Most
of the time, we are concerned about the normal data and the
new types of abnormal samples are only trained in the set
intervals by few-shot learning. /is is also the reason why
this method is more feasible in the actual application sce-
narios. Meanwhile, we will tend to utilize fewer training
samples to achieve a higher outcome on different datasets
and production data. Detection efficiency will also be one of
the focuses in future work.
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