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Splicing is one of the most common tampering techniques for speech forgery in many forensic scenarios. Some successful
approaches have been presented for detecting speech splicing when the splicing segments have different signal-to-noise ratios
(SNRs). However, when the SNRs between the spliced segments are close or even same, no effective detection methods have been
reported yet. In this study, noise inconsistency between the original speech and the inserted segment from other speech is utilized
to detect the splicing trace. First, noise signal of the suspected speech is extracted by a parameter-optimized noise estimation
algorithm. Second, the statistical Mel frequency features are extracted from the estimated noise signal. Finally, the spliced region is
located by utilizing a change point detection algorithm on the estimated noise signal. *e effectiveness of the proposed method is
evaluated on a well-designed speech splicing dataset. *e comparative experimental results show that the proposed algorithm can
achieve better detection performance than other algorithms.

1. Introduction

With the wide spread of social networks and the rapid
development of powerful audio editing tools (such as Adobe
Audition and GoldWave), digital speech can be easily
accessed, manipulated, and distributed. Such tools have
provided lots of convenience in various aspects such as social
activity, news media, entertainment, and so forth. *ese
modified speeches, however, may cause unpredictable re-
sults when they are presented in a scene such as justice or
criminal investigation. Digital speech forensics [1–3] is a
valuable technique for determining the authenticity of
digital speech. By analyzing themodification traces left in the
suspected speech, digital forensics can identify the tam-
pering type and locate the tampering position [4].

Deletion, insertion, and splicing are three most com-
monly tampering operations that can significantly change
the content of the original speech. Splicing is an operation in
which one or more speech segments are inserted in the
original one to change the content of the target speech. In
general, splicing is always accompanied by deletion and
insertion. According to whether the inserted speech segment

is from the original speech or not, splicing can be further
divided into self-splicing and transsplicing, respectively.
Specifically, self-splicing refers to copying a segment in the
original speech and inserting it into the other region in the
same speech. Since the self-splicing will introduce high-
similarity regions in the spliced speech, the detector can take
the similarity of speech features as criterion to find the
splicing matching regions. In real scenarios, transsplicing is
relatively more common than self-splicing. On the one hand,
the forgers tend to splice speech components from different
source/scenes. On the other hand, it is a hard task for the
forgers to find the splicing segment from the original speech
in most cases. In this work, we focus on the detection of
speech transsplicing.

As an important branch of multimedia security [5, 6],
many splicing detection algorithms [7–9] for digital speech
have been proposed over the last decade. *e ENF- (electric
network frequency) based method [10] is effective for
detecting speech splicing, in which the ENF signal is
extracted from a questioned audio recording and matches it
with the reference signal in an ENF database. Reis et al. [11]
proposed an ESPRIT-Hilbert ENF estimator with an outlier
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detector based on the kurtosis of the estimated ENF. *en,
the kurtosis is taken as an input for a support vector machine
classifier to indicate the presence of splicing. However, ENF-
based detection algorithms may not be applicable when the
speech is recorded with the well-designed or battery-oper-
ated devices. On the other hand, the reference ENF dataset is
needed during an ENF-based forensic investigation process.
Imran [12] proposed a splicing detection algorithm based on
intrinsic statistical properties of suspected speech. *e
speech is first divided into segments using voice activity
detection, and the histogram of one-dimensional LBP (local
binary pattern) is exploited as the detection feature. Zhao
et al. [13] introduced channel impulse response to detect
speech splicing. *e impulse response amplitude and
background noise are used to determine the location of the
splicing.

In real scenarios, in order to remove the splicing trace,
the forger would try best to keep the SNR (signal-noise ratio)
of the processed speech as consistent as possible between the
spliced and the original regions.*is will greatly increase the
difficulty of the splicing detection task. As far as we know,
there is no prior work on transsplicing detection with the
same SNR. In this study, we proposed an approach for
detecting transsplicing with the same SNR. First, the Sor-
ensen algorithm [14] is utilized to estimate the noise level of
the suspected speech. *en, the variances of Mel frequency
cepstral coefficient (MFCC) [15] for estimated noise signal
are calculated as the detecting features. Finally, the spliced
region is located by a change point detection algorithm
based on the penalty cost function [16]. *e performance of
the proposed algorithm is evaluated on a well-designed
speech splicing dataset. *e experimental results show that
the proposed algorithm achieves better detection accuracy
compared with other algorithms.

*e rest of the study is organized as follows. *e main
work of this study is described in Section 2, in which noise
estimation, feature extraction, and the change point de-
tection algorithm are described in detail. Section 3 will
present the splicing dataset and the experimental results.
Finally, the conclusion is drawn in Section 4.

2. Proposed Transsplicing Detection Algorithm

*e proposed framework for transsplicing detection and
localization is shown in Figure 1. First, the Sorensen algo-
rithm is adopted to estimate the noise signal. Next, the
estimated noise is framed, and its Mel-frequency cepstral
coefficients are extracted. *e variance of the coefficients is
calculated as the detecting feature. Finally, the change point
detection algorithm is applied on the variance sequence to
detect and locate the splicing.

2.1. Noise Estimation. Sorensen [14] proposed a recursive
averaging noise estimation algorithm. *e idea is that dif-
ferent attenuation rules are adopted to different regions to
estimate the noise in the speech accurately. Figure 2 shows
the flowchart of this algorithm.

Let y(i) be the suspected speech at time i, which consists
of clean speech s(i) and additive noise n(i). First, the
windowed and framed speech signal is subjected to short-
time Fourier transform (STFT):

Y(λ, k) � S(λ, k) + N(λ, k), (1)

where λ ∈ Z is the time index, k ∈ 0, 1, . . . , K − 1{ } is the
frequency bin index, L is the window length, and S(λ, k) and
N(λ, k) are the STFT coefficients of s(i) and n(i),
respectively.

*en, the periodograms PY can be calculated as

PY(λ, k)≜ |Y(λ, k)|
2
. (2)

Next, PY is spectrally smoothed to produce pY(λ, k) and
then temporally smoothed to p(λ, k). *en, the temporal
minimum values pmin(λ, k) could be tracked within a
minimum search window of length Dmin, that is,

pmin(λ, k) � min p(ψ, k) | λ − Dmin <ψ ≤ λ( 􏼁, (3)

where ψ ∈Z, and Dmin � U∗V. Window D represents an
analysis window length. Since it is computationally ex-
pensive to find minimum in each frequency band for each
frame, an efficient procedure [17] is proposed in which the
analysis window is divided into U subwindows of V samples.
Hence, the minimum is updated for every V samples, stored
it for later use, and reduced the number of comparation
operations per frame and frequency bin on 1 + (U − 1)V.

For D(λ, k) � 1, the noise periodogram estimation is
equal to a time-varying power scaling of theminimum tracks
pmin(λ, k). For D(λ, k) � 0, it is equal to the noisy speech
periodogram PY(λ, k), that is,

P􏽢N
(λ, k) �

Rmin(λ)pmin(λ, k), if D(λ, k) � 1,

PY(λ, k), if D(λ, k) � 0,
􏼨 􏼩, (4)

where D(λ, k) is used to determine whether speech exists.
Rmin(λ) is a bias compensation factor, and it only updates in
the nonspeech frames.

A smooth estimate of the noise magnitude spectrum can
be obtained by

| 􏽢N(λ, k)| �
�������
􏽥P􏽢N

(λ, k)
􏽱

. (5)

After the above steps, we obtained the enhanced speech
􏽢s(i). Finally, the estimated noise signal 􏽢n(i) can be obtained
by subtracting the enhanced speech 􏽢s(i) from the noisy
speech y(i), that is,

􏽢n(i) � y(i) − 􏽢s(i). (6)

It is seen from equation (3) that Dmin plays an important
role in the noise estimation process. Dmin is mainly used to
control a fixed-length window. In the noise estimation
process of each frame, the minimum pmin(λ, k) in the
window is tracked, and the value obtained by the tracking is
used to continuously update pmin(λ, k). Finally, the noise
power spectrum P􏽢N

(λ, k) is calculated by pmin(λ, k). It can
be seen from the above analysis that reasonable adjustment
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of U and V can effectively improve the noise estimation
performance of the algorithm.

2.2. Detection Feature Extraction. For each frame of the
estimated noise, Mel frequency cepstral coefficients are
extracted, which is based on the human peripheral auditory
system. Figure 3 shows the diagram of MFCC extraction.

First, the estimated noise signal 􏽢n(i) is subjected to DFT
to obtain a linear spectrum 􏽢N(k). *en, 􏽢N(k) is filtered by
the Mel frequency filter bank Hm(k) to obtain the Mel
spectrum. In order to make the result more robust to noise
and spectral estimation errors, the logarithmic energy of the
Mel spectrum is generally taken, that is,

L(m) � ln 􏽘
N

k�1
| 􏽢N(k)|

2
Hm(k)⎡⎣ ⎤⎦, m � 1, 2, . . . , M, (7)

where m is the number of filter banks.
Next, L(m) is subjected to DCT to obtain the MFCC

coefficient:

mfcc(j) � 􏽘
M

m�1
L(m)cos n(m − 0.5)

π
m

􏼒 􏼓, (1≤ j≤ J),

(8)

where j is the index of the cepstral coefficients.
Finally, for each frame, the variance of mfcc(j) can be

calculated by equation (9), and we can obtain a variance
sequence for each suspected speech.

V �
1
J

􏽘

J

j�1
(mfcc(j) − mfcc)

2
. (9)

2.3. Change Point Detection. Since the segments of trans-
splicing come from the different sources/scenes, we consider
the inconsistencies of the noise characteristics mixed in the
suspected speech to be a clue of splicing. It means that there
will be a change on noise characteristics where the splicing
happened. Hence, the splicing detection and localization can
be transformed into a change point detection problem.
Algorithms for change points’ detection [18–20] have made
good progress in recent years. Lavielle [16] proposed amodel
selection method based on a penalized contrast which is
applied to the change point problem. It can be used for
estimating the number of change points and their location.
In this work, Lavielle’s algorithm is adopted to find the
splicing positions.

Let V � (V1, V2, . . . , Vn) be the variance sequence of
estimated noise signal and K be some integer. Similarly, let
α � (α1, α2, . . . , αK−1 ) be a sequence of integers satisfying
0< α1 < α2 < , · · · , < αK−1 < n. For any 1≤ k≤K, let
M(Vαk−1+1 , Vαk−1+2 , . . . , VαK

; β) be a contrast function for
estimating the unknown true value of the parameter β in the
segment k. It means that there will be an estimated value of β
(􏽢β) when the contrast function reaches it minimum. In other
words, the minimum contrast estimate 􏽢β(Vαk−1+1, Vαk−1+

2, . . . , VαK
), computed on segment k of α, is defined as a

solution of the following minimization problem:

M Vαk−1+1, Vαk−1+2, . . . , VαK
; 􏽢β Vαk−1+1, Vαk−1+2, . . . , VαK

􏼐 􏼑􏼐 􏼑≤M Vαk−1+1, Vαk−1+2, . . . , VαK
; β􏼐 􏼑. (10)

*en, we define the contrast function J(α, v) as

J(α, s) �
1
n

􏽘

K

k�1
M Vαk−1+1, Vαk−1+2, . . . , VαK

; 􏽢β Vαk−1+1, Vαk−1+2, . . . , VαK
􏼐 􏼑􏼐 􏼑, (11)

where α0 � 0, αK � n.
As an example, consider the flowing model:

Vi � μi + σiεi, (1≤ i≤ n), (12)

where εi is a sequence with zero mean and unit variance. In the
case of changes in the variance, μi is a constant sequence and σi

is a piecewise one. *e contrast function can be defined as a
Gaussian log-likelihood, even if εi is not a Gaussian sequence.

Noise
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Suspected
speech
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Change point
detection

Detection
results

Figure 1: Framework of proposed splicing detection and localization.
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Figure 2: Flowchart of the Sorensen noise estimation algorithm.
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M Vαk−1+1, Vαk−1+2, . . . , VαK
; σ2􏼐 􏼑 � αk − αk−1( 􏼁log σ2􏼐 􏼑 +

1
σ2

􏽘

αK

i�αk−1+1
Vi − μ( 􏼁

2
. (13)

*en,

J(α, v) �
1
n

􏽘

K

k�1
αk − αk−1( 􏼁log 􏽢τ2αk−1+1 : αk

􏼐 􏼑, (14)

where 􏽢τ2αk−1+1: αk
� (1/(αk − αk−1)) 􏽐

αK

i�αk−1+1 (Vi − V)2 is the
variance of (Vαk−1+1 , Vαk−1+2 , . . . , Vαk

). For instance, when
the maximum number of segments Kmax � 3, the number of
change points is Kmax − 1 � 2, and the change boundary is
(α1, α2).

Finally, we summarize our splicing detection algorithm as
follows. First, we estimate the power spectral density P􏽢N

(λ, k)

of the noise in the noisy speech signal y(i) and then use
P􏽢N

(λ, k) to obtain the enhanced speech signal 􏽢s(i). *erefore,
the noise signal 􏽢n(i) can be estimated with the noisy speech
y(i) and the enhanced speech 􏽢s(i). *en, the estimated noise
􏽢n(i) is framed and windowed, and then for each frame,
M-dimensionalMFCC coefficients are calculated.*e variance
sequence V � (V1, V2, . . . , Vn) of MFCC coefficients is ob-
tained and taken as the input of the change point detection
algorithm, and then, the penalty cost function is constructed by
equation (11). Finally, the estimated parameters of the penalty
cost function K∗ − 1 and (αK∗−2, αK∗−1) represent the number
of change points and the boundaries of the change segments,
respectively. Among them, the boundary of the change seg-
ment is the final detected tampering position.

3. Experimental Results

In this section, we first describe the dataset adopted in this
work. Additionally, as mentioned in subsection 2.1, the per-
formance of the proposed detection algorithm depends
strongly on the effectiveness of the noise estimation. Hence, the
noise estimation algorithm is evaluated to find the optimal
parameters. *en, the performance of the proposed splicing
detection method with optimal noise estimation is present.

3.1. Splicing Dataset. *e transsplicing speech samples in
this study are created based on NOIZEUS speech corpus [21]
which is derived from the clean speech contaminated by
various kinds of noise in the real world. *e clean speech
comes from 30 IEEE statements containing three male and
three female pronunciations. *e noise signals in NOIZEUS
come from the AURORA-2 database [22], including noise
from train stations, airports, exhibition halls, streets, and

restaurants, as well as car noise, noise from commuter trains,
and babble noise from multiperson speech. During noise
contamination, various SNR cases including 0 dB, 5 dB,
10 dB, and 15 dB have been considered.

*e creation process of the splicing speech dataset is as
follows. First, the samples of NOIZEUS corpus are divided
into two classes: the original samples and the samples to be
spliced. *en, for each sample to be spliced, we further cut it
into 4 different segments by using random numbers. For
each original sample, a pseudorandom generator is used to
determine where the segment will be spliced. Next, the
splicing is performed, and the spliced speech is saved with
the original sampling rate. In this work, the SNR of the
original sample is kept the same as the segment to be spliced.

In the experiment, there will be 42 types of samples in each
splicing subset, and each type contains 30 samples. As a result,
there will be 1260 samples in each splicing subset. Each sample is
8KHz, mono, 16bit quantized, and the duration is 3-4 seconds.

3.2. Performance Evaluation on Noise Estimation. It can be
seen from the analysis in Section 2.1 that the parameters U

and V will affect the performance of the noise estimation
algorithm. In order to find the optimal U and V, we first
adjust the U and V values in the Sorensen algorithm to
estimate the noise of 1260 segments of each subset and then
calculate the average SNR of the 1260-segment speech under
each U and V case. *e experimental results for 0 dB and
5 dB speech are given in Tables 1 and 2.

It can be clearly seen from Tables 1 and 2 that U and V

have a great influence on the performance of the Sorensen
algorithm. For example, the estimation error for 0 dB case is
minimized at −0.0737 dB when (U, V) is (2, 5). And the best
choice for 5 dB case is (4, 4). Table 3 gives the optimal U and
V for various SNR cases.

Additionally, we compared the optimized Sorensen al-
gorithm with other typical noise estimation algorithms.
From Table 4, the optimized algorithm achieves the best
estimated results in various SNR cases.

3.3. Performance Evaluation on SplicingDetection. In MFCC
extraction, we set the number of filters m to 27 and the
number of cepstral coefficients J to 12. For Lavielle’s al-
gorithm [16], we set the maximum number of segments
Kmax to 3 and only variance change is considered.

DFT Mel filter bank
Hm (k)

DCT
L (m) mfcc (i)n (i) N (k)

Figure 3: Diagram of MFCC extraction.
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F score is introduced as an objective metric to evaluate
the performance of the proposed algorithm, which can be
expressed as follows:

F �
(2∗ precision∗ recall)

(precision + recall)
,

Precision �
􏽥χ ∩ χ

􏽥χ
,

Recall �
􏽥χ ∩ χ
χ

,

(15)

where precision is the accuracy rate, recall is the recall rate, χ
is the actual splicing region, and 􏽥χ is the detected splicing
region. It can be seen from equation (15) that the larger the F

value, the better the detection capability of the algorithm.
As a comparison to [7, 9], we adopt the optimal parameters

in Table 3 to detect the splicing trace.*eF scores are shown in
Table 5. It can be seen that the proposedmethod achieves better
detection performance in all SNR cases. Meanwhile, it can be
seen from Table 3 that the detection performance of the al-
gorithm gradually deteriorates with the SNR increases. *is is
consistent with the situation in the actual scene, that is, the
lower the noise energy contained in the speech signal, the more

difficult the noise estimation algorithm is to extract the noise.
In addition, according to the results in Tables 3 and 5, the
detection result of the algorithm tends to become better with
the decrease of U and V. It indicates that the speed of the noise
estimationwill be beneficial to improve the detection rate of the
algorithm.

4. Conclusion and Future Work

In this study, a novel method for the speech transsplicing
detection algorithm has been proposed. Considering that
the segment to be spliced and the original segment have
different noise levels, the noise of the suspected speech is
estimated first. *en, we extract the variance of the 12-
dimensional MFCC coefficients from the estimated noise
and utilize the change point detection algorithm based
on the penalty cost function to locate the splicing region,
finding that the variance of the spliced region is sig-
nificantly lower than that of the nonspliced regions.
Experimental results show that the detection algorithm
can accurately determine the starting position of splicing
and can detect the entire splicing region. Compared with
the splicing detection methods based on grid frequency
and intrinsic statistical law of speech, the proposed
method has fewer assumptions and can be applied to
more forensic scenarios. *e future work will focus on
extracting more efficient hybrid features to further im-
prove detection accuracy, and more scenarios
closer to the real world such as reverberation will be
considered.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Table 1: Noise estimation for 0 dB.

V

8 7 6 5 4 3 2

U

5 1.9714 1.7684 1.5395 1.2562 0.8877 0.4256 −0.2804
4 1.6638 1.4731 1.2296 0.9308 0.5658 0.0819 −0.6422
3 1.2830 1.0713 0.8185 0.5161 0.1296 −0.3664 −1.0596
2 0.7330 0.5187 0.2536 −0.0737 −0.4621 −0.9503 −1.5494

*e value in bold is used to emphasise that the noise estimation algorithm
achieves the best performance when (U, V) is (2, 5).

Table 2: Noise estimation for 5 dB.

V

8 7 6 5 4 3 2

U

5 7.0750 6.8253 6.5178 6.1066 5.5315 4.7870 3.5437
4 6.6826 6.4245 6.0547 5.5989 5.0011 4.1934 2.8933
3 6.1350 5.8040 5.4229 4.9272 4.2658 3.4006 2.1375
2 5.2449 4.9374 4.4928 3.8981 3.1890 2.3344 1.2947

*e value in bold type is used to emphasise that the noise estimation al-
gorithm achieves the best performance when (U, V) is (4, 4).

Table 3: Optimal parameters in various SNRs.

SNR (dB)
0 5 10 15

U 2 4 3 4
V 5 4 7 7

Table 4: SNR estimation for various algorithms.

Algorithm 0 dB 5 dB 10 dB 15 dB
[23] 4.7419 9.8905 14.7146 18.5088
[24] 2.6064 7.7292 12.5088 16.5755
[25] 3.5518 8.2249 12.3533 15.6897
[26] 3.3987 8.7689 13.7923 17.8140
[27] 4.3277 8.5393 12.1390 14.7518
Optimized Sorensen 0.1296 5.0011 10.0396 15.0139
*e value in bold type is used for emphasis that the performance of the
optimized algorithm is better than other algorithms.

Table 5: F scores of splicing detections.

Algorithms
SNR cases (dB)

0-0 dB 5-5 dB 10-10 dB 15-15 dB
[7] 0.7459 0.7317 0.6734 0.6605
[9] 0.7924 0.7999 0.7805 0.7672
Proposed 0.8302 0.8137 0.7923 0.7685
*e values in bold type is used for emphasis that the performance of the
proposed algorithm is better than other two algorithms.
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