
Research Article
Weighted Nuclear Norm Minimization on
Multimodality Clustering

Lei Du, Songsong Dai, Haifeng Song , Yuelong Chuang, and Yingying Xu

School of Electronics and Information Engineering, Taizhou University, Taizhou, China

Correspondence should be addressed to Haifeng Song; isshf@126.com

Received 7 December 2020; Revised 24 December 2020; Accepted 6 January 2021; Published 28 January 2021

Academic Editor: Liguo Zhang

Copyright © 2021 Lei Du et al. *is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Generally, multimodality data contain different potential information available and are capable of providing an enhanced
analytical result compared to monosource data. *e way to combine the data plays a crucial role in multimodality data analysis
which is worth investigating. Multimodality clustering, which seeks a partition of the data in multiple views, has attracted
considerable attention, for example, robust multiview spectral clustering (RMSC) explicitly handles the possible noise in the
transition probability matrices associated with different views. Spectral clustering algorithm embeds the input data into a low-
dimensional representation by dividing the clustering problem into k subproblems, and the corresponding eigenvalue reflects the
loss of each subproblem. So, the eigenvalues of the Laplacian matrix should be treated differently, while RMSC regularizes each
singular value equally when recovering the low-rankmatrix. In this paper, we propose a multimodality clustering algorithmwhich
recovers the low-rank matrix by weighted nuclear normminimization. We also propose a method to evaluate the weight vector by
learning a shared low-rank matrix. In our experiments, we use several real-world datasets to test our method, and experimental
results show that the proposed method has a better performance than other baselines.

1. Introduction

Clustering, a task of partitioning data points into multiple
clusters, is a fundamental research problem in data mining
and machine intelligence. A series of algorithms have been
proposed over the past decades [1–7]. One of the repre-
sentative methods is spectral clustering, which has a lot of
applications [8–11]. With the development of information
and communication technologies, which led to data pro-
duction in most areas, it is relatively easy to capture features
from a given subject. So, it is necessary to design new pattern
recognition methods to deal with views of the same subjects.
For example, in multilingual information retrieval, the same
document can be represented by different languages, and
each language can be regarded as a view. *ese individual
views can provide complementary information to each other
which can lead to improved performance on the learning
task. In the context of multimodality clustering, it seeks to
get a better clustering performance by leveraging the in-
formation from multiple views.

Many multimodality clustering methods have been
proposed in recent years. In general, there are three steps
when clustering multiple data X � [X(1), X(2), . . . , X(m)]

[12]:

(1) Obtain a similarity matrix Si from each view
Xi, (i � 1, 2, . . . , m)

(2) Compute a projection of each similarity matrix into a
space suitable for clustering

(3) Produce a clustering assignment (i.e., K-means)

*e main difference between the multimodality clus-
tering methods lies in the step where the information is
collapsed to produce a single new representation. *e first
category (information merges in Step 1) merges
S � [S(1), S(2), . . . , S(m)] to get a new similarity matrix. *e
method presented in [13] is a Markov chain method for the
generalized normalized cut on multimodality data; the
method described in [14] uses the philosophy of co-regu-
larization tomake the clustering in different views agree with
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each other, as described in [15]; RMSC is a Markov-chain-
based multimodality spectral clustering method via low-
rank and sparse decomposition. *e second category
(information merges in Step 2) of methods merges the
information to generate a compatible projection for all
views. In [16], the authors used canonical correlation
analysis to maximize the correlation of subjects across the
projected views. In the third step, spectral clustering pro-
duces the assignment by K-means. *e assignment is not
stable for the randomness of K-means, so the third category
learns a stable assignment. For example, ensemble clustering
[17, 18] methods are designed to find a stable assignment.

*e standard nuclear norm minimization regularizes
each singular value equally to pursue the convexity of the
loss function, while the singular values have different
meanings and should be treated differently. Gu [19] pro-
posed a weighted nuclear norm method and applied it to
image denoising. *e weight vector is evaluated by the
singular values of image patches and the noise variance, but
it is not useful for multimodality clustering.

In [15], we presented a Markov-chain-based multi-
modality spectral clustering method via low-rank and sparse
decomposition. In this paper, as shown in Figure 1, we
extend our previous study by applying the weighted nuclear
norm to multimodality clustering and propose a method to
evaluate the weight vector. *e difference between them is
that RMSC recovers the low-rank matrix P by solving a
nuclear norm minimization (NNM) problem, while the
proposed method recovers that by solving a weighted nu-
clear norm minimization (WNNM) problem. For the ex-
periments, we use several real-world datasets to test our
method. Experimental results show that the proposed
method has a better performance than other baselines.

*is paper is organized as follows. Section 2 briefly
describes the related work from which our method is based
on. Section 3 describes the reason for using WNNM on
multimodality clustering, defines our algorithm, and pres-
ents the optimization procedure. Section 4 presents the
results of our method and other multimodality clustering
methods. Section 5 outlines the main contributions of the
work presented in this paper.

2. Related Work

To make this paper clear, Table 1 summarizes the symbols
used in this paper.

2.1. SpectralClustering. Finding good clusters has been a focus
of considerable research in pattern recognition. Spectral
clustering applies the spectral graph theory [20] which gives the
conditions where a graph can be divided into several non-
connected subgraphs.*emethod embeds the input data into a
low-dimensional representation and then applies K-means.

Here we give the framework of the spectral clustering
algorithm [8, 21, 22] (Algorithm 1).

2.2. Robust Multimodality Spectral Clustering via Low-Rank
and Sparse Decomposition (RMSC). Consider a set of mul-
timodality data X � [X(1), X(2), . . . , X(m)] with X(i) ∈
Rd(i)×n, where m is the number of views, n is the number of
data points, d(i) represents the feature dimension of the i-th
view, and the j-th column X

(i)
.j in X(i) represents the features

of the j-th data point in the i-th view
(j � 1, 2, . . . , n; i � 1, 2, . . . , m). *e first step of RMSC is
using Gaussian kernels to define the similarity matrix,
i.e.,Sij � exp(− ‖xi − xj‖

2
2/σ

2) where ‖.‖2 denotes the ℓ2 norm
and σ2 denotes the standard deviation (e.g., one can set σ2 to
be the average Euclidean distance over all pairs of data
points). *e second step is to construct the transition matrix
P by P � D− 1S where D is a diagonal matrix with
Dii � di � 

n
j�1 Sij. Under the low-rank and sparse as-

sumptions, they formulate the transition matrix construc-
tion problem as

View(1)
P(1) E(1)

P(2) P

P(n) E(n)

E(2)

RMSC: NNM
Our method: WNNM

= +

Clustering via
Markov chains

View(2)

View(n)

Figure 1: Framework of the robust multimodality on spectral
clustering via low-rank and sparse decomposition; the proposed
method is similar to RMSC [15]; the difference between them is that
RMSC recovers the low-rank matrix P by solving a nuclear norm
minimization (NNM) problem, while the proposed method re-
covers that by solving a weighted nuclear norm minimization
(WNNM) problem.

Table 1: Symbols used in this paper.

Symbol Meaning
X *e whole dataset
X(v) *e v-th view dataset
S(v) *e v-th similarity matrix
P Low-rank matrix
P(i) *e v-th transition matrix
E(i) *e v-th noise matrix
m Number of views
n Number of instances
λi *e i-th eigenvalue
σi *e i-th singular value
wi *e i-th weight of σi

λ Trade-off parameter
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minP,E(i)
rank (P) + λ

m

i�1
E

(i)
�����

�����0
,

s.t. i � 1, 2, . . . , m, P
(i)

� P + E
(i)

, P≥ 0, P1 � 1,

(1)

where the ℓ0 norm ‖E(i)‖0 is the number of nonzero elements
in E(i), rank (P) represents the rank of P, 1 is a vector with all
ones, and λ is a trade-off parameter. Note that the con-
straints P≥ 0, P1 � 1 enforce P to be a transition probability
matrix, i.e., each of its rows is a probability distribution.

As the problem is nonconvex, they replace rank (P) with
the trace norm ‖P‖∗, and ‖E(i)‖0 with the ℓ1 norm ‖E(i)‖1,
resulting in the following convex optimization problem:

minP,E(i)
‖P‖∗ + λ

m

i�1
E

(i)
�����

�����1

s.t. i � 1, 2, . . . , m, P
(i)

� P + E
(i)

, P≥ 0, P1 � 1.

(2)

*e ℓ1 norm ‖E(i)‖1 � (i,j)|Eij| is well known to be a
convex surrogate of ‖E‖0. *en, they propose an optimi-
zation procedure to solve this problem via the augmented
Lagrangian multiplier (ALM) scheme, which has shown its
good balance between efficiency and accuracy in many
matrix learning problems.

Let σi (Σ are in a nonascending order) represent the i-th
singular value (Σ � (σ1, σ2, . . .)). When updating Q, the
subproblem is

minQ‖Q‖∗ +
μ
2

P − Q +
Z

μ

��������

��������

2

F

. (3)

Let UΣVT be the SVD form of (P + t(Z/μ)), and the
solution is as follows:

Q � US1/μ(Σ)VT
, (4)

where Sδ(σi) � max(σi − δ, 0) + min(σi + δ, 0) is the
shrinkage operator.

In the optimization procedure, each single value adds or
subtracts the same value. So, RMSC treats each singular
value equally, which may degrade the performance of the
result of clustering.

2.3. Weighted Nuclear Norm. Gu et al. [19] studied the
weighted nuclear norm minimization (WNNM) problem,
where the singular values are assigned different weights. *e
definition of weighted nuclear norm of a matrix X is as
follows:

‖X‖w,∗ � Σi wiσi(X)


1. (5)

*ey analyzed the solutions of the WNNM problem
under different weight conditions and proposed a method to
evaluate the weight vector according to many image patches
when applied theWNNMalgorithm to image denoising.*e
difference betweenWNNM and our method is as follows: (1)
we extend the weighted nuclear norm to multimodality
clustering; (2) the methods which evaluated the weight
vector were different; the former evaluates the weight vector
according to image patches, while our method evaluates that
by matrix decomposition.

3. The Proposed Method: Weighted RMSC

In this section, we present how to apply the weighted nuclear
norm to multimodality clustering.

As described in Section 2.2, RMSC treats each singular
value when updating Q(P � tQ), while for spectral clus-
tering, different eigenvalues of L have different meaning.

According to [23], the RatioCut object function is de-
fined as

RatioCut A1, A2, . . . , Ak(  � 

k

i�1
h

T
i Lhi

� 
k

i�1
H

T
LH 

ii
� Tr H

T
LH 

s.t. H
T
H � I,

(6)

where Tr (.) denotes the trace of a matrix and hi represents
the i-th column of H.

So, the RatioCut object function is defined as

minH Tr H
T
LH 

s.t. H
T
H � I.

(7)

According to Rayleigh–Ritz theorem [24] the problem
has a fixed solution and H is constructed by the top k ei-
genvectors of L. From equation (6), we can find that the
normalized spectral clustering divides the problem into k

subproblems. Each subproblem partitions the points into 2
clusters, and hi (i � 2, . . . , k) is the solution of the sub-
problem (h1 is an all-one vector, which represents it dividing
all the points into the same cluster; this partition is useless).

Input: X ∈ Rn×d

(1) Construct the similarity matrix S by Gaussian kernel, where Sij represents the similarity of the i− th sample and the j− th sample.
(2) Compute the normalized symmetrical Laplacian L � I − D− 1//2SD− 1//2, where D is a diagonal matrix with Dii � jSij.
(3) Let U be a matrix with columns representing the top k eigenvectors of L.
(4) Normalize each row of U.
(5) Run the k-means algorithm on U.

Output: the result of k-means.

ALGORITHM 1: Spectral clustering.
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As HTH � I, the RatioCut object function can be re-
written as

RatioCut A1, A2, . . . , Ak(  � 
k

i�1
h

T
i Lhi � 

k

i�1
λi

s.t. H
T
H � I.

(8)

So, we can find that the loss of each subproblem has a
relation with the corresponding eigenvalue; the small ei-
genvalue reflects the little loss of the subproblem, so the
smaller the eigenvalue λ is, the larger the weight of corre-
sponding eigenvector should be assigned. It is also known
that

L � I − P. (9)

So, the larger eigenvalues (or singular values, σi � λi) of
P are more important than the smaller ones when updating
P in RMSC; the larger the eigenvalues, the less they should be
shrunk. *erefore, the weight assigned to σi should be in-
versely proportional to σi. We let

wi �
c

σi + ϵ( 
, (10)

where c> 0 is a constant; ϵ � 10− 16 is to avoid dividing by
zero.

For multimodality clustering, we can construct m

Laplacian matrices, leading to m groups of σi, which are not
equal. So evaluating accurate σi is a challenging procedure,
leading to the difficulty to make sure the weight of singular
value. As we know, the output of RMSC is a shared low-rank
matrix, and all the views share the same singular values. So,
one way to evaluate the singular values is making use of
other multimodality clustering algorithms, such as RMSC, to
get the shared Laplacian matrix and then evaluating the final
Σ by the singular values of the shared Laplacian matrix.

Following RMSC, under the low-rank and sparse as-
sumptions, we formulate the transition matrix construction
problem as follows:

minP,E( i)
‖P‖w,∗ + λ

m

i�1
E

(i)
�����

�����1

s.t. i � 1, 2, . . . , m, P
(i)

� P + E
(i)

, P≥ 0, P1 � 1.

(11)

*e optimization problem (11) is still challenging be-
cause the matrix P has two constraints. We introduce an
auxiliary variable Q to solve this problem. *e optimization
problem (11) becomes as follows:

minP,Q,E(i)
‖Q‖w,∗ + λ

m

i�1
E

(i)
�����

�����1

s.t. i � 1, 2, . . . , m, P
(i)

� P + E
(i)

,

P≥ 0, P1 � 1, P � Q.

(12)

*e corresponding augmented Lagrange function of
(12) is

L P, tQn, qE
(i)

  � ‖Q‖w,∗ + λ

m

i�1
E

(i)
�����

�����1

+ 

m

i�1
〈Y(i)

, P + E
(i)

− P
(i)〉

+
μ
2



m

i�1

P + E
(i)

− P
(i)

�����

�����
2

F

+〈Z, P − Q〉 +
μ
2
‖P − Q‖

2
F s.t. P≥ 0, P1 � 1,

(13)

where Z, Y(i) represent the Lagrange multipliers, 〈·, ·〉 de-
notes the inner product of matrices (i.e., for two matrices A

and B, 〈A, B〉 � ATB), and μ> 0 is an adaptive penalty
parameter.

*e sketch of the proposed algorithm is shown in Al-
gorithm 2. Next we will present the update rules for each of
P, Q, and E(i).

When other variables are fixed, the subproblem with
respect to Q is

minQ‖Q‖w,∗ +
μ
2

P − Q +
Z

μ

��������

��������

2

F

. (14)

More specifically, let UΣVT be the SVD form of
(P + t(Z/μ)). We use RMSC to evaluate the final Σ and use it
to evaluate W via Equation (10). According to [19], the
solution to (14) is as follows:

Q � USW(Σ)VT
. (15)

*e subproblem with respect to E(i) (i � 1, 2, . . . , m) can
be simplified as

minE(i)λ E
(i)

�����

�����1
+
μ
2

E
(i)

− P
(i)

− P −
Y(i)

μ
 

��������

��������

2

F

, (16)

which has a closed form solution
E(i) � Sλ/μ(P(i) − P − (Y(i)/μ)).

With other variables being fixed, we update P by solving

P � argminP

μ
2



m

i�1

P + E
(i)

− P
(i)

+
Y(i)

μ

��������

��������

2

F

+
μ
2

P − Q +
Z

μ

��������

��������

2

F

s.t. P≥ 0, P1 � 1.

(17)

*e solution is given by RMSC, which can be decom-
posed into n independent subproblems. Each subproblem is
a proximal operator problem with probabilistic simplex
constraint, which can be efficiently solved by the projection
algorithm.

4. Experimental Setup

*e proposed method was tested on several real-world
datasets; the details are shown in Table 2.

In all the experiments, we use six metrics to
measure the clustering performances: F-score, precision,
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recall, normalized mutual information (NMI) [25], en-
tropy, and adjusted rand index (Adj-RI) [26]. Note that
higher values indicate better performance except for
entropy.

When evaluating the weight vector, there is a constant
parameter c. We set c � 0.00001 in all the experiments.
Similarity matrices are constructed by Gaussian kernels. σ2 is
set to the median of the Euclidean distance between every
pair of data points for all of the datasets except BBCSports
(σ2 � 100). λ is set to be 0.005.

5. Experimental Results

We chose the following six multimodality clustering algo-
rithms as baselines:

(1) Single view: performing spectral clustering on a
single view.

(2) Feature concatenation: concatenating all the features
of each view and then performing spectral clustering
on the new representation.

(3) Kernel addition: constructing the similarity matrices
from each view and then averaging all the matrices to
obtain a new similarity matrix.

(4) Mixture of Markov chains (MMC): a mixture of
Markov chains defined on each view [13].

(5) Co-regularized spectral clustering (Co-Reg): making
use of the philosophy of co-regularization to make
the clustering in different views agree with each other
[14].

(6) Robust multiview spectral clustering via low-rank
and sparse decomposition (RMSC): aMarkov-chain-
based multimodality spectral clustering method via
low-rank and sparse decomposition [15].

Following the settings in [14], we use the Gaussian kernel
to construct similarity matrix for each view if needed in all
algorithms.

Table 3 shows the results of the proposedmethod and the
baselines on BBCSports. As can be seen, the proposed
method shows superior performance gains over the base-
lines with respect to all the six metrics. Here are some
statistics: the results of our method indicate a relative in-
crease of 4.82%, 2.88%, 2.10%, and 6.58% with respect to F-
score, precision, NMI, and Adj-RI, respectively, compared to
the corresponding second best baseline.

Table 4 shows the results of the proposedmethod and the
baselines on UCI. As can be seen, the proposed method
shows superior performance gains over the baselines with
respect to all the six metrics. Here are some statistics: the
results of our method indicate a relative increase of 1.35%,
1.62%, 1.32%, and 1.647.59% with respect to F-score, pre-
cision, NMI, and Adj-RI, respectively, compared to the
corresponding second best baseline.

Table 5 shows the results of the proposedmethod and the
baselines on WebKb. As can be seen, the proposed method
shows superior performance gains over the baselines with
respect to most of the six metrics. Here are some statistics:
the results of our method indicate a relative increase of
0.32%, 2.46%, and 0.82% with respect to F-score, NMI, and
Adj-RI, respectively, compared to the corresponding second
best baseline. Although the precision value of the proposed
method is lower than that of kernel addition, the difference is
small.

Table 6 shows the results of the proposed method and
the baselines on Reuters. As can be seen, the proposed
method shows superior performance gains over the
baselines with respect to all the six metrics. Here are some
statistics: the results of our method indicate a relative
increase of 1.89%, 3.56%, 5.85%, and 4.74% with respect to

Input: λ, P(i) ∈ Rn×n (i � 1, 2, . . . , m).
Initialize: P � 0, Q � 0, Z � 0, Y(i) � 0, E(i) � 0, μ � 10− 6, ρ � 1.9, maxμ � 1010, ϵ � 10− 8.
Evaluate W by running RMSC.
Repeat

(1) Let C⟵ (1/(m + 1))(Q − (Z/μ) + 
m
i�1(P(i) − E(i) − (Y(i)/μ))).

(2) For j� 1, 2, . . ., n
Update Pj

(3) For i� 1, 2, . . ., m
Update E(i) via equation (16).

(4) Update Q via equation (15).
(5) Set Z⟵Z + μ(P − tQ).
(6) For i� 1, 2, . . ., m

Set Y(i)⟵Y(i) + μ(P + E(i) − P(i)).
(7) Set μ⟵ min(ρμ,maxμ).

Until min(‖P + E(i) − P(i)‖∞, ‖P − Q‖∞)≤ ϵ.
Output: P, E(i) (i � 1, 2, . . . , m).

ALGORITHM 2: Weighted nuclear norm on robust multimodality clustering.

Table 2: Statistics of the real-world datasets.

Dataset Views Instances Clusters
BBCSports 2 544 5
WebKb 2 1051 2
Reuters 5 600 6
UCI 3 2000 10

Security and Communication Networks 5



F-score, precision, NMI, and Adj-RI, respectively, com-
pared to the corresponding second best baseline. Although
the recall value of the proposedmethod is lower than that of
kernel addition and feature concatenation, the difference is
small.

6. Conclusion

With the development of information and communication
technologies, it is necessary to design new pattern recog-
nition methods to deal with views of the same subjects. It is a

Table 3: Comparison results on BBCSports.

Method F-score Precision Recall NMI Entropy Adj-RI
SC view 1 0.767 (0.003) 0.785 (0.011) 0.750 (0.017) 0.717 (0.004) 0.609 (0.021) 0.696 (0.002)
SC view 2 0.410 (0.008) 0.319 (0.028) 0.589 (0.066) 0.218 (0.020) 1.772 (0.060) 0.146 (0.038)
Feature concat 0.669 (0.019) 0.654 (0.017) 0.688 (0.049) 0.618 (0.023) 0.853 (0.039) 0.563 (0.020)
Kernel addition 0.672 (0.021) 0.657 (0.022) 0.691 (0.049) 0.621 (0.029) 0.847 (0.063) 0.566 (0.024)
MMC 0.788 (0.000) 0.825 (0.000) 0.755 (0.000) 0.728 (0.000) 0.571 (0.000) 0.726 (0.000)
Co-Reg 0.766 (0.763) 0.788 (0.780) 0.745 (0.747) 0.718 (0.712) 0.603 (0.621) 0.695 (0.691)
RMSC 0.851 (0.056) 0.868 (0.027) 0.836 (0.081) 0.810 (0.026) 0.408 (0.034) 0.806 (0.070)
Ours 0.892 (0.003) 0.893 (0.005) 0.891 (0.002) 0.827 (0.004) 0.380 (0.011) 0.859 (0.004)

Table 6: Comparison results on Reuters.

Method F-score Precision Recall NMI Entropy Adj-RI
SC view 1 0.368 (0.017) 0.337 (0.009) 0.409 (0.042) 0.318 (0.017) 1.792 (0.031) 0.229 (0.014)
SC view 2 0.361 (0.016) 0.315 (0.019) 0.426 (0.030) 0.315 (0.028) 1.811 (0.070) 0.211 (0.021)
SC view 3 0.341 (0.005) 0.306 (0.008) 0.385 (0.012) 0.279 (0.015) 1.888 (0.039) 0.192 (0.007)
SC view 4 0.345 (0.014) 0.307 (0.014) 0.394 (0.014) 0.271 (0.016) 1.910 (0.041) 0.196 (0.018)
SC view 5 0.346 (0.014) 0.308 (0.016) 0.397 (0.022) 0.269 (0.017) 1.916 (0.042) 0.197 (0.018)
Feature concat 0.367 (0.014) 0.327 (0.013) 0.419 (0.028) 0.316 (0.023) 1.799 (0.055) 0.222 (0.016)
Kernel addition 0.371 (0.019) 0.333 (0.017) 0.419 (0.027) 0.313 (0.028) 1.806 (0.070) 0.228 (0.023)
MMC 0.367 (0.016) 0.334 (0.018) 0.408 (0.021) 0.308 (0.019) 1.812 (0.048) 0.227 (0.020)
Co-Reg 0.367 (0.016) 0.334 (0.018) 0.408 (0.021) 0.308 (0.019) 1.812 (0.048) 0.227 (0.020)
RMSC 0.372 (0.019) 0.338 (0.017) 0.415 (0.022) 0.325 (0.021) 1.770 (0.053) 0.232 (0.023)
Ours 0.379 (0.021) 0.350 (0.009) 0.413 (0.011) 0.344 (0.021) 1.719 (0.015) 0.243 (0.016)

Table 4: Comparison results on UCI.

Method F-score Precision Recall NMI Entropy Adj-RI
SC view 1 0.574 (0.029) 0.563 (0.028) 0.585 (0.032) 0.632 (0.019) 1.231 (0.063) 0.526 (0.033)
SC view 2 0.583 (0.023) 0.574 (0.028) 0.591 (0.018) 0.643 (0.013) 1.191 (0.045) 0.536 (0.026)
SC view 3 0.377 (0.004) 0.364 (0.011) 0.392 (0.009) 0.483 (0.005) 1.732 (0.024) 0.306 (0.006)
Feature concat 0.448 (0.014) 0.433 (0.020) 0.466 (0.013) 0.552 (0.016) 1.506 (0.058) 0.385 (0.017)
Kernel addition 0.746 (0.024) 0.723 (0.040) 0.773 (0.015) 0.784 (0.014) 0.736 (0.055) 0.717 (0.027)
MMC 0.729 (0.052) 0.708 (0.066) 0.752 (0.040) 0.771 (0.032) 0.778 (0.116) 0.697 (0.059)
Co-Reg 0.594 (0.650) 0.585 (0.634) 0.603 (0.668) 0.644 (0.687) 1.189 (1.051) 0.548 (0.610)
RMSC 0.816 (0.061) 0.805 (0.073) 0.828 (0.049) 0.832 (0.038) 0.565 (0.136) 0.795 (0.069)
Ours 0.827 (0.041) 0.818 (0.052) 0.836 (0.029) 0.843 (0.022) 0.528 (0.082) 0.808 (0.046)

Table 5: Comparison results on WebKb.

Method F-score Precision Recall NMI Entropy Adj-RI
SC view 1 0.592 (0.000) 0.645 (0.000) 0.546 (0.000) 0.167 (0.000) 0.618 (0.000) 0.028 (0.000)
SC view 2 0.889 (0.000) 0.824 (0.000) 0.965 (0.000) 0.532 (0.000) 0.406 (0.000) 0.618 (0.000)
Feature concat 0.896 (0.000) 0.836 (0.000) 0.966 (0.000) 0.559 (0.000) 0.384 (0.000) 0.648 (0.000)
Kernel addition 0.947 (0.000) 0.947 (0.000) 0.947 (0.000) 0.718 (0.000) 0.214 (0.000) 0.845 (0.000)
MMC 0.372 (0.017) 0.338 (0.017) 0.416 (0.029) 0.314 (0.025) 1.801 (0.063) 0.232 (0.020)
Co-Reg 0.365 (0.365) 0.334 (0.332) 0.405 (0.406) 0.312 (0.312) 1.804 (1.803) 0.225 (0.223)
RMSC 0.951 (0.000) 0.946 (0.000) 0.957 (0.000) 0.734 (0.000) 0.206 (0.000) 0.856 (0.000)
Ours 0.954 (0.000) 0.940 (0.000) 0.970 (0.000) 0.752 (0.000) 0.201 (0.000) 0.863 (0.000)
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challenge task to deal with multimodality problems. Inspired
by the previous work, we proposed a method applying the
weighted nuclear norm to RMSC and gave a method to
evaluate the weight vector, which distinguishes different
single values. To solve the optimization problem, we
designed a procedure based on ALM. To evaluate the
proposed method, we apply it to four real-world datasets.
Experimental results show that the proposed method has a
superior performance than other baselines. In the future, we
will continue the studies in multimodality clustering, in-
cluding evaluating the weight vector more accurately and
clustering on the large-scale datasets.
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