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Selective encryption has been widely used in image privacy protection. Visual security assessment is necessary for the effectiveness
and practicability of image encryption methods, and there have been a series of research studies on this aspect. However, these
methods do not take into account perceptual factors. In this paper, we propose a new visual security assessment (VSA) by saliency-
weighted structure and orientation similarity. Considering that the human visual perception is sensitive to the characteristics of
selective encrypted images, we extract the structure and orientation feature maps, and then similarity measurements are
conducted on these feature maps to generate the structure and orientation similarity maps. Next, we compute the saliency map of
the original image. (en, a simple saliency-based pooling strategy is subsequently used to combine these measurements and
generate the final visual security score. Extensive experiments are conducted on two public encryption databases, and the results
demonstrate the superiority and robustness of our proposed VSA compared with the existing most advanced work.

1. Introduction

Nowadays, with the widely pervasive usage of interaction
devices, such as cameras, cloud storage devices, and the
explosive growth of digital images, privacy protection has
attracted a lot of attention from researchers [1–5]. Various
security schemes, such as digital watermarking [6–8],
steganography [9], and encryption [10], have been devel-
oped to protect copyright, and encryption is the mostly
accepted approach which can ensure the security and in-
tegrity of data all the time. Roughly, the existing image
encryption methods can be divided into two categories: full
encryption and selective encryption. Full encryption refers
to encrypting the entire image; therefore, we cannot get any
information about the original image from the encrypted
image. However, the content information of the image
cannot be revealed if several kinds of redundant information
are unencrypted. For this reason, traditional full encryption
methods such as AES are not suitable for image data, because
these methods always encrypt all the information of the
image which cost a lot of time. (erefore, researchers

proposed the selective encryption algorithm that has been
widely used to protect the visual content of multimedia by
only encrypting the specified parts of the multimedia data. A
great variety of selective encryption algorithms [10–16] have
been proposed in recent decades. Compared with full en-
cryption algorithms, selective encryption has two main
advantages as follows. First, it can be extremely fast on
encryption and decryption because only a portion of the data
needs to be encrypted. Second, the selective encrypted
multimedia data can prevent the abuse of the essential visual
property of the original data. (ese advantages make se-
lective encryption highly desirable for protecting more and
more image and video data which hide a large amount of
personal privacy on the network.

(e purpose of security analysis for selective image
encryption is to measure the degree of visual security of
selective encrypted images. Visual security analysis can
measure the performance of the selective encryption
methods and then help us to optimize the encryption
methods. Since humans are the ultimate receivers of images,
subjective tests conducted by human viewers are the most
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suitable and accurate way to evaluate the visual security of
selective encrypted images. However, such tests are too time-
consuming and laborious to accomplish real-time applica-
tions. For this reason, visual security assessment [17] (VSA)
is proposed to evaluate the visual security of selective
encrypted images by measuring the unintelligibility or
unrecognizability of the image automatically, which indi-
cates the amount of useful information about the original
image that an attacker can obtain from its selective
encrypted image via visual perception. (e higher the
unrecognizability degree of the selective encrypted image is,
the less visual information the attacker can obtain. In such a
situation, it becomes more difficult for an attacker to obtain
information about the original image and the selective
encryption method is more secure.

In the past decades, many efforts have been conducted to
design VSAs. At the beginning, researchers believe that visual
security of images has a strong relationship with image quality.
(erefore, they directly used the well-known image quality
assessment [18] (IQA) methods to evaluate the visual security
degree of selective encrypted images, such as peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [19] and visual
information fidelity (VIF) [20], and the images with lower
quality tend to have higher security. However, these metrics
may be inconsistent with the concept of security strength. For
example, an image with a lower PSNR value may be even more
recognizable than one with a higher PSNR value. (ese IQA
methods do not take full account of the characteristics of the
selective encrypted images. For selective encrypted images, an
important feature is that the skeleton of the image is still in-
telligible but the details are almost unintelligible [21]. On the
other hand, the structure information can express the skeleton
of an image which plays a more important role in selective
encrypted images. Subsequently, several VSAs have been de-
veloped based on some visual features of selective encrypted
images, e.g., edge similarity score (ESS) [22] based on the edge,
luminance similarity score (LSS) [22] utilizing luminance
feature, local feature-based visual security (LFBVS) [23] using
luminance and localized gradient, and the visual security index-
based Canny (VSI-Canny) [21] which extracted edge and
texture features. However, these VSAs do not fully consider the
role of visual perception [24–26] factor in VSAs, because the
visual perception of each region differs from another according
to the principle of the human visual system (HVS), which also
have different impacts on visual security evaluation. Addi-
tionally, HVS presents an obvious visual saliency mechanism.
HVS focuses only on these important regions for detailed
perception and withdraws the other regions. (e regions have
high saliency values play more important roles than the other
regions for visual perception, and the information leakage on
the high saliency regions has a larger influence on the visual
security assessment.

Motivated by the problems mentioned above, in this
paper, we propose a visual security assessment via saliency-
weighted structure and orientation similarity. Structure is the
basic element that conveys important visual information, and
selective encryption can cause obvious structure changes of an
image [21]. (erefore, we can measure the visual security of
selective encrypted images by the change of structure. (e

gradient magnitude (GM) and the phase congruence [27]
(PC) are widely used to extract the image structure infor-
mation. However, GM and PC cannot effectively reflect the
structure degradation in the selective encryption images. GM
is sensitive to luminance and it can well reflect the changes of
image luminance [28]. However, this characteristic of GM
also makes it is not effective to extract the structure infor-
mation of the areas with similar grayscale values. Compared
with GM, PC is not affected by luminance [27]. However, PC
cannot extract the clear structure information of the areas
with similar frequencies as it is calculated based on frequency
[27]. (erefore, we integrated PC with GM to obtain the
structure features of the selective encrypted images. Studies
show that HVS is highly adapted to extract orientation in-
formation [29] and selective encryption can cause obvious
orientation changes of an image.(erefore, we can extract the
orientation information of a selective encrypted image to
measure its security. (e structure and the orientation feature
maps are extracted from both original and selective encrypted
images. Finally, an image saliency-based pooling strategy is
introduced to combine these measurements and generate a
visual security score. Our main contributions can be sum-
marized as follows:

(1) We propose to extract the structure and orientation
features for the visual security evaluation of the
selective encrypted images, because selective en-
cryption can cause obvious changes in structure and
orientation of an image and the HVS is highly
sensitive to the change of structure and orientation.
We combine GM and PC to extract the structure
information to measure the structure similarity of
original images and selective encrypted images and
utilize the change of image orientation to measure
the orientation similarity.

(2) Considering that different regions of an image have
different effects on visual security assessment of
selective encrypted images, we combine the saliency
map with the structure and orientation similarity
maps to generate the final VSA.

(3) We conduct comparative experiments on two
common encryption image databases to evaluate the
performance of our proposed VSA. (e experi-
mental results show that the proposed method
achieves superior and robust performance compared
with other state-of-the-art VSAs, especially on the
images in low- and moderate-quality ranges.

(e structure of the rest of the paper is as follows. Section
2 reviews the related work. (e details of our proposed VSA
method are in Section 3. (en, we describe the experimental
evaluation of our proposed VSA and existing VSAs in
Section 4. Finally, Section 5 concludes this paper.

2. Related Work

A variety of methods have been proposed to estimate the
visual security of selective encrypted images. (e initial
solutions usually employ well-known IQAs to evaluate the
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visual security. Subsequently, several VSAs have been
proposed to evaluate the visual security.

2.1. ImageQualityAssessment. Many researchers believe that
the images with higher visual security tend to have lower
visual quality, so many IQA methods designed for the as-
sessment of image visual quality have been employed to
measure the visual security of selective encrypted images.
For instance, PSNR is the simplest and the most widely used
method [30, 31]. PSNR, which evaluates visual security by
calculating the Euclidean distance between the original
image and distorted image, is the simplest and most popular
visual quality assessment metric. SSIM [19] is also adopted
for visual security evaluation [30, 31] by measuring the
similarities of luminance, contrast, and structure between
two images in consideration of the HVS. VIF [20] is another
IQA method used to estimate the visual security of selective
encrypted images. It measures the amount of information
contained in original and selective encrypted images, re-
spectively, and then measures the relationship between
image information and visual quality. However, these IQA
metrics often exhibit unsatisfactory performance when they
are used to estimate the visual security of selective encrypted
images of low quality. Since the task of IQA is inconsistent
with that of VSA, an image with poor visual quality may not
indicate its visual security [21].

For example, an image with a higher VIF, PSNR, or SSIM
may even be more visually secure than one with a lower
value of one of these indices. Figures 1(a)–1(c) show the
performance of the PSNR, VIF, and SSIM indices on several
images from the PEID database [33]. Figure 1(a) shows an
original image, and Figures 1(b) and 1(c) show two
encrypted images. It is clear that Figure 1(c) has a higher
visual security, but this image is found to have better visual
quality as assessed using the PSNR, VIF, and SSIM.

We can find that many IQAs cannot achieve excellent
performance on visual security assessment because the
targets of image quality assessment and visual security as-
sessment are different: image quality assessment focuses on
the fidelity of an image, but visual security assessment is
concerned with the leakage degree of an image’s content.

2.2. Visual Security Assessment. Several VSAs have been
proposed to evaluate the visual security of selective
encrypted images. (ey are usually more accurate and ef-
fective than IQA methods because they are specifically
designed for the visual security evaluation of selective
encrypted images. Mao and Wu [22] proposed the ESS and
LSS to compute the edge similarity and the luminance
similarity between original and selective encrypted images.
However, the ESS and LSS focus only on local information of
the images, which may not cover the various types of dis-
tortions that appear in selective encrypted images. Tong et al.
[23] presented the LFBVS by considering various types of
distortions present in selective encrypted images and
measured the similarities of luminance and the localized
gradient between original and selective encrypted images.
Although the LFBVS utilizes more visual information

compared with the ESS and LSS, its performance is still
unsatisfactory when tested on various encrypted image
databases. Xiang et al. [21] proposed the VSI-Canny by
calculating the edge and texture similarities between original
and selective encrypted images. VSI-Canny considers more
visual features of selective encrypted images and has rela-
tively good performance, but it does not consider the image’s
visual saliency, which is a critical property of the HVS.

For example, Figures 1(d)–1(f ) illustrate the
performance of different VSA indices on an image from the
IVC-SelectEncrypt database. Figure 1(d) shows the original
image, and two encrypted versions of which are shown in
Figures 1(e) and 1(f ). It is clear that Figure 1(f ) is more
visually secure than Figure 1(e). However, Figure 1(f) has
higher LSS and VSI-Canny values than Figure 1(e).

As mentioned above, the problems of the existing visual
security metrics exhibit many aspects. (ese questions will
lead to the inaccurate evaluation of image security by visual
security indicators. We consider and address these issues in
our proposed scheme, as described in the following section.

3. Proposed Visual Security Assessment

In this work, we describe our proposed VSA and the
flowchart of the proposed VSA is shown in Figure 2. First, we
combine GM and PC to extract the structure information
and we can compute the structure similarity map of the
original and selective encrypted image. Secondly, based on
the fact that the HVS is sensitive to the change of orientation,
we extract the orientation information by the GM and we
can compute the orientation similarity map. Next, consid-
ering that the security of a selective encrypted image depends
on the degree of disclosure of its visual content, which is
obtained by comparing it with the original image, we only
compute the saliency map of the original image. At last, the
generated structure and orientation similarity maps are
further fused by saliency-based polling method to obtain the
final score.

3.1. Structure Similarity. (e structure of an image has
important information which is highly sensitive to the visual
perception. Both GM and PC can extract structural infor-
mation of images and we found that they can complement
each other. (erefore, we integrated the GM map with the
PC map to generate the structure features of selective
encrypted images.

3.1.1. Gradient Magnitude. Image gradient magnitude can
be defined as a transition in intensity. (e GM of an image is
represented by a vector which consists of gradient in the
horizontal and vertical directions at each pixel, and it reflects
the maximum strength of structure variation. (e gradient
magnitude of an image is defined as

GM(i, j) �

���������������

G
2
h(i, j) + G

2
v(i, j)

􏽱

, (1)

where (i, j) is the index of an image I. In this work, for image
I, Gh and Gv are calculated as
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Figure 2: Flowchart illustration of the proposed security model for selective encrypted images.

(a) (b) (c)

(d) (e) (f )

Figure 1: (e performances of IQAs on images from the IVC-SelectEncrypt database [32] and PEID [33] database. (a) Original image from
the PEID database. (b) Encrypted image with PSNR� 14.5 and SSIM� 0.19. (c) Encrypted image with PSNR� 20.3 and SSIM� 0.51. (d)
Original image from the IVC-SelectEncrypt database. (e) Encrypted image with LSS� −0.007 and VSI-Canny� 0.0752. (f ) Encrypted image
with LSS� −0.02 and VSI-Canny� 0.1893.
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Gh � F∗ I,

Gv � F
T ∗ I,

(2)

where ∗ and T denote the convolution and transpose, re-
spectively, and F is the gradient operator:

F �

1 0 −1

1 0 −1

1 0 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

As shown in Figure 3(b), it can be seen that the GMmaps
of the encrypted images have obvious changes. However,
there are no obvious changes in the GM values in some areas
with similar grayscale values. GM is sensitive to luminance;
therefore, it can well reflect the changes of image luminance
[28]. However, this characteristic of GM also makes it is not
effective to extract the structure information of the areas
with similar grayscale values.

3.1.2. Phase Congruency. (e phase congruency model [27],
which is based on frequency domain processing of an image,
means that features with similar edges appear more fre-
quently at the same stage. It assumes that the visual system is
more competent in performing operations using the phase
and amplitude of the individual frequency components in an
image than handing of image information spatially. Com-
pared with GM, PC is invariant to local smooth luminance
changes. Given an image I, its PC is computed as

PC(i, j) �
􏽐s􏽐θW(i, j)⌊Asθ (i, j) · Δφsθ (i, j) − T⌋

􏽐s􏽐θAsθ (i, j) + ε
, (4)

with

Δφsθ (i, j) � cos φsθ (i, j) − �φsθ (i, j)􏼐 􏼑 − sin φsθ (i, j) − �φsθ (i, j)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

W(i, j) �
1

1 + e
c(c− v(i,j))

,

Asθ �

����������������

E
2
sθ(i, j) + O

2
sθ(i, j)

􏽱

,

φsθ(i, j) � a tan Esθ(i, j), Osθ(i, j)( 􏼁,

Esθ(i, j), Osθ(i, j)􏼂 􏼃 � I(i, j)∗M
E
sθ, I(i, j)∗M

O
sθ􏽨 􏽩,

(5)

whereW(i, j) denotes the weighting parameter to reduce the
effect of frequency spread at position (i, j);
v(i, j) � (1/N)􏽐s􏽐θAsθ (i, j)(Amax (i, j) + lnorm(i, j))− 1 de-
notes the manipulating function by weighting; N is the scale
number; c offers a cutoff value for penalizing low PC values
under it; lnorm(i, j)is the normalized luminance at (i, j) to
avoid the effect of luminance. c, as the gain variable, controls
the cutoff sharpness; and symbol ⌊ · ⌋ aims to set negative
value to zero. To determine two-dimensional phase con-
gruency of a given image, the image is first convoluted with a
Log-Gabor filters bank s and θ are the scale and orientation
of the Log-Gabor filter. And the even symmetric filter and
odd-symmetric filter at scale s and orientation θ are ME

sθ and
MO

sθ, respectively. Asθ (i, j) and φsθ(i, j) represent the am-
plitude and phase at position (i, j), respectively; T is a
quantity introduced to compensate image noise; ε is a small
positive constant to preserve stability; φsθ (i, j)represents the
mean value of phase. Since it is out of scope to investigate
these parameters’ influence on the PC map, in this study, we
directly set them according to [27].

(e effectiveness of PC can be demonstrated in
Figure 3(c), and the PC maps of the encrypted images have
obvious changes. However, there are no obvious changes in

the PC values in some areas with similar frequencies.
Compared with GM, PC is not affected by luminance [27].
However, PC cannot extract the clear structure information
of the areas with similar frequencies as it is calculated based
on frequency [28].

3.1.3. Structure Map Integrating GMwith PC. As mentioned
above, GM and PC cannot effectively reflect the structure
degradation in the selective encryption images. (erefore,
after extracting the GM and PC of the image, we proposed to
reflect the structure map of the image by integrating GM
with PC, and the structure information ST of the image can
be obtained as

ST(i, j) � max
GM(i, j)

GMmax
, PC(i, j)􏼨 􏼩, (6)

where (i, j) is the index of the pixel, GMmax represents the
maximum value of GM, the maximum value of the corre-
sponding positions of GM and PC is used to form ST, and
GM uses the maximum value for normalization. If one of the
two values has a larger value, the pixel is considered to be a
structural feature point, and the maximum fusion strategy
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can comprehensively extract the structural features of the
image. GM and PC can play complementary roles in
extracting structural information. Here, we give an example
in Figure 3 to demonstrate the effectiveness of our structure
extraction method. Figure 3 shows different feature maps
from the reference images and their selective encrypted
images. Apparently, as compared with the other featuremap,
the proposed structure map has a remarkable effect on
structure degradation of a selective encrypted image. From
Figure 3(d), we can observe the more accurate and clearer
structure information in the selective encrypted image.

Analogous to the practice exercised in [19, 34], the
structure similarity map SSTof the original and the encrypted
images can be measured as

SST(i, j) �
2 · STO(i, j) · STE(i, j) + R

STO(i, j)
2

· STE(i, j)
2

+ R
, (7)

where SST(i, j)ε(0, 1], SO(i, j) and SE(i, j) are the structure
maps of the original image O and the encrypted image E,
respectively, and R is a positive constant used to avoid in-
stability when the denominator converges to zero.

3.2. Orientation Similarity. In addition to the structure
similarity, we also consider the orientation similarity between
the original and encrypted images because the orientation
information is an indispensable element for human visual
perception. (e orientation of an image, which has been
widely used to the image quality assessment [35], conveys
important information [29], which has an important effect on
the visual security evaluation of selective encrypted images.
(e orientation change of each pixel can reflect the degra-
dation of the selective encrypted image details.

A visual pattern was built by orientation information in
[35], which can be used for IQA. However, this pattern
ignores some intuitive visual information; therefore, this
pattern does not fully apply to VSA.

Considering the above question, we design a new al-
gorithm to compute the orientation similarity. In this work,
for an image I, the preferred orientation of each pixel is
calculated as its gradient direction θI:

θI(i, j) � arctan
Gv(i, j)

Gh(i, j)
􏼠 􏼡 ·

180
π

, (8)

(a) (b) (c) (d) (e) (f )

Figure 3: Illustrations of different feature maps. (a) First column is the input images. (b) Second column is the GMmaps of the images in (a).
(c) (ird column is the PC maps of the images in (a). (d) Fourth column is the ST maps of the images in (a). (e) Fifth column is the
orientation maps of the images in (a). (f ) Sixth column is the saliency maps of the images in (a). And the images in second, fourth, and sixth
rows in (a) are the encrypted images of first, third, and fifth rows in (a), respectively.
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where Gh(i, j) and Gv(i, j) are the gradient magnitudes along
the horizontal and vertical directions, respectively, which
can be obtained from equation (2). And (i, j) is the index of
the pixel in I. So, we can obtain the quantitative orientation
information. We give an example in Figure 3, and we can
find that the orientation information of the image has ob-
vious changes.

(en, we compute the orientation change DO of the
original image O and its encrypted image E by calculating
their distance:

DO(i, j) � θO(i, j) − θE(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (9)

where |.| denotes the absolute operation, (i, j) is the index of
the pixel, and θO and θE are the orientation maps of the
original image O and its encrypted image E, respectively.

Because the range of θO and θE is [−180, 180], the range
of DO is [0, 360]. Considering that HVS has a similar
perception of relative orientation (such as 90o and 270o), we
set the range of DO to [0, 180] by setting
DO (DO > 180) � 360 − DO (DO > 180).

(en, the orientation similarity map SO of the original
and the encrypted images can be measured as

SO(i, j) � 1 +
log2DO(i, j)

log2(1/180)
. (10)

3.3. Saliency-Weighted Pooling. It is observed that different
regions have drastically different effects on the visual un-
derstanding of an image. Most of the contribution to visual
perception is provided by the information loss and dis-
tortion in important regions. An image importance map
refers to the important regions that provide a greater
contribution to the visual perception, and such maps have
been studied extensively in recent years. So, we highlight
these important regions and suppress the other regions
with a salient map for visual content extraction. To this end,
the salient value of each pixel is required. As illustrated in
Figure 3(f ), visual saliency map highlights the important
regions in an image, and the visual saliency map can extract
the important areas of an image and then get a better VSA.
In the past decades, a large number of saliency models
[36–40] have been proposed and these models can help us
complete a better VSA.

SST(i, j) and SO(i, j), obtained by equations (7) and (10),
respectively, are two feature similarity maps with the same
size as the image. However, we need a VSA score to represent
the visual security. (erefore, we need a pooling method to
compress the two feature maps into two scores to represent
the feature similarities. In our work, we take the simple and
classic saliency-weighted pooling method. Considering that
the security of a selective encrypted image depends on the
degree of disclosure of its visual content, which is obtained
by comparing it with the original image. So, we select the
original image’s saliency map SMO(i, j) to combine with the
structure similarity map SST(i, j) and orientation similarity
map SO(i, j), respectively:

VSST �
􏽐(i, j)SST(i, j) · SMO(i, j)

􏽐(i, j)SMO(i, j)
,

VSO �
􏽐(i, j)SO(i, j) · SMO(i, j)

􏽐(i, j)SMO(i, j)
.

(11)

Considering that different saliency models affect the
performance and communicational cost of our proposed
VSA, we calculate the performance and running time of
different saliency models. To eliminate the possible bias due
to specific image selection, we randomly choose 100 images
from the IVC-SelectEncrypt database and then calculate the
average running time as the computation cost of each sa-
liency model. Table 1 shows the results. From Table 1, we can
find that the more appropriate saliency model is GBVS.
(erefore, as a simple but powerful saliency model, graph-
based visual saliency [36] (GBVS) is employed. A saliency
map of an original image generated by GBVS can be seen in
Figure 3(f ).

After performing the similarity measurements on the
structure and the orientation features between the original
and encrypted images, respectively, the generated structure
similarity VSST and orientation similarity VSO are combined
together to calculate the visual security:

VSA � α · VSST + β · VSO, (12)

where α and β are two parameters used to adjust the relative
importance of VSST and VSO. (e structure and orientation
features of an image are important which are highly sensitive
to the visual perception. For selective encrypted images, an
important feature is that the skeleton of the image is still
intelligible but the details are almost unintelligible. (ere-
fore, structure obviously plays a more important role than
orientation, and we explore the effect of the structure in-
formation and orientation information, respectively, in
Table 2. So that the value of α should be greater than β. In our
experiments, α and β are set to 0.8 and 0.2, respectively,
because this setting was found to be optimal.

4. Experiments

In this section, the performance of our proposed VSA is
analyzed by comparing with other IQAs and VSAs. We
evaluate the performance from confidence, monotonicity,
linearity, and accuracy and provide comparisons with other
IQAs and VSAs.

4.1. Experimental Protocol

4.1.1. Test Database. To verify the performance of our
proposed method, experiments are conducted on two
common encrypted databases: IVC-SelectEncrypt [32] and
PEID [33].

(e IVC-SelectEncrypt can be downloaded from http://
www.polytech.univ-nantes.fr/autrusseau-f/Databases/Selective
Encryption/. (e PEID is from https://sites.google.com/site/
xiangtaooo/. (eir detailed statistical information is summa-
rized in Table 3.
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(e IVC-SelectEncrypt database consists of 8 original
images, 200 encrypted images are generated from them using
5 different encrypted algorithms with 5 different encryption
degrees. (e range of its mean opinion scores (MOS) is [1, 5].

(e PEID database has 1080 encrypted images obtained
from 20 original images by using 10 encryption schemes. It
has two subjective scores: the visual quality score and visual
security score. We use only the visual security score here
because our task is visual security assessment, and the range
of its mean opinion scores (MOS) is [0, 6].

4.1.2. Evaluation Methodology. We evaluate the perfor-
mance from confidence, monotonicity, linearity, and
accuracy.

Confidence is utilized to establish how well a VSA ac-
tually reflects the human judgment [17]. Given a subjective
score x(x εMOS) on a database D, and for this score x, each
image I has a subjective score VI. We define Vmax(x) as the
maximum of the objective scores of those images on D and
define Vmin(x) as the minimum of the objective scores.
Confidence Cx � |Vmax(x)−Vmin(x)| measures the difference
between these two extrema. (e normalized mean confi-
dence µD, the normalized standard deviation σD, and the
normalized maximum confidence maxD are the evaluation
criteria which are generated based on Cx.

To ascertain the correlation between the subject VSA
scores and object scores MOS, we compute the Spearman
rank correlation coefficient (SRCC), the Kendall rank cor-
relation coefficient (KRCC), the Person linear correlation
coefficient (PLCC), and the root mean-squared error
(RMSE). SRCC and KRCC can evaluate performance
monotonicity, PLCC can evaluate linearity, and RMSE can
evaluate accuracy. Before the calculation of the correlation
between the subject VSA scores and object scores MOS, a
five-parameter logistic regression function is applied to
reduce the nonlinearity of the subject VSA scores [33], which
is defined as

S′ � β1
1
2

−
1

e
β2 S− β3( )

􏼠 􏼡 + β4S + β5, (13)

where S′ is the fitted VSA score, S is the objective VSA score,
and βi (i� 1, 2, 3, 4, 5) denotes the parameters determined
via curve fitting.

A better VSA should have lower µD, σD, maxD, and RMSE
values but have higher SRCC, KRCC, and PLCC values.

4.2. Comparative Analysis. We compare our proposed VSA
with other IQAs and VSAs by the evaluation criterions
mentioned above from the following three aspects. And
these IQAs and VSAs include the PSNR, SSIM [19], VIF
[20], ESS [22], LSS [22], LFBVS [23], and VSI-Canny [21].

4.2.1. Overall Evaluation. (e results of the confidence
evaluation of all IQAs and VSAs on the IVC-SelectEncrypt
database are shown in Figure 4. A better VSA should have lower
and more stable Cx values. From Figure 4, we can find that the
Cx values of VIF, VSI-Canny, and our VSA are more stable.

Table 4 lists the overall performance of all IQAs and
VSAs on the IVC-SelectEncrypt and PEID databases, and
the best is marked in bold. Obviously, our proposed VSA
performs best on IVC-SelectEncrypt. On the PEID database,
VIF achieves the best monotonicity (the highest SRCC and
KRCC) and the lowest RMSE, LSS has the lowest σD, ESS
achieves the lowest maxD, and our proposed VSA achieves
the best μD and PLCC. Although our proposed VSA is not
the best in some values, it is very close to the best one.
Compared with other methods, the extracted structure and
orientation features of our proposed VSA are more con-
sistent with HVS because HVS is very sensitive to structure
and orientation changes caused by selective encryption. In
addition, we also considered the visual saliency that was not
considered by other IQAs and VSAs. (erefore, it is clear
and reasonable that our proposed VSA exhibits the better
overall performance.

4.2.2. Evaluation on Different Quality Ranges. (e selective
encrypted images usually have low and moderate visual
quality [21, 26]. (erefore, to evaluate the performance of
these VSAs more comprehensively, we should evaluate the
performance of these VSAs on different image quality ranges
(i.e., low, moderate, and high). (e detailed division in-
formation can be found in Table 2. Considering that the

Table 3: Statistical information of the test databases.

Database IVC-SelectEncrypt PEID
Reference image 8 20
Encrypted image 200 1080
Encryption type 5 10
Subjective score MOS MOS
Score range [1, 5] [0, 6]
Low quality [1, 2.5] [0, 2]
Moderate quality (2.5, 3.5] (2, 4]
High quality (3.5, 5] (4, 6]

Table 1: Performance comparison employing different saliency
models: graph-based visual saliency (GBVS), context-aware visual
saliency (CAVS), saliency estimation using region covariance
(CovSal), saliency through adaptive whitening of color and scale
features (AWS), and Boolean map saliency (BMS).

Metric PLCC SRCC KRCC RMSE Time(s)
Without saliency 0.943 0.935 0.769 0.435 0.356
GBVS [36] 0.956 0.954 0.815 0.388 0.476
CAVS [37] 0.958 0.956 0.815 0.386 21.43
CovSal [38] 0.949 0.943 0.809 0.395 1.256
AWS [39] 0.953 0.947 0.817 0.396 0.789
BMS [40] 0.951 0.948 0.813 0.401 6.579

Table 2: Performance of structure similarity VSST, orientation
similarity VSO, and final VSA.

Metric PLCC SRCC KRCC RMSE
VSST 0.951 0.947 0.833 0.398
VSO 0.943 0.939 0.802 0.418
VSA 0.958 0.956 0.815 0.386

8 Security and Communication Networks
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Figure 4: Continued.
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selective encrypted images are typically in the low- or
moderate-quality ranges, it is more important to evaluate the
performance of VSAs in the low and moderate image quality
ranges than in the high-quality ranges [21, 26].

(e comparison results of different VSAs in different
image quality ranges on the two test databases are shown in
Table 5. We can find that our proposed VSA has better
performance compared with the other VSAs in the low and
moderate image quality ranges. In the low image quality
range, on the IVC-SelectEncrypt database, VIF shows su-
perior performance in maxD, LSS shows the best performance
on PLCC, SRCC, KRCC, and RMSE, our proposed VSA
achieves the best value on µD and σD, and other values are very
close to the best one. On the PEID database, VIF shows
superior performance in confidence evaluation (lowest μD,
σD, and maxD), and our proposed VSA achieves the best
performance on PLCC, SRCC, KRCC, and RMSE. In the
moderate image quality range, our proposedVSA achieves the
best performance on monotonicity, linearity, and accuracy

evaluation on the two databases. In the high image quality
range, SSIM obtains the best performance on IVC-
SelectEncrypt database; on the PEID database, various VSAs
exhibit satisfactory performance in different aspects. In
summary, our proposed VSA exhibits better performance in
low and moderate image quality ranges on the two databases.
In the low and moderate image quality ranges, the structure
and orientation changes caused by selective encryption are
more obvious. And the saliency of the original image can
extract the more important areas of the images which is
important for the visual security assessment of the selective
encrypted images. (erefore, it is rational that our proposed
VSA shows the better performance in low and moderate
image quality ranges.

4.2.3. Evaluation on Different Encryption Types. We also
evaluated the different VSAs on various types of encryption
on the two test databases to more comprehensively evaluate

Table 4: Overall performance comparison on different databases.

Database Evaluation PSNR SSIM VIF LSS ESS LFBVS VSI-Canny Proposed

IVC-SelectEncrypt

µD 0.156 0.122 0.170 0.222 0.343 0.254 0.154 0.098
σD 0.101 0.184 0.101 0.188 0.188 0.174 0.089 0.099

maxD 0.394 0.689 0.404 0.520 0.399 0.479 0.353 0.343
PLCC 0.915 0.891 0.939 0.919 0.901 0.891 0.942 0.956
SRCC 0.911 0.869 0.939 0.932 0.909 0.891 0.935 0.954
KRCC 0.743 0.702 0.791 0.786 0.747 0.712 0.776 0.815
RMSE 0.543 0.645 0.455 0.658 0.506 0.601 0.446 0.388

PEID

µD 0.189 0.431 0.169 0.098 0.158 0.116 0.333 0.096
σD 0.144 0.239 0.077 0.044 0.137 0.105 0.210 0.059

maxD 0.538 0.853 0.534 0.771 0.479 0.530 0.882 0.774
PLCC 0.825 0.845 0.854 0823 0.808 0.724 0.850 0.886
SRCC 0.796 0.831 0.910 0.796 0.772 0.618 0.726 0.870
KRCC 0.616 0.657 0.768 0.616 0.592 0.458 0.557 0.691
RMSE 1.056 0.999 0.645 1.061 1.065 1.248 0.984 0.866
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Figure 4: Confidence evaluation of all the VSAs on the IVC-SelectEncrypt database, where the pairs of the MOS values and the objective
scores are plotted as black dots.(e nonlinear fitting results are plotted as red dashed lines, andVmax (x),Vmin (x), and Cx are plotted as blue,
green, and black solid lines, respectively. (a) PSNR. (b) SSIM. (c) VIF. (d) LSS. (e) ESS. (f ) LFBVS. (g) VSI-Canny. (h) (e proposed VSA.
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the performance of all VSAs. (ere are 15 different en-
cryption types in the test on the two databases. Tables 6 and 7
report the performance results of all encryption types that
appear in the test databases, respectively.

From Table 6, we can find that our proposed VSA has
better monotonicity performance (the higher SRCC and
KRCC values) than other IQAs and VSAs on the two da-
tabases. More specifically, our proposed VSA achieves the
highest SRCC hit-count (8 times) and KRCC hit-count (7
times), and this value is higher than those of the other
metrics. We can also find that our proposed VSA still has the
highest PLCC hit-count (7 times) and RMSE hit-count (7
times) from Table 7.

From Tables 6 and 7, we can see that all of the involved
VSAs obtain relatively inferior performance on encryption
types enc08 and enc09 in the PEID database, and our
proposed VSA is still relatively great on enc09 but relatively
poor on enc08. As shown in Figure 5, the distortions caused
by these two encryption methods are different from other
methods that they make the images warping. (erefore, the
features extracted from these encrypted images cannot
match the features of the original images and these VSAs and
IQAs have not good performance on the two encryption
methods. (is situation also results the overall performance
of our method at PEID being worse than IVC-SelectEncrypt.
Except for enc08 and enc09, other encryptionmethods cause

Table 5: Overall performance comparison on different ranges.

Database Evaluation PSNR SSIM VIF LSS ESS LFBVS VSI-Canny Proposed

IVC-SelectEncrypt

Low

µD 0.216 0.367 0.283 0.311 0.218 0.179 0.183 0.155
σD 0.112 0.199 0.137 0.211 0.307 0.256 0.099 0.092

maxD 0.394 0.689 0.283 0.876 0.312 0.479 0.353 0.306
PLCC 0.684 0.680 0.900 0.935 0.760 0.586 0.900 0.912
SRCC 0.703 0.528 0.889 0.902 0.673 0.662 0.826 0.899
KRCC 0.524 0.389 0.711 0.746 0.582 0.479 0.635 0.733
RMSE 0.381 0.384 0.228 0.185 0.574 0.620 0.228 0.246

Moderate

µD 0.129 0.168 0.222 0.290 0.136 0.141 0.183 0.154
σD 0.174 0.125 0.138 0.116 0.258 0.273 0.090 0.094

maxD 0.255 0.393 0.404 0.423 0.376 0.312 0.277 0.306
PLCC 0.514 0.474 0.583 0.503 0.602 0.388 0.503 0.713
SRCC 0.531 0.348 0.521 0.495 0.577 0.321 0.473 0.629
KRCC 0.367 0.244 0.367 0.345 0.324 0.253 0.324 0.422
RMSE 0.286 0.294 0.271 0.289 0.602 0.639 0.288 0.234

High

µD 0.130 0.038 0.186 0.114 0.220 0.198 0.119 0.164
σD 0.076 0.044 0.093 0.117 0.331 0.277 0.068 0.080

maxD 0.301 0.178 0.368 0.424 0.399 0.309 0.259 0.334
PLCC 0.694 0.740 0.596 0.253 0.588 0.646 0.605 0.650
SRCC 0.694 0.732 0.606 0.494 0.599 0.646 0.606 0.638
KRCC 0.520 0.558 0.445 0.360 0.442 0.466 0.437 0.469
RMSE 0.316 0.295 0.353 0.425 0.564 0.549 0.352 0.333

PEID

Low

µD 0.152 0.300 0.030 0.389 0.170 0.049 0.197 0.097
σD 0.170 0.159 0.019 0.152 0.095 0.039 0.105 0.041

maxD 0.527 0.716 0.142 0.753 0.376 0.283 0.643 0.225
PLCC 0.593 0.577 0.793 0.641 0.573 0.315 0.432 0.804
SRCC 0.574 0.617 0.698 0.531 0.484 0.287 0.196 0.711
KRCC 0.405 0.452 0.532 0.380 0.355 0.204 0.135 0.533
RMSE 0.534 0.542 0.449 0.510 0.573 0.619 0.599 0.403

Moderate

µD 0.187 0.527 0.091 0.432 0.398 0.116 0.441 0.290
σD 0.145 0.161 0.054 0.192 0.195 0.038 0.161 0.127

maxD 0.499 0.850 0.387 0.771 0.394 0.276 0.725 0.565
PLCC 0.355 0.407 0.617 0.295 0.387 0.376 0.474 0.623
SRCC 0.320 0.368 0.604 0.418 0.289 0.257 0.475 0.601
KRCC 0.221 0.256 0.418 0.288 0.198 0.170 0.333 0.430
RMSE 0.531 0.519 0.503 0.543 0.534 0.539 0.500 0.519

High

µD 0.210 0.511 0.159 0.295 0.278 0.286 0.393 0.317
σD 0.172 0.321 0.133 0.180 0.163 0.172 0.264 0.198

maxD 0.538 0.853 0.534 0.628 0.479 0.530 0.882 0.774
PLCC 0.850 0.849 0.838 0.518 0.840 0.693 0.860 0.480
SRCC 0.795 0.781 0.785 0.632 0.766 0.629 0.820 0.459
KRCC 0.608 0.593 0.584 0.466 0.568 0.433 0.639 0.321
RMSE 0.473 0.329 0.312 0.532 0.310 0.412 0.317 0.498

Security and Communication Networks 11



Ta
bl

e
6:

O
ve
ra
ll
pe
rf
or
m
an
ce

co
m
pa
ri
so
n
(S
RC

C
an
d
K
RC

C
)
on

di
ffe
re
nt

en
cr
yp
tio

ns
.

SR
C
C

K
RC

C
D
at
ab
as
e

M
et
ri
c

PS
N
R

SS
IM

V
IF

LS
S

ES
S

LF
BV

S
V
SI
-C

an
ny

Pr
op

os
ed

PS
N
R

SS
IM

V
IF

LS
S

ES
S

LF
BV

S
V
SI
-C

an
ny

Pr
op

os
ed

IV
C
-S
el
ec
tE
nc
ry
pt

tr
ad

0.
96
5

0.
96

8
0.
96
4

0.
94
8

0.
93
3

0.
96
0

0.
95
1

0.
96

8
0.
86
4

0.
86

4
0.
85
4

0.
82
0

0.
79
9

0.
85
2

0.
81
8

0.
85
4

tr
un

c
0.
88
8

0.
87
9

0.
95

3
0.
94
8

0.
91
3

0.
90
7

0.
95
3

0.
92
1

0.
73
1

0.
71
0

0.
80
3

0.
82

9
0.
80
1

0.
79
8

0.
82
6

0.
76
4

iw
in
d_

ec
0.
90
9

0.
92
4

0.
94
1

0.
88
7

0.
85
9

0.
88
6

0.
92
7

0.
96

5
0.
73
8

0.
76
6

0.
80
0

0.
75
1

0.
72
4

0.
75
3

0.
77
9

0.
81
1

iw
in
d_

ne
c

0.
91
0

0.
95
3

0.
95
1

0.
90
7

0.
94
6

0.
94
6

0.
93
4

0.
95

3
0.
77
0

0.
83
7

0.
82
9

0.
82
0

0.
82
7

0.
82
2

0.
79
8

0.
83

7
re
s

0.
91
5

0.
88
6

0.
95

5
0.
95
5

0.
92
6

0.
91
6

0.
94
4

0.
96

0
0.
77
8

0.
71
7

0.
83
9

0.
84

2
0.
78
7

0.
76
5

0.
82
5

0.
84

6

PE
ID

en
c0
1

0.
90
6

0.
92
7

0.
89
7

0.
95
1

0.
54
0

0.
45
2

0.
86
4

0.
93
7

0.
73
5

0.
77
4

0.
75
9

0.
80

7
0.
47
3

0.
38
6

0.
70
9

0.
75
9

en
c0
2

0.
95
1

0.
91
1

0.
96

3
0.
83
5

0.
84
6

0.
62
7

0.
88
7

0.
93
8

0.
80

9
0.
76
0

0.
78
5

0.
65
0

0.
66
8

0.
45
3

0.
71
1

0.
76
4

en
c0
3

0.
92
3

0.
89
8

0.
97
7

0.
94
4

0.
96
6

0.
86
2

0.
97
5

0.
97

8
0.
74
9

0.
74
1

0.
82
5

0.
79
5

0.
81
3

0.
72
4

0.
87
2

0.
87

3
en
c0
4

0.
91
1

0.
91
6

0.
91
6

0.
90
8

0.
82
8

0.
90
7

0.
73
8

0.
96

2
0.
74
2

0.
75
0

0.
74
1

0.
73
6

0.
69
4

0.
71
3

0.
53
8

0.
76

9
en
c0
5

0.
92
9

0.
93
6

0.
94
0

0.
92
4

0.
78
9

0.
82
1

0.
92
7

0.
94

6
0.
77
4

0.
79
0

0.
78
3

0.
76
7

0.
61
3

0.
68
9

0.
78
3

0.
83

0
en
c0
6

0.
97
0

0.
96
5

0.
97
2

0.
96
8

0.
96
1

0.
91
4

0.
97
2

0.
97

6
0.
84
7

0.
83
3

0.
85
2

0.
84
5

0.
84
4

0.
82
5

0.
85
3

0.
85

3
en
c0
7

0.
95
6

0.
97
7

0.
98

3
0.
95
8

0.
97
5

0.
95
9

0.
98
2

0.
97
1

0.
80
5

0.
86
9

0.
88

5
0.
81
8

0.
87
6

0.
85
9

0.
88
4

0.
86
2

en
c0
8

0.
08
3

0.
66
6

0.
19
1

0.
20
0

0.
32
5

0.
36
0

0.
71
0

0.
24
6

0.
06
6

0.
52
8

0.
14
4

0.
14
5

0.
25
6

0.
25
9

0.
55

8
0.
18
4

en
c0
9

0.
23
5

0.
76

0
0.
58
2

0.
18
7

0.
36
4

0.
33
9

0.
15
5

0.
52
1

0.
16
2

0.
58

2
0.
49
3

0.
12
6

0.
28
9

0.
27
6

0.
08
2

0.
38
0

en
c1
0

0.
76
0

0.
94
3

0.
98

0
0.
63
1

0.
84
6

0.
67
8

0.
63
2

0.
93
0

0.
58
9

0.
80
7

0.
82

3
0.
47
3

0.
72
3

0.
64
9

0.
46
8

0.
78
8

12 Security and Communication Networks



Ta
bl

e
7:

O
ve
ra
ll
pe
rf
or
m
an
ce

co
m
pa
ri
so
n
(P
LC

C
an
d
RM

SE
)
on

di
ffe
re
nt

en
cr
yp
tio

ns
.

PL
C
C

RM
SE

D
at
ab
as
e

M
et
ri
c

PS
N
R

SS
IM

V
IF

LS
S

ES
S

LF
BV

S
V
SI
-c
an
ny

Pr
op

os
ed

PS
N
R

SS
IM

V
IF

LS
S

ES
S

LF
BV

S
V
SI
-c
an
ny

Pr
op

os
ed

IV
C
-S
el
ec
tE
nc
ry
pt

tr
ad

0.
95
5

0.
96

9
0.
96
9

0.
95
5

0.
92
2

0.
95
7

0.
95
5

0.
96
8

0.
25
0

0.
20
8

0.
20

7
0.
25
0

0.
26
4

0.
24
8

0.
24
9

0.
21
1

tr
un

c
0.
91
6

0.
90
7

0.
98

0
0.
97
0

0.
94
6

0.
94
9

0.
97
4

0.
95
8

0.
51
0

0.
53
6

0.
24

6
0.
30
8

0.
31
6

0.
29
3

0.
28
7

0.
36
5

iw
in
d_

ec
0.
95
7

0.
98
1

0.
98
3

0.
94
1

0.
91
6

0.
96
7

0.
98
2

0.
98

4
0.
43
4

0.
28
0

0.
26
4

0.
48
3

0.
51
2

0.
49
1

0.
27
4

0.
25

8
iw
in
d_

ne
c

0.
93
1

0.
96
5

0.
96
0

0.
90
7

0.
92
4

0.
94
8

0.
95
0

0.
97
1

0.
43
5

0.
31
2

0.
33
4

0.
50
2

0.
49
3

0.
37
5

0.
37
0

0.
31
2

re
s

0.
90
5

0.
93
1

0.
97

8
0.
95
5

0.
94
9

0.
93
9

0.
96
1

0.
96
1

0.
48
0

0.
41
2

0.
23
4

0.
21
1

0.
50
1

0.
48
7

0.
19
8

0.
31
1

PE
ID

en
c0
1

0.
90
4

0.
95

7
0.
94
8

0.
95
2

0.
79
6

0.
58
3

0.
94
4

0.
94
6

0.
50
9

0.
34
6

0.
32

8
0.
36
3

0.
71
6

0.
90
3

0.
39
3

0.
41
8

en
c0
2

0.
96
7

0.
95
0

0.
97

0
0.
88
8

0.
86
1

0.
63
6

0.
88
8

0.
93
9

0.
42
4

0.
51
6

0.
41
0

0.
76
0

0.
74
9

0.
85
6

0.
76
2

0.
51
7

en
c0
3

0.
96
4

0.
95
6

0.
98

5
0.
97
0

0.
97
9

0.
91
7

0.
98
4

0.
98

5
0.
48
1

0.
53
3

0.
32
6

0.
44
2

0.
38
3

0.
41
2

0.
32
4

0.
31
2

en
c0
4

0.
94
0

0.
92
8

0.
95
0

0.
93
9

0.
81
6

0.
91
1

0.
88
3

0.
96

7
0.
52
6

0.
57
3

0.
44
2

0.
53
1

0.
47
3

0.
45
9

0.
72
2

0.
41
9

en
c0
5

0.
91
7

0.
94
7

0.
95
5

0.
92
1

0.
81
2

0.
85
3

0.
95
6

0.
95

6
0.
52
0

0.
42
0

0.
40

2
0.
50
8

0.
52
9

0.
51
3

0.
38
5

0.
40

2
en
c0
6

0.
98
2

0.
97
9

0.
98
8

0.
98
2

0.
97
8

0.
92
6

0.
98
4

0.
98

9
0.
36
3

0.
39
1

0.
36
2

0.
35
8

0.
37
1

0.
40
2

0.
34
5

0.
33

9
en
c0
7

0.
98
0

0.
98
2

0.
98

7
0.
96
8

0.
98
2

0.
96
4

0.
97
9

0.
98

7
0.
38
6

0.
36
6

0.
36

7
0.
48
3

0.
37
5

0.
39
6

0.
39
1

0.
41
5

en
c0
8

0.
10
8

0.
61
0

0.
27
2

0.
27
3

0.
38
7

0.
36
4

0.
71
7

0.
22
9

0.
42
8

0.
34
1

0.
79
6

0.
41
4

0.
36
9

0.
48
3

0.
23

0
0.
41
8

en
c0
9

0.
42
6

0.
76

0
0.
71
5

0.
29
6

0.
61
9

0.
47
5

0.
65
6

0.
69
8

1.
40
8

1.
01
1

1.
12
9

1.
48
7

1.
24
5

1.
37
8

1.
17
4

1.
11
5

en
c1
0

0.
82
4

0.
96
6

0.
98

7
0.
75
0

0.
93
3

0.
80
9

0.
80
4

0.
96
9

1.
06
7

0.
48
9

0.
46

3
1.
24
6

0.
57
4

0.
79
6

1.
12
1

0.
46

3

Security and Communication Networks 13



obvious structure and orientation changes of images.
(erefore, it is reasonable that our proposed method shows
the better performance because the features of our proposed
VSA aremore relevant to the content leakage caused bymost
encryption methods.

4.3. Computational Complexity. Finally, considering that the
running time is important in many practical applications, we
analyze the computational cost of all VSAs. In our test, we
measure the computational cost of a VSA on 512× 512 im-
ages. We perform experiments using the original code in the
MATLAB R2016b on a 64-bit Windows 7 operating system at
16GB memory and 3.20GHz frequency of Intel processors.
To avoid the possible bias caused by selecting the specific
images, we randomly choose 100 images from the PEID
database and then calculate the average running time as the
computation cost of each VSA.

It is known from Table 8 that most of the metrics are
fast to compute. By contrast, PSNR and SSIM are the fastest
methods but they are mainly used for image quality as-
sessment, and their performance is not excellent. VIF is
also an IQA method which has a relatively good perfor-
mance, but its running time is much higher than other
methods because its computational model is more com-
plex. Compared with other VSAs, our proposed VSA has a
faster running speed. In implementation, our method takes
up most of the time in feature extraction procedure. In the
future, we will try to explore more efficient feature ex-
traction techniques to reduce the computational cost of the
proposed method.

5. Conclusions

In this paper, we have presented a novel visual security
assessment (VSA) that makes use of the structure and
orientation information. First, we extract the structure of
the original and the encrypted images by combining PC
and GM. (en, we extract the orientation information by
the GM, and we can obtain similarity measurements by
calculating the structure and orientation similarity maps.
Meanwhile, we compute the saliency map of original
image. (en, we utilize a saliency-based polling strategy
to combine these two similarity maps and generate the
final VSA score. We conduct extensive experiments to
evaluate the performance of our proposed VSA and
compare it with other IQAs and VSAs which are widely
used for the visual security assessment for encrypted
images on two encryption image databases. (e experi-
mental results show that our proposed VSA has better
performance and stronger robustness than all existing
IQAs and VSAs, especially in the range of low and
moderate image quality.

Data Availability

Previously reported IVC-SelectEncrypt and PEID data were
used to support this study and are available at http://www.
polytech.univ-nantes.fr/autrusseau-f/Databases/SelectiveEn
cryption/ and https://sites.google.com/site/xiangtaooo/, re-
spectively. (ese prior studies (and datasets) are cited at
relevant places within the text as references.

(a) (b) (c)

Figure 5: (e encrypted images by enc08 and enc09 from the PEID (29) database. (a) Original image. (b) Encrypted image of (a) by enc08.
(c) Encrypted image of (a) by enc09.

Table 8: Computational cost of all involved metrics.

Metric PSNR SSIM VIF LSS ESS LFBVS VSI-Canny Proposed
Time(s) 0.034 0.136 1.983 0.173 0.518 0.789 0.778 0.476
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http://www.polytech.univ-nantes.fr/autrusseau-f/Databases/SelectiveEncryption/
http://www.polytech.univ-nantes.fr/autrusseau-f/Databases/SelectiveEncryption/
http://www.polytech.univ-nantes.fr/autrusseau-f/Databases/SelectiveEncryption/
https://sites.google.com/site/xiangtaooo/


Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding publication of this paper.

Acknowledgments

(is work was supported in part by the Natural Science
Foundation of China under grant nos. 61601268, 61803237,
61901246, and U1736122; in part by the Natural Science
Foundation for Distinguished Young Scholars of Shandong
Province under grant no. JQ201718; and in part by the
Shandong Provincial Key Research and Development Plan
under grant no. 2017CXGC1504.

References

[1] F. Shang, H. Zhang, L. Zhu, and J. Sun, “Adversarial cross-
modal retrieval based on dictionary learning,” Neuro-
computing, vol. 355, pp. 93–104, 2019.

[2] E. Yu, J. Sun, J. Li, X. Chang, X.-H. Han, and
A. G. Hauptmann, “Adaptive semi-supervised feature selec-
tion for cross-modal retrieval,” IEEE Transactions on Multi-
media, vol. 21, no. 5, pp. 1276–1288, 2019.

[3] H. Liu, B. Xu, D. Lu, and G. Zhang, “A path planning ap-
proach for crowd evacuation in buildings based on improved
artificial bee colony algorithm,” Applied Soft Computing,
vol. 68, pp. 360–376, 2018.

[4] H.Wu, H. Zhang, L. Cui, and X.Wang, “A heuristic model for
supporting users’ decision-making in privacy disclosure for
recommendation,” Security and Communication Networks,
vol. 2018, Article ID 2790373, 13 pages, 2018.

[5] Y. X. Yan, L. Wu, W. Y. Xu, H. Wang, and Z. M. Liu, “In-
tegrity audit of shared cloud data with identity tracking,”
Security and Communication Networks, vol. 2019, Article ID
1354346, 11 pages, 2019.

[6] W. Wan, J. Wang, and J. Li, “Hybrid JND model-guided
watermarking method for screen content im-ages,” Multi-
media Tools and Applications, vol. 79, no. 7-8, pp. 4907–4930,
2018.

[7] J. Wang and W. Wan, “A novel attention-guided JND model
for improving robust image watermarking,”Multimedia Tools
and Applications, vol. 79, no. 33-34, pp. 24057–24073, 2020.

[8] W. Wan, J. Wang, J. Li et al., “Pattern complexity-based JND
estimation for quantization watermarking,” Pattern Recog-
nition Letters, vol. 130, pp. 157–164, 2020.

[9] L. Zou, J. Sun, M. Gao, W. Wan, and B. B. Gupta, “A novel
coverless information hiding method based on the average
pixel value of the sub-images,” Multimedia Tools and Ap-
plications, vol. 78, no. 7, pp. 7965–7980, 2019.

[10] Y. Song, H. Wang, X. Wei, and L. Wu, “Efficient attribute-
based encryption with privacy-preserving key generation and
its application in industrial cloud,” Security and Communi-
cation Networks, vol. 2019, Article ID 3249726, 9 pages, 2019.

[11] X. Xiao, X. Zheng, and Y. Zhang, “A multidomain survivable
virtual network mapping algorithm,” Security and Commu-
nication Networks, vol. 2017, Article ID 5258010, 12 pages,
2017.

[12] H. Liu, B. Liu, H. Zhang, L. Li, X. Qin, and G. Zhang, “Crowd
evacuation simulation approach based on navigation
knowledge and two-layer control mechanism,” Information
Sciences, vol. 436-437, pp. 247–267, 2018.

[13] G. Han and W. Zhang, “Improved biclique cryptanalysis of
the lightweight block cipher piccolo,” Security and Commu-
nication Networks, vol. 2017, Article ID 7589306, 12 pages,
2017.

[14] X. Zheng, J. Tian, X. Xiao, X. Cui, and X. Yu, “A heuristic
survivable virtual network mapping algorithm,” Soft Com-
puting, vol. 23, no. 5, pp. 1453–1463, 2019.

[15] H. Wang, D. He, J. Shen, Z. Zheng, X. Yang, and M. H. Au,
“Fuzzy matching and direct revocation: a new CP-ABE
scheme from multilinear maps,” Soft Computing, vol. 22,
no. 7, pp. 2267–2274, 2018.

[16] W. Zhang and V. Rijmen, “Division cryptanalysis of block
ciphers with a binary diffusion layer,” IET Information Se-
curity, vol. 13, no. 2, pp. 87–95, 2019.

[17] H. Hofbauer and A. Uhl, “Identifying deficits of visual security
metrics for images,” Signal Processing: Image Communication,
vol. 46, pp. 60–75, 2016.

[18] Z. Tang, Z. Huang, H. Yao, X. Zhang, L. Chen, and C. Yu,
“Perceptual image hashing with weighted DWT features for
reduced-reference image quality assessment,” Ee Computer
Journal, vol. 61, no. 11, pp. 1695–1709, 2018.

[19] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: from error visibility to structural
similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, 2004.

[20] H. R. Sheikh and A. C. Bovik, “Image information and visual
quality,” IEEE Transactions on Image Processing, vol. 15, no. 2,
pp. 430–444, 2006.

[21] T. Xiang, S. Guo, and X. Li, “Perceptual visual security index
based on edge and texture similarities,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 5, pp. 951–963,
2016.

[22] Y. Mao and M. Wu, “Security evaluation for communication-
friendly encryption of multimedia,” in Proceedings of IEEE
International Conference on Image Processing (ICIP), vol. 1,
pp. 569–572, Singapore, October 2004.

[23] L. Tong, F. Dai, Y. Zhang, and J. Li, “Visual security evaluation
for video encryption,” in Proceedings of ACM International
Conference on Multimedia, pp. 835–838, Firenze, Italy, Oc-
tober 2010.

[24] J. Sun, X. Liu, W. Wan, J. Li, D. Zhao, and H. Zhang, “Video
hashing based on appearance and attention features fusion via
DBN,” Neurocomputing, vol. 213, pp. 84–94, 2016.

[25] J. Zong, L. Meng, H. Zhang, and W. Wan, “JND-based
multiple description image coding,” KSII Transactions on
Internet and Information Systems, vol. 11, no. 8, pp. 3935–
3949, 2017.

[26] T. Xiang, Y. Yang, H. Liu, and S. Guo, “Visual security
evaluation of perceptually encrypted images based on image
importance,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 30, no. 11, pp. 4129–4142, 2020.

[27] P. Kovesi, “Image features from phase congruency,” Videre:
Journal of Computer Vision Research, vol. 1, no. 3, pp. 1–26,
1999.

[28] Y. Liu, k. Gu, Y. Zhang et al., “Unsupervised blind image
quality evaluation via statistical measurements of structure,
naturalness, and perception,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 30, no. 4, pp. 929–943,
2020.

[29] J. Wu, W. Lin, G. Shi, Y. Zhang, W. Dong, and Z. Chen,
“Visual orientation selectivity based structure description,”
IEEE Transactions on Image Processing, vol. 24, no. 11,
pp. 4602–4613, 2015.

Security and Communication Networks 15



[30] X. Zhang, “Separable reversible data hiding in encrypted
image,” IEEE Transactions on Information Forensics and Se-
curity, vol. 7, no. 2, pp. 826–832, 2012.

[31] J. Zhou, O. C. Au, G. Zhai, Y. Y. Tang, and X. Liu, “Scalable
compression of stream cipher encrypted images through
context-adaptive sampling,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 9, no. 11, pp. 1857–1868, 2014.

[32] F. Autrusseau, T. Stutz, and V. Pankajakshan, “Subjective
quality assessment of selective encryption techniques,” 2010.

[33] S. Guo, T. Xiang, X. Li, Y. Yang, and P. E. I. D. “, “A per-
ceptually encrypted image database for visual sec-urity
evaluation,” IEEE Transactions on Information Forensics and
Security, vol. 15, no. 99, pp. 1151–1163, 2019.

[34] L. Zhang, Y. Shen, and H. Li, “VSI: VSI: a visual saliency-
induced index for perceptual image quality assessment,” IEEE
Transactions on Image Processing, vol. 23, no. 10, pp. 4270–
4281, 2014.

[35] J. Wu, W. Lin, G. Shi, L. Li, and Y. Fang, “Orientation se-
lectivity based visual pattern for reduced-reference image
quality assessment,” Information Sciences, vol. 351, pp. 18–29,
2016.

[36] J. Harel, C. Koch, and P. Perona, “Graph-based visual sa-
liency,” in Proceedings of International Conference on Neural
Information Processing Systems (NIPS), pp. 545–552, Co-
lumbia, Canada, December 2006.

[37] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware
saliency detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 10, pp. 1915–1926, 2012.

[38] E. Erdem and A. Erdem, “Visual saliency estimation by
nonlinearly integrating features using region covariances,”
Journal of Vision, vol. 13, no. 4, pp. 1–11, 2013.

[39] A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil,
“Saliency from hierarchical adaptation through decorrelation
and variance normalization,” Image and Vision Computing,
vol. 30, no. 1, pp. 51–64, 2012.

[40] J. Zhang and S. Sclaroff, “Saliency detection: a boolean map
approach,” in Proceedings of the 2013 IEEE International
Conference on Computer Vision, Sydney, NSW, Australia,
December 2013.

16 Security and Communication Networks


