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Anomaly detection algorithms (ADA) have beenwidely used as services inmanymaintenancemonitoring platforms.However, there are
numerous algorithms that could be applied to these fast changing stream data. Furthermore, in IoT stream data due to its dynamic
nature, the phenomena of conception drift happened. )erefore, it is a challenging task to choose a suitable anomaly detection service
(ADS) in real time. For accurate online anomalous data detection, this paper developed a service selectionmethod to select and configure
ADS at run-time. Initially, a time-series feature extractor (Tsfresh) and a genetic algorithm-based feature selectionmethod are applied to
swiftly extract dominant features which act as representation for the stream data patterns. Additionally, stream data and various efficient
algorithms are collected as our historical data. A fast classification model based on XGBoost is trained to record stream data features to
detect appropriate ADS dynamically at run-time.)esemethods help to choose suitable service and their respective configuration based
on the patterns of stream data. )e features used to describe and reflect time-series data’s intrinsic characteristics are the main success
factor in our framework. Consequently, experiments are conducted to evaluate the effectiveness of features closed by genetic algorithm.
Experimentations on both artificial and real datasets demonstrate that the accuracy of our proposed method outperforms various
advanced approaches and can choose appropriate service in different scenarios efficiently.

1. Introduction

With the growth of the Internet of )ings (IoT), the sensor
or stream data is bound to be collected at tremendous speed.
In such real-time scenarios, there can be various anomalous
data streams, for example, the data diverge from the usual
behavior of the stream or the abruptly jumped data [1],
which are dissimilar to familiar patterns.

It is critical for further decision making to capture these
anomalous data accurately and timely. Banerjee et al. [2]
introduced the trend of everything as a service (XaaS). Fol-
lowing Banerjee et al. [2], a lot of researchers try to encap-
sulate various data or common functions into services. For

example, streaming as a service is studied bymany researchers
[3–5], which can provide the sharing and simple processing
capabilities for stream data. )e idea of choosing suitable
service or methods can be referred to in [6–8]. It is proposed
to provide common functions for various data sources, which
enable users to conveniently reuse these functions and form
more complex functions through service composition.

In real-world software systems, numerous anomaly
detection algorithms (ADAs) are industrialised and are
offered as a service to be utilised in diverse domains [9, 10].
In our preceding work [11], a proactive data services ab-
straction was applied to appropriately encapsulate present
ADAs into a service.
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Even though, with the scenario in hand, it is still a
challenge to effectively capture anomalous data considering
various circumstances. Following the concept of the No-
Free-Lunch (NFL) optimisation theorem [12], it is infeasible
to find a single algorithm for all the cases that dominate all
others on the same optimisation problem [1]. In the state-of-
the-art survey paper, Braei andWagner [13] state that for the
most part the univariate dataset may suffer from contextual
anomalies; therefore, statistical methods will not perform
well. Deep learning models may perhaps increase the area
under the curve (AUC) and neural network models might
outperform the statistical methods. On contrary, the volume
of novel stream data can appear frequently and continuously
and can result in missing part of the anomalous data through
manual service selection. Consequently, running an ADS
possibly will not adjust to different types of stream data.
)erefore, for faster and more accurate anomaly detection, it
is obligatory to choose an appropriate service for different
stream data dynamically at run-time.

Since each type of anomaly detection algorithms gives
better results only for a particular set of stream data [14].
)erefore, to automatically choose appropriate services for
diverse IoT scenarios, it is required to correctly and quickly
characterise the underlying stream data. Hence, proper
service might be chosen and configured based on the pattern
of a particular stream of data. Keeping in view the gigantic
volume of stream data, this study finds out that several IoT
streams are alike owing to their shape similarities and im-
plicit relations.

For effective handling of anomalies from various stream
data, based on the above observation, in this paper, an
Anomaly Detection via Service Selection (ADSS) framework
was proposed. To recognise the pattern of various stream
data, in our proposed ADSS framework, it tries to capture
intrinsic similarity and dissimilarity in various stream data
established on time-series statistical features. Moreover, a
fast classifier based on the XGBoost algorithm is trained to
record features of stream data in order to detect appropriate
ADS dynamically at run-time. Due to the presence of the
best classifier, our ADSS method can identify the dynamics
of data stream patterns of newly appearing stream of data
and then choose and configure the suitable service.

Firstly, it is well known that there could not be an al-
gorithm that could defeat others in all the datasets. Con-
sequently, our aim of this study is not to build a model or to
develop a new algorithm which could beat all the other
algorithms in all the datasets. Instead, a method is designed
to capture the variation of the stream data in the run-time
and configure different algorithm to handle the stream data.
Experimental results show that we could achieve a better
performance in the long run.

)is study focuses on the selecting algorithms based for
dynamically changing IoTstream data.)e original idea is to
construct features to be a representation of different stream
data and build a supervised model to recommend a suitable
algorithm for a certain stream data. Collections of historical
data are gathered from a real monitor system. Further, on
the basis of these data, an XGBoost model is trained based on
the feature and its label. Here, the label is the best algorithm

which is more suitable for a certain kind of stream data. )is
manuscript is the extended version of our recently published
conference paper [15].

In the revised version of the manuscript, the features’
construction process is improved by applying a Tsfresh tool
and intelligent optimisation algorithm [16]. )e former tool
is taken to extract multiple features of time-series. )ese
features consist of 100+ kinds of features from different
angles which could represent intrinsic features of stream
data completely. Moreover, an intelligent optimisation al-
gorithm such as genetic algorithm is applied to help choose a
subset of features which could further result in the reduction
of computing complexity of the algorithm recommendation
procedure. )e specific contributions of the manuscript are
summarised below:

(i) In this paper, we develop a method that facilitates
IoT-based systems to automatically choose appro-
priate services using the existing data features in
order to detect an anomaly.

(ii) In this paper, we develop a service update frame-
work in which service quality and its resultant al-
gorithms and data stream are recorded. )e
aforesaid historic data will assist in the training of
different decision models that paves the approach
for accurately recommending ADS. In this ap-
proach, freshly designed algorithms can easily be
added to the service pool.

(iii) In this paper, we carried out various experiments by
means of data streams from NAB [17] and Yahoo
datasets [18]. )e experimental results demonstrate
that our method can select the best service dy-
namically according to changes in the stream data
pattern.

(iv) In this paper, an improved features’ construction
method by applying Tsfresh tool and intelligent
optimisation algorithm is devised [16].

)e remainder of this article is organised as follows.
Section 2 describes the related work to build a proper
problem statement. )e proposed ADSS framework is ac-
cessible in Section 3, while Section 4 is based on experi-
mental outcomes. Section 5 is the last section which
summarises the paper.

2. Background and Related Work

2.1. Anomaly Detection Algorithms. In this study, the un-
supervised methods are mainly considered to detect
anomalies due to its good generalization ability.)e possible
reasons why we do not consider supervised methods are as
follows. Firstly, in real-time IoT arrangements, different
types of time-series data are collected that are hard to label
for anomalies. Secondly, to rapidly deploy ADS, almost there
is very less or no time to train a complex anomaly detection
model. )irdly, for the dynamic change of time-series in
real-time IoT systems, even some of the good models per-
form badly and cannot handle this dynamism. Summary of
the unsupervised class of ADAs is given in Table 1.
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Although, for anomaly detection, there are numerous
deep learning algorithm-based methods, for example,
AutoEncoder [21] and LSTM [22], they cannot be used
directly on the continuous stream data, because these
methods need fine parameter tuning and a lot of training
data. Allowing for the scenario of frequent changes of data
pattern or anticipated behavior in the frequently launched
streams stream, the notion of selecting appropriate service
algorithms is becoming challenging.

2.2.AnomalyDetectionAlgorithm in the System. To present a
unified and easier way to adapt to changes and accurately
detect anomalies in diverse circumstances, a lot of ADAs are
delivered as a service.

In [14], the first ever ADS framework was developed to
consider the aforementioned problems through semi-
supervised learning and clustering. )is study was the first
work that applies semisupervised learning to key perfor-
mance indicator (KPI) anomaly detection [14]. Still, the
postulation of huge resemblance in KPI stream data is not
effective in conventional IoT stream data.

In [10], an anomalous behavior recognition system
composed of two phases was developed based on the past
data learning the normal behavior of the system in the first
phase and then by processing real-time data and detecting
abnormal behavior in the system dynamically in real time
in the second phase. In their system, complex event pro-
cessing (CEP) patterns and anomaly detection are com-
bined as a REST service to be utilised through the interface
by a user.

In [27], the authors divided stream data into four dif-
ferent time-series groups, i.e., periodic, stationary, non-
periodic, and nonstationary. Furthermore, they used diverse
techniques to detect anomalous data.

In [28], the authors state that, in the age of big data, it is a
very challenging but important task to detect anomalies. )ey
presented the Interactive Data Exploration As-a-
Service approach for the identification of significant data.

A dynamic IoTstream data ADAmust recognise various
data pattern changes in diverse stream data anomaly de-
tection approach.)ough previously researchers were aware
of the problem of runtime outlier detection, yet solution
formation did not consider this problem and ignored

consequent changes in the stream data. While working with
a fast growing volume of IoT data with their respective
dynamic nature, current approaches are not effective.

We attempt to develop a framework based on the fea-
tures collected in the first phase to characterise the time-
series data and then apply deep learning models in the
second phase to recognise the pattern of data that will help
reconfigure the ADS dynamically in the run-time.

3. Framework for IoT Stream Data
ADS Selection

3.1. Description of Our Proposed ADS Framework. )e
framework developed in this paper comprises of three
parts: (i) service selection procedure, (ii) encapsulations of
ADAs, and (iii) service applied procedure. Many publicly
available unsupervised ADAs are incorporated for the
development of ADAs. As mentioned before, the available
ADAs can be encapsulated into services based on PD-
service abstraction. A RESTful API is used for the selection
of ADS. Service receiver can define individual views to
build IoT applications and can get the anomalous data via
the Uniform Resource Identifier (URI) of service. )e
entire working of the developed ADSS framework is il-
lustrated in Figure 1. As shown in Figure 1, the collected
tuples are portions of historical data that can be collected
through recording the stream data for a long time by field
experts along with the appropriate ADAs.

Stream data along with its appropriate algorithm are
kept in the database in the form of a tuple <stream data,
algorithm> that can be used as a metadata for onward
service identification and selection procedure. )ese historic
data can be updated by collecting running examples from
anomaly detection systems or by experts in this field.
Usually, these recorded data monitored the performance of
various ADAs and stream data that can be used to generate a
scheme to select an ADS for specific stream data.

ADSS is the basic unit of our framework. Each stream
data can be represented by a feature vector for by applying a
stream feature extraction technique on stream data. As a
training data of service selection model, the paired data are
constructed and combined with the best possible service. In
the service applying part of our framework, a new stream
data is transformed to features vector grounded on the same

Table 1: Summary of stream data anomaly detection algorithms.

Typical algorithms Category Characteristic and limitations

Prediction confidence interval (PCI) for time-series outlier
detection, simple exponential smoothing (SES) [19], and
ARIMA model [20]

Statistical
approaches

(1) A supposition about outlier data and normal data
need to made first

(2) Domain-specific knowledge is needed for threshold
selection depends on

Autoencoder [21], LSTM [22] Artificial neural
computing

Since clustering methods cannot deal with continuous
changes in data, therefore careful parameter tuning is

needed
Density-based spatial clustering of applications with noise
(DBSCAN) [23], subsequence time-series clustering (STSC)
[13], isolation forest [24], local outlier factor (LOF) [25], one-
class support vector machine (OC-SVM) [26]

Machine learning
approaches

Work on stream data; therefore, the normal reference
model might be outdated at the moment they are

actually used
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feature extraction technique. Finally, the service selection
model is used on the feature vector to select appropriate
service for the existing stream data and ultimately call the
service in real time to identify anomalous data.

3.2. Model for Service Selection. Abundant stream data are
gathered and their feature is extracted through the process
discussed in the previous sections in order to select ap-
propriate services for stream data anomaly detection. )e
finest ADS is chosen by analysing the historic data based on
the recorded stream data fragment and its corresponding
best service. In general, few ordinary services are tested
repeatedly on these stream data fragments to identify its
finest service. Grounded on the stream data fragments and
its finest ADS, the service selection problem has been
transformed into a pattern recognition problem.

Taking into account its computing efficiency, in this
paper, XGBoost [29] is utilised as a base classifier to choose a
service for real-time stream data anomaly detection. )is
procedure is illustrated in Figure 2. It should be noted that
any classifier can be used in our framework. However, in this
study, we have chosen the XGBoost algorithm as to best
choose service considering the easy explanation and high
computing efficiency of the XGBoost algorithm.

)e time-series features are the main part of our
framework, as presented in Figure 2. Some renowned stream
data features are taken from publicly available features and
some former anomaly detection schemes. What is more, a
feature selection method was employed to find some good
features to capture stream data essential features. )e ob-
jective of the selected features of stream data is to accurately
and quickly select the appropriate service dynamically in real
time for novel evolving stream data.

3.3. Stream Data Patterns Representations. Stream data may
generate dissimilar patterns as demonstrated in Figure 3.
According to Bu et al. [14], supervised techniques such as

SVM or deep learning-based techniques are not achievable
for the huge amount of novel IoT stream data applications
and the dynamic nature of the stream data. )is might be
due to two reasons: difficult parameters tuning process and a
large amount of training data.

Researchers like Bu et al. [14] state that for some kinds of
stream data simple ADAs may perform well compared to
some multifaceted algorithms such as deep learning. )e
pattern of stream data can also be recognised in time which
overlays the way for future algorithm selection in modern
microservice architecture also recognised as a service se-
lection. )e main contribution of our work focuses on the
extraction of features to characterise stream data and based
on these features select suitable algorithm service.

In order to select useful features that could distinguish
different stream data patterns, a feature selection method
was applied. We surveyed all the features which could be
considered for the representation of time-series data. )ere
are multiple types of features from different angles such as
statistics, mathematics, shape, distribution of data, and
others in the classification of time-series field.

Christ et al. [16] automatically extract 100 features from
time series and develop a tool called Tsfresh. )ese features
label basic characteristics of the time series, for example,
maximal or average value, the number of peaks, and addi-
tional complex features, for example, time setback symmetry
statistics. At the same time, through hypothesis testing to
reduce the characteristics to those, which can best explain the
trend called decorrelation. )ese feature sets are then used to
construct machine learning or statistical models based on
time series data such as classification or regression tasks.

In addition, these collected features are the reflection of
the inherent nature of data patterns, for example, the dis-
tribution, the fluctuation, and shape of data. Some typical
features are demonstrated in Figure 4.

As is shown in Figure 4, these simple features or complex
features are designed to characterise the time-series data
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from different angles and own their special geometric in-
terpretation or statistical meaning. )ese special charac-
teristics are quantified by computing these features. In other
words, it is possible to distinguish these stream-data from
each other by comparing these features. More details about
other features in Tsfresh are discussed in Table 2.

As is presented in Table 2, some computing techniques
are taken from Extendible Generic Anomaly Detection
System (EGADS) [30], and some metrics are taken from
Tsfresh [16] and the rest from other renowned statistical
techniques such as standard deviation and mean. Local
fluctuation, metrics of symmetrical values, and fluctuation
ratio are recommended in our study to characterise stream
data from diverse perspectives.

)e flowchart of selecting features frommultiple original
features is illustrated in Figure 5. As shown in Figure 5, the

genetic algorithm (GA) [31] is applied to find a feature
subset, which is enough to characterise different traits of
various stream data.

In the process of GA, the fitness computing consists of
two steps: decoding individual to feature subset and
computing test score based on the feature subset. )e test
score is utilised as the fitness of the individual. )e other
steps of GA such as selection, crossover, and mutation are
following the normal behavior as in the traditional com-
puting processes.

)e above process belongs to wrapping feature selection
approaches which build many models with dissimilar sub-
sets of input features and hand-picked those features that
have best performance agreeing to the performance metric.
Although these approaches are independent of the types of
variables, yet they might be computationally expensive.
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)ough these features are designed for general classifi-
cation and clustering problems, and not for algorithm se-
lection problems, as dictated by the literature on machine
learning technology, the transform learning technology may
perform well in similar problems for various problem fields.
Considering the similarity of the above two problems, a

conclusion can be drawn that the selected features are useful
in the algorithm selection task.

Finally, these features will help choose a suitable algo-
rithm for a certainly given stream of data by training a
classification model. As it is mentioned before, if these
features could be computed in real time, the decision of

Table 2: )e name, design principle, and computing method of some features in Tsfresh.

Name Design principle Computing method [16, 30]

Mean )e baseline of time series x � mean(xt−w: xt+w)

Standard deviation )e standard deviation of time series std �

��������������

􏽐
N
i�1 (xi − x)2/N

􏽱

Coefficient of variation )e reflection of the degree of data dispersion cv � std/mean
Local fluctuation 1 )e difference of the smooth curve and original curve sdiff � 1

n
􏽐

n
i�1 |xi − x∗i |

Local fluctuation 2 Local fluctuation with a dynamic step d(step) � (1/2step)􏽐
n−step
i�1 (xi − xi+step)2

Smooth factor )e ratio of the whole number to the number of turning points ssmooth � (1/n − 2)Nchange

Symmetrical value )e symmetry of the curve sym � 􏽐
n/2
i�1 xi/􏽐

n
i�n/2 xi

Fluctuation ratio Whole fluctuation power quantil(xnorm, 0.9) − quantil(xnormal, 0.1)

Skewness
)e estimation of the degree of statistical data distribution and

the direction of skew is the digital characteristics of the
asymmetric degree of statistical data distribution

S � (􏽐
n
i�1 (xi − μ)3/nσ3)

approximate_entropy Approximate entropy is used to measure the periodicity,
unpredictability, and volatility of a time series Refer to [16]

Autoregressive coefficient Measure the cyclical nature of data 1
n−1 􏽐i�1,...,n1/(n − l)σ2􏽐n−l

t�1(Xt − μ)(Xt+l − μ)

Kurtosis )e feature number indicating the peak value of the probability
density distribution curve at the average value E[(X − μ/σ)4]

absolute_sum_of_changes Absolute sum of first-order difference 􏽐
n−1
i�1 |xi+1 − xi|

Linear_trend
Calculation of a linear least squares regression for the values of
the time series to the sequence from 0 to the length of the time

series −1
Refer to [16]

fft_aggregated Returns the variance, mean, kurtosis, skewness, and absolute
Fourier transform spectrum Refer to [16]
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choosing the optimum algorithm service will be quicker and
thus it will be accepted by many application users.

4. Experimental Validation and Interpretation

4.1. Datasets. For the introduction and assessment of uni-
variate methods, several time-series datasets as listed in
Table 3 have been selected. As is presented in Table 3, the
reason for selecting these datasets for the assessment of the
proposed framework is the availability of similar charac-
teristics in the data. )e synthetic and real data encompasses
all the commonly known three anomaly forms: random,
collective, and point anomaly [14].

4.2. Preprocessing of Data. Standardisation helps numerous
machine learning approaches to converge quickly. A dataset
is said to be standardised one if its standard deviation σ is 1
and its mean µ is 0. Mathematically, let D be the dataset and
σ the standard deviation of D while µ is its mean. )en,
standardised D is given by the following equation:

􏽢x �
x − μ
σ

, ∀x ∈ D. (1)

4.3. Metrics Evaluation. )e performance of our developed
framework is evaluated by plotting the receiver operating
characteristic (ROC) curve. As a first step, False Positive Rate
(FPR) and True Positive Rate (TRP) are illustrated below:

FPR �
FP

P
,

TRP �
TP

P
,

(2)

where FP denotes the total number of wrong positive
predictions, TP denotes the total number of correct positive
predictions, and P is the total number of positive-labeled
values. A list of δ ∈ R are used as a threshold that leads to
various pairs of FPR and TPR for each δ. A list of two-

dimensional coordinates from values already computed is
made, and then they will be plotted as a curve. )e starting
pair of points for this curve will be (0, 0) while the ending
pair of points will be (1, 1), respectively. )e area under the
curve is labeled as AUC. Higher AUC represents the higher
possibility that the dignified algorithm allocates anomalous
points randomly to the time series. Furthermore, higher
anomaly scores than random normal points will enable AUC
to correctly associate with various anomaly detection ap-
proaches.)us, in this study, AUC is chosen as an evaluation
metric.

4.4. Comparison of Various Methods. Five algorithms out of
numerous sets of algorithms such as Long Short-Term
Memory Networks (LSTM) [22], Local Outlier Factor (LOF)
[25], Prediction Confidence Interval (PCI) [20], One-Class
Support Vector Machines (OC-SVM) [26], and Autoen-
coder [21] are set as baseline algorithms. )ese algorithms
represent machine learning techniques, deep learning
techniques, and statistical techniques that are developed for
anomaly detection in stream data. Some of the hyper-
parameters used in our study are borrowed from the work of
Bu et al. [14]. Table 4 explains the hyperparameters of these
algorithms.

4.5. Experimental Procedure and Outcome Analysis. First,
each and every dataset is divided into training set 60% set
and testing set 40% using a stratified statistical sampling
technique. Each time series of the training dataset and its
appropriate algorithm are constructed and computed as a
paired dataset. Secondly, the XGBoost model is trained to
recognise the patterns of a stream using the paired dataset as
an input. )irdly, the trained XGBoost model is used for the
recognition of patterns in each time-series in the test set and
finds out a suitable algorithm as a service. Finally, the
performance of ADS with the recommended algorithm
employed on each time series is evaluated.

)e AUC values of the anomaly detection datasets are
presented in Table 5. )e outcomes presented in Table 5
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proved that for a given dataset the most suitable algorithm
may be different in each case. Results presented in Table 5
signpost that LSTM performs best for the NYCT dataset,
LOF performs best for dataset 1, while OC-SVM achieves
best for datasets 3 and 4. As is given in Table 5, out of the five
datasets, our framework shows better performance in four.
Even in the case of dataset 2, the performance is nearly equal
to the OC-SVM which is the best algorithm. )is is the
reason; our ADSS framework for algorithm service selection
can quickly and flexibly choose the most appropriate al-
gorithm service for any type of data flow processing.

4.6. NAB Dataset and Its Outcome Analysis. In paper [32],
researchers compared multiple anomaly detectors such as
Skyline, Relative Entropy, and HTM-based algorithms.
From its public available experiment reports, we found that
Numenta algorithm could achieve the best average

performance on all the datasets. However, for one certain
dataset such as Twitter_volume_UP, the EarthgeckoSkyline
could defeat other detectors. Inspired by the ensemble
learning and algorithm selection strategy, we use the su-
pervised learning method to choose a suitable detector for
one certain dataset, so we show the experiment on NAB
dataset. In NAB results, the evaluation metrics are Standard
Score, Reward Low FP rate scores, and Reward low FN rate
scores; for more information, one can refer to [17].

)e process of the experiment is the same as that
explained in Section 5; the performance of the experiments
on the NAB dataset is shown in Table 6. As is demonstrated
in Table 6, our framework had achieved better performance
considering all these detectors as candidate ADAs. A con-
clusion can be drawn that our framework could recognise
the feature of streaming data and help choose a good de-
tector for it and achieve better performance on average.

4.7. Outcome Analysis. In our framework, the algorithm is
decided and recommended as best for current stream data
and be configured to check the anomalous data. )e base
algorithms can be added as needed and the available algo-
rithms will become more and more. So, in the long run,
when we add enough algorithms to the service pool, the final
anomaly detection performance will become better. )is
framework takes full advantage of metalearning idea which
recognises the stream data pattern and configures its best
algorithm.

Table 4: Description of our experimental datasets.

Model Hyperparameter Value
LOF Distance function (k) 10, Minkowski distance
PCI k, α 30, 98.5

LSTM Filters, optimisers, architecture, loss, batch size,
and epochs 4∗ 4, Adam, 2-state full LSTM layer, MSE, 32, 50

OC-SVM Upper bound of outliers, kernel Radial basis function kernel (RBF), 0.7

Autoencoder Architecture, activation functions, optimiser,
loss, batch size, and epochs

Decoding layers (16, 32), encoding layers (32, 16), linear for output, ReLU
for encoding and decoding, MSE, Adam, 32, 50

Table 5: )e AUC values computed for each experimental dataset
using our developed ADSS framework.

Time
series

OC-
SVM PCI LSTM LOF Autoencoder ADSS

Dataset 1 0.939 0.689 0.589 0.952 0.597 0.955
Dataset 2 0.957 0.674 0.578 0.951 0.602 0.956
Dataset 3 0.995 0.762 0.734 0.995 0.743 0.995
Dataset 4 0.851 0.522 0.812 0.814 0.782 0.856
NYCT 0.586 0.54 0.841 0.493 0.697 0.841

Table 3: )e datasets used in our experiment.

Name Source Number of
time-series

Number of
time stamps

Ratio of
anomalous data

(%)
Characteristic

Dataset
1

Yahoo
[18] 100 1680 0.5 Artificial univariate time-series data comprises of anomalies’

change point where it changes the mean of the time series
Dataset
2

Yahoo
[18] 100 1680 0.3 Artificial univariate time-series data with anomalies and

seasonality are introduced at random points
Dataset
3

Yahoo
[18] 100 1421 0.3 Artificial univariate time-series data

Dataset
4

Yahoo
[18] 67 1420 1.9

A univariate Yahoo services time-series dataset recording the
traffic in which anomalies are by-hand pigeonholed. Majority

of the time-series are static

NYCT NAB
[17] 1 10320 0.05

A univariate New York City taxi request time-series dataset
comprising the New York City (NYC) taxi demand from July 1,
2014, to January 31, 2015, with an observation of the no. of
passengers noted down every half hour. It comprises five

shared anomalies that arise in the NYC: Christmas,
thanksgiving, marathon, snowstorm, and New Year’s Day.
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Our framework is not creating a new algorithm; instead
it is choosing the finest algorithm for any time-series data,
thus possibly improving the total performance of the entire
IoT system. In general, our framework modifies the quality
of service, in the background of encapsulation of algorithm
as web service.

5. Conclusion

In practice, it is unfeasible to build a universal method to
detect all types of anomalies in IoT stream data; we at-
tempt to discriminate the data pattern and adjust ap-
propriate ADS. Various ADSs can be chosen and then
according to their stream data pattern, they can be
configured. We attempt to extract features of a stream
and select an appropriate algorithm for its anomaly
detection.

Experimentations through five datasets (illustrated in
Table 3) demonstrate the performance of our method and
are presented in Table 5. )e experimental outcomes de-
scribed in Table 5 prove that our method is able to select the
accurate service proficiently and can recognise the data
pattern efficiently. Moreover, the result on the NAB dataset
is shown to further illustrate the good performance achieved
by our method.

To further analyse the experimental result, we found that
our method is like an ensemble learning process that will
merge together different kinds of models in order to achieve
better results. Different from the traditional ensemble
method, we try to capture the intrinsic characteristics of
streaming data from the view of feature engineering. So, the
Tsfresh tool and GA algorithm played an important role
when finding the importance of features.

However, our method is able to select the service effi-
ciently and can recognise the data pattern efficiently. Still,
our method needs sufficient historical data to improve the
accuracy of a service selection process that can be done by
collecting further real-world data and experimenting with
more artificial dataset in the future.
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