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Predicate encryption (PE), formalized by Katz et al., is a new paradigm of public-key encryption that conceptually captures the
public-key encryption that supports fine-grained access control policy. Because of the nature of PE, it is used for cloud storage so
that users can retrieve encrypted data without revealing any information about the data to cloud servers and other users. Although
lots of PE schemes have been studied, the predicate-hiding security is seldom considered; that is, the user’s secret key may leak
sensitive information of the predicate. Additionally, the security of the current predicate-hiding PE schemes relies on the discrete
logarithm assumption which cannot resist the quantum attacks in the future. In this paper, we propose a generic PE for inner
product under symmetric-key setting, called private IPE, from specific key-homomorphic pseudorandom function (PRF). 0e
rigorous proofs are provided to show that the construction is payload-hiding, attribute-hiding, and predicate-hiding secure. With
the advantage of the generic construction, if the underlying PRF can resist quantum attacks, then, through our proposed generic
construction, a quantum-resistant private IPE can be obtained.

1. Introduction

In recent years, cloud computing has become increasingly
important as smartphones and Internet of 0ings devices are
widely used in our life. Users typically upload their data to the
cloud to achieve efficient computing and reduce storage re-
quirements of their devices. Due to the fact that the uploaded
data are sensitive, users may consider using authentication
protocol [1–4] and encryption schemes [5, 6] to protect their
data privacy in cloud environment. One novel approach is to
encrypt data before it is uploaded to the cloud. However,
encrypted data loses flexibility in data usage, such as fine-
grained control over access to encrypted data. For example, a
user may want to search for and download ciphertext that
corresponds to certain attributes. If each piece of data is purely
encrypted, the only way is to download all the ciphertexts and
decrypt them for search. Unfortunately, this approach would
be very inefficient. 0erefore, how to efficiently control the
access to encrypted data and ensure the privacy and security of
data is an urgent issue for cloud computing.

Predicate encryption (PE) [7], formalized by Katz
et al., is a general paradigm that conceptually captures the
public-key encryption supporting fine-grained access
control policy. In a PE scheme for a predicate function P, a
secret key, issued by a trusted authority, is associated with
a key attribute y, while the ciphertext is associated with a
ciphertext attribute x. Specifically, the ciphertext can be
decrypted using the secret key if and only if P(x, y) � 1.
0erefore, PE can be used as access control mechanism for
the previous cloud storage scenario and provide the
flexibility for encryption schemes, which allows sender to
encrypt data with more complicated access policy. For
example, in a school scenario, the secret keys of each
teacher and each student are associated with key attributes
“teacher” and “student,” respectively. If the principal
wants to encrypt a file that can only be decrypted by each
student and teacher, he/she can use a PE supporting
“belong to” functionality and encrypt this file with a ci-
phertext attribute “student or teacher.” Because the key
attributes “teacher” and “student” belong to ciphertext
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attribute “student or teacher,” the secret keys associated
with these key attributes can decrypt the ciphertext.

Additionally, Katz et al. proposed the first PE supporting
inner product predicate, called PE for inner product (IPE),
whereas ciphertext can be decrypted if and only if the inner
product of x and y is equal to 0. 0ey further suggested that
IPE can be used to build other more flexible schemes, such as
(anonymous) identity-based encryption [8], hidden vector
encryption [9, 10], CNF/DNF formulas [7], PE schemes
supporting polynomial evaluation [11], and exact thresholds
[12]. 0e most basic security requirement of IPE, called
payload-hiding, stipulates that a ciphertext does not reveal
any information of the plaintext if P(x, y) � 1. A stronger
security requirement of PE is attribute-hiding, which stip-
ulates that a ciphertext reveals nothing about the ciphertext
attribute. Although a lot of attribute-hiding IPE schemes
[13–16] have been studied, seldom schemes [17–19] focus on
the predicate-hiding security. In more detail, a secret key
may reveal some sensitive information of the predicate that
belongs to the key holder. Actually, in public-key crypto-
system, since the encryption algorithm is publicly accessible,
any user can adaptively generate a ciphertext. 0e user who
has obtained a secret key can evaluate its predicate with
possible ciphertexts; thus it is hard to achieve predicate-
hiding in the public-key setting.

Shen et al. [18] first considered constructing the IPE
under symmetric-key setting, a.k.a. private IPE, to achieve
predicate-hiding security requirement. More precisely, in
the work, when generating a secret key, generating a ci-
phertext requires a master secret key, so that not every user
can adaptively generate a ciphertext to test which predicate is
embedded in the secret key. Compared with IPE under
public-key setting, private IPE is more suitable for cloud
storage under self-use scenario. For example, as shown in
Figure 1, Alice uses the cloud storage service to store her
files. For privacy concern, she uses private IPE as an access
control mechanism. Alice not only uploads an encrypted file
ctFile,i but also uploads another ciphertext
ctx,i � Encrypt(SK, x, M � 1) for a specific ciphertext at-
tribute by using private IPE. When Alice wants to retrieve
encrypted files, she can send the secret key for some key
attribute, that is, sky⟵KeyGen(SK, y), to the cloud. 0e
cloud can then evaluate the predicate on each ciphertext by
performing decryption. If the predicate is satisfied, that is,
1�

?
Decrypt(ctx,i, sky), the cloud returns the corresponding

encrypted files of those ciphertexts.
After Shen et al.’s pioneering work [18], Yoshino et al.

[19] provided a more practical IPE scheme that uses only
three groups, whereas [18] required four groups. In addition,
Kawai and Takashima [17] then introduced a predicate-
hiding IPE, where the security is proven under the decision
linear assumption without random oracles. However, the
sizes of the secret keys of the above schemes [17–19] are
linearly related to the lengths of the key attributes. Due to the
fact that users may obtain many secret keys for decrypting
different ciphertext, it is important to reduce the key size of
secret key. In addition, Shor [20, 21] has shown that existing
quantum algorithms can break the discrete logarithm and
factoring assumptions. 0erefore, the current private IPE

schemes [17–19] are susceptible to quantum attack. Hence,
how to construct a quantum-resistant private IPE scheme
where the secret key is of constant size remains an open
issue.

1.1. Our Contributions. In this paper, inspired by Alamati
et al.’s work [22], we propose a generic private IPE con-
struction by utilizing specific key-homomorphic pseudo-
random functions (PRF). By the advantage of the generic
construction, the construction enjoys the security properties
of the underlying primitives. 0erefore, if the underlying
key-homomorphic PRF is quantum-resistant, we further
obtain a quantum-resistant private IPE scheme. In partic-
ular, in our construction, we require the underlying key-
homomorphic PRF to have the following property for de-
cryption correctness: the key space K and the output space
Y are equal to Zq, for some prime q.

To obtain a private IPE scheme with constant-size secret
key, we carefully use the key-homomorphic property of the
key-homomorphic PRF to map each predicate attribute to
the inner product of master secret key and secret key.0at is,
sky � 􏽐

ℓ
i�1(􏽐

yi

j�1 F(ai, h)) � F(〈a, y〉, h), where y � (y1, . . . ,

yℓ) is a predicate vector and (a � (a1, . . . , aℓ), h) is the
master secret key. Hence, the size of secret key is only log2 q,
where q is the underlying modulo.

In addition, the rigorous security proofs are provided to
demonstrate that if the underlying key-homomorphic PRF
satisfies pseudorandomness (i.e., the output value of key-
homomorphic PRF is indistinguishable from the value
randomly chosen from Y), the proposed construction
satisfies the criteria of payload-hiding, attribute-hiding, and
predicate-hiding privacy. 0e comparison of our con-
struction with other state-of-the-art private IPE schemes is
presented to show that our result is not only more secure but
also more efficient with respect to the size of secret key.

In summary, this work introduces a generic construction
to show how to obtain the first quantum-resistant private
IPE scheme with a constant-size secret key.

1.2. Paper Organization. 0e rest of the paper is organized
as follows. Section 2 recalls the definition of the PRF used in
our generic construction. Moreover, Section 3 provides the
definition and security requirement of the private PE. Next,
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Figure 1: Private IPE scheme for cloud storage in self-use scenario.
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Sections 4 and Section 5 introduce and provide the security
proofs of our generic constriction, respectively. Section 6
compares our proposed construction with the related
private IPE schemes. Finally, Section 7 concludes this
study.

2. Pseudorandom Function (PRF)

In this section, we recall the definition of pseudorandom
function from [23].

Definition 1 (pseudorandom functions [23]). A PRF F: K ×

X⟶Y is a keyed function defined over a key space K, a
domainX, and a rangeY (these sets may be parameterized
by the security parameter λ), whose output is indistin-
guishable from a truly random value. 0e security of a PRF
can be defined by the two experiments EXP(0) and EXP(1)

with an adversaryA. At first, a key k is uniformly randomly
chosen from the key space K. Given the description of the
PRF, the adversary is then allowed to make queries to the
following oracles:

(i) Evaluate. Given x ∈ X from A, the oracle returns
F(k, x) to A.

(ii) Challenge. Given x ∈ X from A, where x has not
been queried to evaluate Oracle, if b � 1, then the
oracle returns F(k, x), and if b � 0, then the oracle

returns a random y⟵$
Y.

Once the adversary is done querying the oracles, it
outputs a bit b′ ∈ 0, 1{ }. For b � 0, 1, we define Wb as the
event where the adversary outputs b′ � 1 in the experiment
EXP(b). 0e advantage of an adversary A is defined as

AdvPRFA 1λ􏼐 􏼑 � Pr W1􏼂 􏼃 − Pr W0􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (1)

We say that a PRF is secure if, for all PPT adversary A,
AdvPRFA (1λ) is negligible.

Definition 2 (key-homomorphic PRF [24]). Let (K, ∘ ) and
(Y, ∗ ) be groups.0en, a keyed function F: K × X⟶Y

is a key-homomorphic PRF:

(i) F is a secure PRF.
(ii) For every k1, k2 ∈K and every input x ∈ X, we have

F k1, x( 􏼁∗F k2, x( 􏼁 � F k1 ∘ k2, x( 􏼁. (2)

Definition 3 (pseudorandom generators [24]). A pseudo-
random generator (PRG) is an efficiently computable
function G: X⟶ Y with the following security, where
(X, °) and (Y, ∗ ) are groups. 0e security of a PRG is
secure if, for any PPT algorithm A, is negligible.

AdvPRGA 1λ􏼐 􏼑 � |Pr[A(G(x)) � 1; x⟵X] − Pr[A(R) � 1; R⟵$
Y]|.

(3)

3. Private Predicate Encryption

Let P � Pℓ􏼈 􏼉ℓ∈Nc for some constant c ∈ N be a predicate
family, where Pℓ: Aℓ × Pℓ⟶ 0, 1{ } is a predicate function
defined over a ciphertext attribute space Aℓ and a key at-
tribute spacePℓ. 0e family index ℓ specifies the description
of a predicate from the family. We would occasionally omit
the index ℓ when the context is clear.

3.1. System Model. A private PE for predicate function
P: A × P⟶ 0, 1{ } consists of four algorithms: Setup,
KeyGen, Encrypt, and Decrypt. 0e details of the algo-
rithms are shown as follows:

(i) Setup(1λ, 1ℓ)⟶ (pp, SK). Given the security
parameters and the family index (λ, ℓ), the algo-
rithm outputs the system parameter pp and the
secret key SK. Note that the description ofA andP

will be implicitly included in pp.
(ii) Encrypt(pp, SK, x, M)⟶ ctx. Given the system

parameter pp, a secret key SK, a ciphertext attribute
x ∈ A, and a message M, the algorithm outputs a
ciphertext ctx for x.

(iii) KeyGen(pp, SK, y)⟶ sky. Given the system pa-
rameter pp, a secret key SK, and a key attribute
y ∈ P, the algorithm outputs the secret key sky for y.

(iv) Decrypt(pp, ctx, sky)⟶ (M/⊥). Given the sys-
tem parameter pp, a ciphertext ctx, and a secret key
sky, the algorithm outputs a message M or an error
symbol ⊥.

Definition 4 (correctness). For all λ, ℓ ∈ N, x ∈ A, and
y ∈ P, letting ctx⟵Encrypt(pp, SK, x, M) and
sky⟵KeyGen(pp, SK, y), we have

M⟵Decrypt pp, ctx, sky􏼐 􏼑, if P(x, y) � 1;

⊥⟵Decrypt pp, ctx, sky􏼐 􏼑, if P(x, y) � 0,
(4)

where (pp, SK)⟵Setup(1λ, 1ℓ).
In this paper, we construct a private PE scheme sup-

porting inner product predicate function defined over Zℓ
q,

where q is a large prime. 0at is,

(i) ℓ denotes the dimension of the vector space.
(ii) A � P � Zℓ

p.
(iii) For all x, y ∈ Zℓ

q, P: (x, y) � 1 if 〈x, y〉 � 0.

Such encryption schemes are called “private PE for inner
product” (private IPE), and A � Zℓ

q and P � Zℓ
q are called

attribute vector space and predicate vector space,
respectively.

3.2. Security Definitions. In private PE, there exist three
types of adversary that want to retrieve the information of
message, ciphertext attribute, and key attribute from ci-
phertext and secret key. 0erefore, we model three se-
curity requirements of private PE, payload-hiding,
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attribute-hiding, and predicate-hiding securities, to model
the attacks from these adversaries.

0e payload-hiding security [7] for predicate function
P: A × P⟶ 0, 1{ } is defined as an interactive game be-
tween a challenger C and an adversary A. In payload-
hiding models, a ciphertext reveals nothing about the
encrypted message, and thus in some literature it is de-
fined as IND-CPA security.

3.2.1. Payload-Hiding Game

(i) Setup. 0e challenger C runs Setup(1λ, 1ℓ) to
generate a secret key SK and the system pa-
rameter pp. 0en, it sends the system parameter
pp to the adversaryA and keeps the secret key SK

secretly.
(ii) Query Phase 1. A can query polynomially many

times of the oracles described as follows:

(i) KeyGen Oracle: when A issues a query with
y ∈ P, C returns a secret key sky⟵KeyGen

(pp, SK, y).
(ii) Encrypt Oracle: when A issues a query with

x ∈ A and a message M, C returns a ciphertext
ctx⟵Encrypt(pp, SK, x, M).

(iii) Challenge. 0e adversary A submits x∗ ∈ A such
that P(x∗, y) � 0 for all y ∈ P, which has been
queried to KeyGen Oracle in Query Phase 1, and
two massages M0, M1 with the same length to the
challenger C. 0en C randomly chooses b ∈ 0, 1{ }

and returns a challenge ciphertext cx∗⟵Encrypt

(pp, SK, x∗, Mb).
(iv) Query Phase 2. 0is phase is the same as Query

Phase 1, except that A is only allowed to make a
query to KeyGen Oracle with y ∈ P such that
P(x∗, y) � 0.

(v) Guess.0e adversaryA outputs a bit b′ and wins the
game if b′ � b.

0e advantage of an adversary for winning the payload-
hiding game is defined as

AdvPH
A 1λ􏼐 􏼑 � Pr b′ � b􏼂 􏼃 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (5)

Definition 5 (payload-hiding for private predicate encryp-
tion). We say that private PE is payload-hiding if there is no
probabilistic polynomial-time adversary A winning the
above payload-hiding game with a nonnegligible advantage.

Next, we define the “attribute-hiding” security for private
PE, which can be also extended from the attribute-hiding
definition for conventional PE [7]. Attribute-hiding security
models that there is no adversary can obtain any information
of the ciphertext attribute x from the ciphertext. We then

define attribute-hiding via a security game between a chal-
lenger C and an adversary A.

3.2.2. Attribute-Hiding Game

(i) Setup, Query Phase 1, Query Phase 2, and Guess are
the same as those in the payload-hiding game.

(ii) Challenge. 0e adversary A submits two ciphertext
attributes x(0), x(1) ∈ A such that
P(x(0), y) � P(x(1), y) for all y ∈ P, which has been
queried to KeyGen Oracle in Query Phase 1, and a
massage M with the same length to the challengerC.
0en, C randomly chooses b ∈ 0, 1{ } and returns a
challenge ciphertext cx∗⟵Encrypt(pp, SK, x(b),

M).

0e advantage of an adversary for winning the attribute-
hiding game is defined as

AdvAH
A 1λ􏼐 􏼑 � Pr b′ � b􏼂 􏼃 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (6)

Definition 6 (attribute-hiding for private predicate en-
cryption). We say that private PE is attribute-hiding, if there
is no probabilistic polynomial-time adversaryAwinning the
above attribute-hiding game with a nonnegligible advantage.

0ere is another weaker notion, called “weak attribute-
hiding” [25]. 0e weak attribute-hiding game is the same as
the above attribute-hiding game, except the following:

(i) 0e adversary sends (x(0), M0), (x(1), M1) to invoke
the Challenge phase.

(ii) 0e restriction on x(0), x(1) is modified to
“P(x(0), y) � P(x(1), y) � 0 for all y ∈ P which has
been queried to KeyGen Oracle in Query Phase 1.”

Furthermore, we define the “predicate-hiding” for private
PE scheme via the following game, which models the notion
that a secret key sky reveals nothing about the key attribute y.

3.2.3. Predicate-Hiding Game

(i) Setup, Query Phase 1, Query Phase 2, and Guess are
the same as those in the payload-hiding game.

(ii) Challenge. 0e adversary A submits two key attri-
butes y(0), y(1) ∈ P to the challenger C, such that
P(x, y(0)) � P(x, y(1)) � 0 for all x ∈ A which has
been queried to Encrypt Oracle in Query Phase 1.
0en, C randomly chooses b ∈ 0, 1{ } and returns a
challenge secret key sky(b)⟵KeyGen(pp, SK, y(b)).

0e advantage of an adversary for winning the predicate-
hiding game is defined as

AdvPP
A 1λ􏼐 􏼑 � Pr b′ � b􏼂 􏼃 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (7)
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Definition 7 (predicate-hiding for private predicate en-
cryption). We say that private PE achieves predicate-hiding
if there is no probabilistic polynomial-time adversary A

winning the above predicate-hiding game with non-
negligible advantage.

4. A Private IPE from Key-Homomorphic PRF

In the following, we describe how to obtain a private IPE
from a key-homomorphic PRF. In our construction, we
require that R � Zq, for some prime q. Additionally, we
assume that the decryptor knows the value of predicate
vector y of his/her secret key sky.

(i) Setup(1λ, 1ℓ). Suppose that the message space is
0, 1{ }m for some positive integer m � poly(λ).
Given the security parameters (λ, ℓ), where λ, ℓ ∈ N,
the algorithm outputs the system parameter pp and
the secret key SK as follows:

(i) Choose a prime q � poly(λ).
(ii) Choose a key-homomorphic PRF

F: R × X⟶R, where X is the domain and
(R, +, ·) is a ring.

(iii) Choose a � (a1, . . . , aℓ) ∈R
ℓ.

(iv) Choose a pseudorandom generator
G: R⟶ 0, 1{ }m.

(v) Choose h⟵$
X.

(vi) Output pp � (F, G) and the secret key
SK � (a, h).

Note that the descriptions of F and G are
implicitly included in the system parameter pp.

(ii) Encrypt(pp, SK, x, M). Given the system param-
eter pp, a secret key SK, an attribute vector
x � (x1, . . . , xℓ) ∈R

ℓ, and a message M, the al-
gorithm runs the following steps:

(i) Choose random δ, σ⟵$
R.

(ii) ci � F(􏽐
δ
j�1 (xi) + ai, h) + σ for i � 1, . . . , ℓ.

(iii) c0 � M⊕G(σ).
(iv) Output ciphertext ctx � (c0, . . . , cℓ) ∈

0, 1{ }m × Rℓ.

(iii) KeyGen(pp, SK, y). Given the system parameter
pp, a secret key SK, and a predicate vector
y � (y1, . . . , yℓ) ∈R

ℓ, the algorithm computes the
following steps:

(i) sky � (􏽐
ℓ
i�1 􏽐

yi

j�1 F(ai, h)) � F(〈a, y〉, h).
(ii) Output sky.

(iv) Decrypt(pp, ctx, sky). Given the system parameter
pp, a ciphertext ctx, and a secret key sky, the al-
gorithm computes the following steps:

(i) ct′ � 􏽐
ℓ
i�1(yi · ci) − sky.

(ii) Compute σ � ct′ · (􏽐
ℓ
i�1 yi)

− 1.
(iii) Compute M � c0⊕G(σ).

Correctness. Let ctx and sky be as above. 0en,

ct′ � 􏽘
ℓ

i�1
yi · ci( 􏼁 − sky

� 􏽘
ℓ

i�1
yi · F 􏽘

δ

j�1
xi + ai, h⎛⎝ ⎞⎠ + σ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − sky

� F 􏽘
δ

j�1
〈x, y〉 +〈a, y〉, h⎛⎝ ⎞⎠ + 􏽘

ℓ

i�1
yiσ − F(〈a, y〉, h).

(8)

If 〈x, y〉 � 0, we have

ct′ � F(〈a, y〉, h) + 􏽘
ℓ

i�1
yiσ − F(〈a, y〉, h) � 􏽘

ℓ

i�1
yiσ. (9)

0en, we can compute σ � ct′ · (􏽐
ℓ
i�1 yi)

− 1, and the
plaintext can be decrypted by

c0⊕G(σ) � M⊕G(σ)⊕G(σ) � M. (10)

Our scheme accommodates approximate homomor-
phism [26], as long as the error term is bounded.

5. Security Proofs

5.1. Payload-Hiding Security. We prove the payload-hiding
security of our scheme using the sequence-of-game ap-
proach [27]. Let (c0, c1, . . . , cℓ) be the challenge ciphertext
given to the adversary in the payload-hiding game. Besides,
let R0 be a random element in 0, 1{ }m and let R1, . . . , Rℓ be
random elements in R. We define the following hybrid
games differing in what challenge ciphertext is sent to the
adversary:

(i) Game0.0e challenge ciphertext is (c0, c1, . . . , cℓ). It
is identical to the original payload-hiding game
defined in Section 3.2.

(ii) Gamei, 1≤ i≤ ℓ. 0e challenge ciphertext is
(c0, R1, . . . , Ri, ci+1, . . . , cℓ).

(iii) Gameℓ+1. 0e challenge ciphertext is
(R0, R1, . . . , Rℓ).

We remark that the challenge ciphertext in Gameℓ+1
leaks no information about the encrypted message, since it is
composed of ℓ + 1 random elements, whereas the challenge
ciphertext in Game0 is well formed.0erefore, the advantage
of the adversary in the last game is 0. We then prove the
indistinguishability between the adjacent games in the fol-
lowing lemmas.

Lemma 1. If the underlying PRF F is secure, then Gamek−1 is
indistinguishable from Gamek, for k � 1, . . . , ℓ.

Proof. Suppose that there is an adversary A that is able to
distinguish Gamek−1 from Gamek with a nonnegligible
advantage. 0en we can build a challengerC1 to distinguish
the experiment EXP(0) from the experiment EXP(1)
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shown in Section 2. After invoking the experiment EXP(b)

and receiving the description of the PRF F, the challengerC1
simulates a hybrid game for an adversary A as follows:

Setup. 0e challenger first randomly chooses
a1, . . . , ak−1, ak+1, . . . , aℓ from R and h from X and a
pseudorandom generator G and then sends pp � (F, G) to
the adversary. Next, the challenger makes a Challenge query
with h to the underlying experiment and obtains f as the
response. 0e value of f will be used in the later simulation
for KeyGen and Encryption Oracle.

Query Phase 1. In this phase, the adversary is allowed to
make polynomially many queries to the following oracles.

(i) KeyGen Oracle: taking as inputs a vector
y � (y1, . . . , yℓ) ∈R

ℓ, the challenger computes

sky � 􏽘

y1

j�1
F a1, h( 􏼁 + · · · + 􏽘

yk−1

j�1
F ak−1, h( 􏼁

+ 􏽘

yk

j�1
f + 􏽘

yk+1

j�1
F ak+1, h( 􏼁 + · · · + 􏽘

yℓ

j�1
F aℓ, h( 􏼁

� 􏽘
ℓ

i�1
i≠ k

yiF ai, h( 􏼁 + ykf,

(11)

and returns sky to the adversary. By implicitly setting
aj to the chosen key of the underlying experiment, it
is easy to verify that sky is a valid secret key for y.

(ii) Encryption Oracle: taking as inputs a vector
x � (x1, . . . , xℓ) ∈R

ℓ and a message M, the chal-
lenger performs as follows:

(1) Randomly choose δ, σ from R.
(2) Compute ck � F(􏽐

δ
j�1 (xk), h) + f + σ � F(δx

k, h) + f + σ.
(3) For i � 1, . . . , k − 1, k + 1, . . . , ℓ, compute ci the

same as in the Encrypt algorithm since the
challenger knows a1, . . . , ak−1, ak+1, . . . , aℓ, h.

(4) Compute c0 � M⊕G(σ).
(5) Return ctx � (c0, c1, . . . , cℓ).

Challenge. 0e adversary submits two messages M0, M1
with the same length and a vector x∗ � (x∗1 , . . . , x∗ℓ ), such
that 〈x∗, y〉≠ 0 for all y queried to KeyGen Oracle. After
receiving x∗, M0, M1, the challenger randomly chooses
β⟵$

and then can compute the challenge ciphertext ct∗ as
follows:

(1) Randomly choose δ, σ from R.
(2) For i � 1, . . . , ℓ,

(i) if i< k, choose a random element Ri⟵
$

and set
ci � Ri.

(ii) if i � k, compute

ck � F 􏽘

δ

j�1
x
∗
k , h( 􏼁⎛⎝ ⎞⎠ + f + σ � F δx

∗
k , h( 􏼁 + f + σ. (12)

(iii) if i> k, compute ci the same way as that in the
scheme since the challenger knows ak+1, . . . , aℓ
and h.

(3) Compute c0 � Mβ⊕G(σ).
(4) Return ct∗ � (c0, c1, . . . , cℓ).

Query Phase 2. It is the same as Query Phase 1 except that
the adversary is not allowed to make a query to KeyGen
Oracle with y such that 〈x∗, y〉 � 0.

Guess. 0e adversary outputs a bit β′. 0en the chal-
lenger outputs 1 if β′ � β and 0 otherwise. Before analyzing
the advantages of the challenger in breaking the underlying
PRF, we first discuss that the outputs of the oracles are well
formed, nomatter which experiment the challenger interacts
with. Let Si be the event where the adversary makes a right
guess in Gamei. First, if the challenger is actually interacting
with the experiment EXP(0), then f is a random element in
R. In this case, the answer to a KeyGen Oracle,

sky � 􏽘
ℓ

i�1
i≠ k

yiF ai, h( 􏼁 + ykf,
(13)

is an element of R and the answer to an Encryption query
(c0, c1, . . . , cℓ) is a vector in 0, 1{ }m × Rℓ, and

􏽘

ℓ

i�1
yi · ci( 􏼁 − sky � 􏽘

ℓ

i�1
i≠ k

yi F δxi + ai, h( 􏼁 + σ( 􏼁

+ yk F δxk, h( 􏼁 + f + σ( 􏼁

− 􏽘
ℓ

i�1
i≠ k

yiF ai, h( 􏼁 + ykf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 􏽘
ℓ

i�1
yiF δxi, h( 􏼁 + 􏽘

ℓ

i�1
σ

� F δ􏽘
ℓ

i�1
xiyi, h⎛⎝ ⎞⎠ + 􏽘

ℓ

i�1
σ

� 􏽘
ℓ

i�1
σ

⟺〈x, y〉 � 0.

(14)

0erefore, the answers to KeyGen and Encryption
queries are well formed.

Next, we analyze the advantage of C1 in breaking the
underlying PRF. First, if the challenger is interacting with the
experiment EXP(0), thenf is a random element inR.0us,
c1, . . . , ck in the challenge ciphertext are random elements,
and thus we are in Gamek. 0us, the probability that the
challenger outputs 1 is

Pr Sk􏼂 􏼃 � Pr C1 outputs 1􏼂 􏼃 � Pr β′ � β􏼂 􏼃 � Pr W0􏼂 􏼃. (15)

Second, if the challenger is interacting with the exper-
iment EXP(1), then f is the output of the PRF with input h.
By implicitly setting the encryption key component ak as the
chosen key of the underlying experiment, we have
f � F(ak, h), and thus the challenger answers the KeyGen

6 Security and Communication Networks



and Encryption queries correctly. As for the challenge ci-
phertext, we have that

ck � F 􏽘
δ

j�1
x
∗
k( 􏼁, h⎛⎝ ⎞⎠ + f + σ � F δx

∗
k , h( 􏼁 + F ak, h( 􏼁 + σ � F δx

∗
k + ak, h( 􏼁 + σ, (16)

is a valid ciphertext component. Since c1, . . . , ck−1 are
random elements from R, we are in Gamek−1. In this case,
the probability that the challenger outputs 1 is

Pr Sk−1􏼂 􏼃 � Pr C1 outputs 1􏼂 􏼃 � Pr β′ � β􏼂 􏼃 � Pr W1􏼂 􏼃.

(17)

Finally, combining the above two cases, we have that

Pr Sk−1􏼂 􏼃 − Pr Sk􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Pr W1􏼂 􏼃 − Pr W0􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � AdvPRFC1
1λ􏼐 􏼑,

(18)

and hence, Gamek−1 is indistinguishable from Gamek, if the
underlying pseudorandom function is secure, for
k � 1, . . . , ℓ. □

Lemma 2. If the underlying PRG G is secure, then Gameℓ is
indistinguishable from Gameℓ+1.

Proof. Given the description of the PRG G and a challenge
ψ ∈ 0, 1{ }m, the challengerC2 simulates the following hybrid
game for an adversary A:

Setup.0e challenger first chooses a key-homomorphic
pseudorandom function F: R × X⟶R, a1, . . . , aℓ
from R and h from X and then sends (F, G) to the
adversary.
Query Phase 1. 0e challenger is able to answer the
KeyGen (Encryption, resp.) queries by following the
KeyGen (Encrypt, resp.) algorithms to generate the
secret keys sky (ciphertexts ctx, resp.), since the chal-
lenger knows the secret key SK � (a1, . . . , aℓ, h).
Challenge.0e adversary submits twomessagesM0, M1
with the same length and a vector x∗, such that
〈x∗, y〉≠ 0 for all y queried to KeyGen Oracle. After
receiving x∗, M0, M1, the challenger randomly chooses
β⟵$

0, 1{ } and then can compute the challenge ci-
phertext ct∗ as follows:

(1) Randomly choose R1, . . . , Rℓ⟵
$
R.

(2) For i � 1, . . . , ℓ, set ci � Ri.
(3) Compute c0 � Mβ⊕ψ.
(4) Return the challenge ciphertext

ct∗ � (c0, c1, . . . , cℓ).

Query Phase 2. It is the same as Query Phase 1 except
that the adversary is not allowed to make a query to
KeyGen Oracle with y such that 〈x∗, y〉 � 0.
Guess. 0e adversary outputs a bit β′. 0en, the chal-
lenger outputs 1 if β′ � β. Let Si be the event where the
adversary makes a right guess in Gamei. If the term
ψ � G(σ) is generated from the PRG G for some σ, then
we are in Gameℓ, and we have

Pr Sℓ􏼂 􏼃 � Pr C2(ψ � G(σ)) � 1􏼂 􏼃. (19)

If ψ is randomly chosen from 0, 1{ }m, then we are in
Gameℓ+1, and we have

Pr Sℓ+1􏼂 􏼃 � Pr C2 ψ⟵$
0, 1{ }

m
􏼒 􏼓 � 1􏼔 􏼕. (20)

Finally, we have that

Pr Sℓ􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Pr C2(ψ � G(σ)) � 1􏼂 􏼃 − Pr C2 ψ⟵$
0, 1{ }

m
􏼒 􏼓 � 1􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� AdvPRGC2
1λ􏼐 􏼑

(21)

is negligible. □

Theorem 1. :e proposed private IPE scheme achieves
payload-hiding, if the underlying pseudorandom function is
key-homomorphic and secure and the pseudorandom gen-
erator is secure.

Proof. By combining Lemmas 1 and 2, we have

Pr S0􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘
ℓ

i�1
Pr Si−1􏼂 􏼃 − Pr Si􏼂 􏼃( 􏼁 + Pr Sℓ􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ Pr S0􏼂 􏼃 − Pr S1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + · · · + Pr Sℓ−1􏼂 􏼃 − Pr Sℓ􏼂 􏼃 + Pr Sℓ􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� AdvPRFC1
1λ􏼐 􏼑 + · · · + AdvPRFC1

1λ􏼐 􏼑
􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽

ℓ

+AdvPRGC2
1λ􏼐 􏼑

� ℓ · AdvPRFC1
1λ􏼐 􏼑 + AdvPRGC2

1λ􏼐 􏼑.

(22)
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Note that Pr[S0] � AdvPH
A (1λ) since Game0 is the pay-

load-hiding game, and Pr[Sℓ+1] � 0 since ct∗ leaks no in-
formation about the encrypted message in Gameℓ+1.

0erefore, for any PPT adversary A, there exist algorithms
C1,C2 such that

AdvPH
A 1λ􏼐 􏼑 � Pr S0􏼂 􏼃 � Pr S0􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ℓ · AdvPRFC1

1λ􏼐 􏼑 + AdvPRGC2
1λ􏼐 􏼑. (23)

is negligible. □

5.2. Attribute-Hiding Security. We then prove that our
scheme achieves attribute-hiding. 0e proof is similar to the
proof for payload-hiding security, and hence we will omit
some content to avoid the unnecessary redundancy. Let
(c0, c1, . . . , cℓ) be the challenge ciphertext given to the ad-
versary in the attribute-hiding game. Besides, let R1, . . . , Rℓ
be random elements inR and let R0 be a random element in
0, 1{ }m. We define the following hybrid games differing in
what challenge ciphertext is sent to the adversary:

(i) Game0. 0e challenge ciphertext is (c0, c1, . . . , cℓ). It
is identical to the original attribute-hiding game
defined in Section 3.2.

(ii) Gamei, 1≤ i≤ ℓ. 0e challenge ciphertext is
(c0, R1, . . . , Ri, ci+1, . . . , cℓ).

(iii) Gameℓ+1. 0e challenge ciphertext is
(R0, R1, . . . , Rℓ).

In the last game, the challenge ciphertext is composed of
ℓ + 1 random elements, and hence the adversary obtains no
information about the attribute vector from the challenge
ciphertext. We then prove that the adjacent games are in-
distinguishable in the following lemmas.

Lemma 3. If the underlying PRF F is secure, then Gamek−1 is
indistinguishable from Gamek, for k � 1, . . . , ℓ.

Proof. Suppose that there is an adversary A that is able to
distinguish Gamek−1 from Gamek with a nonnegligible
advantage. 0en we can build a challengerC3 to distinguish
the experiment EXP(0) from the experiment EXP(1)

shown in Section 2. After invoking the experiment EXP(b)

and receiving the description of the PRF F, the challengerC1
simulates a hybrid game for an adversary A as follows.

For Setup, Query Phase 1, Query Phase 2, and Guess, the
challenger performs the same as in the proof of Lemma 1.

For Challenge phase, after receiving
x(0) � (x

(0)
1 , . . . , x

(0)
ℓ ), x(1) � (x

(1)
1 , . . . , x

(1)
ℓ ), and M from

the adversary, where

〈x(0)
, y〉 � 0 �〈x(1)

, y〉 or 〈x(0)
, y〉 ≠ 0≠ 〈x(1)

, y〉, (24)

for all y queried to KeyGen Oracle in Query Phase 1, the
challenger performs as follows:

(1) Randomly choose β⟵$
0, 1{ }.

(2) Randomly choose δ, σ from R.
(3) For i � 1, . . . , ℓ,

(i) if i< k, choose a random element Ri⟵
$
R and

set ci � Ri.
(ii) if i � k, compute the following.

ck � F 􏽘
δ

j�1
x

(β)

k􏼐 􏼑, h⎛⎝ ⎞⎠ + f + σ � F δx
(β)

k , h􏼐 􏼑 + f + σ.

(25)

(iii) if i> k, compute ci the same way as that in the
scheme since the challenger knows ak+1, . . . , aℓ
and h.

(4) Compute c0 � M⊕G(σ).
(5) Return ct∗ � (c0, c1, . . . , cℓ).

0e analysis of the correctness of the simulation is
similar to that in the proof of Lemma 1. Let Si be the event
where the adversary makes a right guess in Gamei. If f from
the PRF game is a random element in R, then we are in
Gamek; otherwise, we are in Gamek−1. 0erefore, we have

Pr Sk−1􏼂 􏼃 − Pr Sk􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Pr W1􏼂 􏼃 − Pr W0􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � AdvPRFC3
1λ􏼐 􏼑.

(26)

0at is, Gamek is indistinguishable from Gamek−1, if the
underlying pseudorandom function is secure, for
k � 1, . . . , ℓ. □

Lemma 4. If the underlying PRG G is secure, then Gameℓ is
indistinguishable from Gameℓ+1.

Proof. 0e proof of this lemma is similar to the proof of
Lemma 2, with the only difference being that the challenger
received two vectors x(0), x(1) with a message M; in Lemma
2, the challenger received two messages M0, M1 with a
vector x∗ from the adversary.

Given the description of the PRG G and a challenge
ψ ∈ 0, 1{ }m, the challengerC4 simulates the following hybrid
game for an adversary A.

For Setup, Query Phase 1, Query Phase 2, and Guess, the
challenger performs the same as in the proof of Lemma 1.

For Challenge phase, after receiving x(0), x(1), and M

from the adversary, where

〈x(0)
, y〉 � 0 �〈x(1)

, y〉 or 〈x(0)
, y〉 ≠ 0≠ 〈x(1)

, y〉, (27)

for all y queried to KeyGen Oracle in Query Phase 1, the
challenger performs as follows:

(1) Randomly choose R1, . . . , Rℓ⟵
$
R.

(2) For i � 1, . . . , ℓ, set ci � Ri.
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(3) Compute c0 � M⊕ψ.
(4) Return the challenge ciphertext ct∗ � (c0, c1, . . . , cℓ).

0e analysis of the correctness of the simulation is
similar to that in the proof of Lemma 3. Let Si be the event
where the adversary makes a right guess in Gamei. If ψ from
the PRG game is a random element in 0, 1{ }m, then we are in
Gameℓ+1; otherwise, we are in Gameℓ. 0erefore, we have
that

Pr Sℓ􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Pr C4(ψ � G(σ)) � 1􏼂 􏼃 − Pr C4 ψ⟵$ 0, 1{ }
m

􏼒 􏼓 � 1􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� AdvPRGC4
1λ􏼐 􏼑,

(28)

is negligible. 0at is, Gameℓ is indistinguishable from
Gameℓ+1, if the underlying pseudorandom generator is
secure. □

Theorem 2. :e proposed private IPE scheme achieves at-
tribute-hiding, if the underlying pseudorandom function is
key-homomorphic and secure and the pseudorandom gen-
erator is secure.

Proof. By combining Lemma 3 and Lemma 4, we have

Pr S0􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘
ℓ

i�1
Pr Si−1􏼂 􏼃 − Pr Si􏼂 􏼃( 􏼁 + Pr Sℓ􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ Pr S0􏼂 􏼃 − Pr S1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + · · · + Pr Sℓ−1􏼂 􏼃 − Pr Sℓ􏼂 􏼃 + Pr Sℓ􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� AdvPRFC3
1λ􏼐 􏼑 + · · · + AdvPRFC3

1λ􏼐 􏼑
􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽

ℓ

+AdvPRGC4
1λ􏼐 􏼑

� ℓ · AdvPRFC3
1λ􏼐 􏼑 + AdvPRGC4

1λ􏼐 􏼑.

(29)

Note that Pr[S0] � AdvAH
A (1λ) since Game0 is the at-

tribute-hiding game, and Pr[Sℓ+1] � 0 since ct∗ leaks no
information about the encrypted message in Gameℓ+1.

0erefore, for any PPT adversary A, there exist algorithms
C3,C4 such that

AdvAH
A 1λ􏼐 􏼑 � Pr S0􏼂 􏼃 � Pr S0􏼂 􏼃 − Pr Sℓ+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ℓ · AdvPRFC3

1λ􏼐 􏼑 + AdvPRGC4
1λ􏼐 􏼑 (30)

is negligible. □

5.3. Predicate-Hiding Security. We first give the intuition for
the proof. Let [y1, y2, . . . , yℓ] denote the challenge secret key
generated using the vector (y1, y2, . . . , yℓ). Besides, let
y(0) � (y

(0)
1 , y

(0)
2 , . . . , y

(0)
ℓ ), y(1) � (y

(1)
1 , y

(1)
2 , . . . , y

(1)
ℓ ) be

the two vectors sent from the adversary in the Challenge
phase. To prove the indistinguishability between the cases
[y

(0)
1 , y

(0)
2 , . . . , y

(0)
ℓ ] and [y

(1)
1 , y

(1)
2 , . . . , y

(1)
ℓ ] given to the

adversary, we define a sequence of games below and show
the indistinguishability of any two adjacent games. Each

game differs in the challenge secret key given to the ad-
versary. Let y1′, y2′, . . . , yℓ′ be random elements from R.

Game0,i: [y1′, y2′, . . . , yk−1′, y
(0)
k , . . . , y

(0)
ℓ ] is given

(k � 1, . . . , ℓ)
Game1,i: [y1′, y2′, . . . , yk−1′, y

(1)
k , . . . , y

(1)
ℓ ] is given

(k � 1, . . . , ℓ)

Note that Game0,ℓ and Game1,ℓ are identical, and
Game0,0 and Game1,0 are the games where [y

(0)
1 , . . . , y

(0)
ℓ ]

and [y
(1)
1 , . . . , y

(1)
ℓ ] are given to the adversary, respectively.

We then give the following lemma to prove that

Game0,0 ≈ Game0,1 ≈ · · · ≈ Game0,ℓ ≈ Game1,ℓ ≈ · · · Game1,1 ≈ · · · ≈ Game1,0. (31)

Lemma 5. If the underlying PRF F is secure, then Game0,k−1
and Game0,k are indistinguishable, for k � 1, . . . , ℓ.

Proof. Suppose that there is an adversaryA which is able to
distinguish Gamek−1 from Gamek with a nonnegligible

advantage. 0en we can build a challenger C to distinguish
the experiment EXP(0) from EXP(1) shown in Section 2.
After invoking the experiment EXP(b) and receiving the
description of the PRF F, the challengerC simulates a hybrid
game for an adversary A as follows.
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For Setup, Query Phase 1, Query Phase 2, and Guess, the
challenger performs the same as in the proof of Lemma 1.

For Challenge phase, after receiving
y(0) � (y

(0)
1 , . . . , y

(0)
ℓ ), y(1) � (y

(1)
1 , . . . , y

(1)
ℓ ) from the ad-

versary, where

〈x, y(0)〉 � 0 �〈x, y(1)〉 or 〈x, y(0)〉 ≠ 0≠ 〈x, y(1)〉, (32)

for all x queried to Encrypt Oracle in Query Phase 1, the
challenger performs as follows.

(1) Randomly choose y1′, y2′, . . . , yk−1′ from R.
(2) Compute

sk
∗

� 􏽘

y1′

j�1
F a1, h( 􏼁 + . . . + 􏽘

yk−1′

j�1
F ak−1, h( 􏼁 + 􏽘

y
(0)

k

j�1
f + 􏽘

y
(0)

k+1

j�1
F ak+1, h( 􏼁 + · · · + 􏽘

y
(0)

ℓ

j�1
F aℓ, h( 􏼁. (33)

(3) Return sk∗.

If the challenger is interacting with the experiment
EXP(1), then f is the output of the PRF with input h. By

implicitly setting the encryption key component ak as the
chosen key of the underlying experiment, we have
f � F(ak, h), and thus we have

sk
∗

� y1′F a1, h( 􏼁 + · · · + yk−1′F ak−1, h( 􏼁 + y
(0)
k F ak, h( 􏼁

+ y
(0)
k+1F ak+1, h( 􏼁 + · · · + y

(0)
ℓ F aℓ, h( 􏼁

� y1′, . . . , yk−1′, y
(0)
k , . . . , y

(0)
ℓ􏽨 􏽩,

(34)

and thus we are in Gamek−1. Otherwise, f is a random
element inR; then we can rewrite f � F(ak, h) + 􏽥R for some
random element 􏽥R ∈R. Besides, there must exist an element

􏽥y such that 􏽥R � (y
(0)
k )− 1􏽥yF(ak, h). By implicitly setting

yk
′ � y

(0)
k + 􏽥y, we have

􏽘

y
(0)

k

i�1
f � y

(0)
k f � y

(0)
k F ak, h( 􏼁 + 􏽥R( 􏼁 � y

(0)
k F ak, h( 􏼁 + y

(0)
k y

(0)
k􏼐 􏼑

− 1
􏽥yF ak, h( 􏼁

� y
(0)
k F ak, h( 􏼁 + 􏽥yF ak, h( 􏼁 � y

(0)
k + 􏽥y􏼐 􏼑F ak, h( 􏼁 � yk

′F ak, h( 􏼁.

(35)

Table 1: Comparison with other related private IPE schemes [17–19]. Here, the length of ciphertext attribute and key attribute is n. |G| and
m represent size of an element of |G| and message, respectively. MSK, SK, CT, Qun. Res., GSD, C3DH, and 3FCOBGA stand for master
secret key, secret key for some key attribute, ciphertext for some ciphertext attribute, quantum-resistant, general subgroup decision,
composite 3-party (decisional) Diffie-Hellman, and 3-factor-based composite-order bilinear groups assumption, respectively.

SSW09 [18] YKNS12 [19] KT13 [17] Ours
Security Selective Selective Adaptive Adaptive
Order of G Composite Composite Prime —
Assumption A variant of GSD, C3DH, DLIN 3FCOBGA DLIN PRF
MSK size (4n + 4)|G| (4n + 4)|G| 5n|G| n log2 q

SK size (2n + 2)|G| (2n + 2)|G| 6n|G| log2 q

CT size (2n + 2)|G| (2n + 2)|G| 6n|G| m + n log2 q

Qun. Res. No No No Yes†
†If the underlying PRF is resistant to quantum attacks, then our proposed scheme is resistant to quantum attacks.
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Since f is a random element in R, yk
′ is also a random

element in R. 0at means sk∗ � [y1′, . . . , yk
′, y

(0)
k+1,

. . . , y
(0)
ℓ ], and thus we are in Gamek. Let Si be the event

where the adversary makes a right guess in Gamei.
0erefore, we have

Pr Sk−1􏼂 􏼃 − Pr Sk􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Pr W1􏼂 􏼃 − Pr W0􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � AdvPRFC 1λ􏼐 􏼑.

(36)

0at is, Gamek is indistinguishable from Gamek−1, if the
underlying PRF is secure, for k � 1, . . . , ℓ. □

Theorem 3. :e proposed private IPE scheme achieves
predicate-hiding, if the underlying pseudorandom function is
key-homomorphic and secure and the pseudorandom gen-
erator is secure.

Proof. 0e proof for the indistinguishability between
Game1,k−1 and Game1,k is the same as that for the indis-
tinguishability between Game0,k−1 and Game0,k, due to the
symmetry of the game sequence. 0is completes the proof of
the predicate-hiding. □

6. Comparison and Analysis

To the best of our knowledge, although existing private IPE
schemes [17–19] can resist payload-hiding, attribute-hiding,
and predicate-hiding security, these schemes cannot resist
quantum attacks because their security is based on discrete
logarithm assumption. In this section, we compare our
scheme with the existing private IPE schemes in terms of
security properties and the size of master secret key, secret
key, and ciphertext, as shown in Table 1.

0e results show that our construction has higher se-
curity and efficiency in terms of secret key size because the
size is not related to attribute length. In particular, the se-
curity of [18, 19] is only selective security; meanwhile that in
[17] and our construction is adaptive security, making it
more resistant to real attacks. In secret key size, our con-
struction is of constant size, while the secret key sizes of
[17–19] are linearly related to the key attribute length. In
terms of ciphertext size, the encryption algorithm in
schemes [17–19] only encrypts ciphertext predicate, while
our proposed construction further encrypts message;
therefore, the ciphertext size of our scheme is m + n log2 q,
where m is the length of message. Finally, [17–19] are not
resistant to quantum attacks, while our construction is re-
sistant to quantum attacks if the underlying PRF is resistant
to quantum attacks.

7. Conclusions and Future Works

With the development of cloud computing, the privacy of
uploaded data needs to be concerned and protected. Private
IPE is well suited to cloud computing scenario because it
provides encryption for access control. In this paper, we
propose a generic private IPE construction that achieves
payload-hiding, attribute-hiding, and predicate-hiding se-
curity by utilizing specific key-homomorphic PRF. For

future works, because the current construction requires that
the key space and output space of the underlying key-ho-
momorphic PRF be Zq, how to provide construction with
less restriction is an open problem that remains to be solved.
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