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In a (t, n) threshold secret sharing (SS) scheme, whether or not a shareholder set is an authorized set totally depends on the
number of shareholders in the set. When the access structure is not threshold, (t,n) threshold SS is not suitable. *is paper
proposes a new kind of SS named grouped secret sharing (GSS), which is specific multipartite SS. Moreover, in order to implement
GSS, we utilize both Lagrange interpolation polynomials and Chinese remainder theorem to design two GSS schemes, re-
spectively. Detailed analysis shows that both GSS schemes are correct and perfect, which means any authorized set can recover the
secret while an unauthorized set cannot get any information about the secret.

1. Introduction

*e notion of secret sharing (SS) was first introduced by
Shamir [1] and Blakley [2], respectively, in 1979. In an SS
scheme, a dealer D divides a secret s into some pieces
s1, s2, . . . , sn. Each piece si is called a share of the secret.
*en, the dealer can design an access structure
Γ � A1,A2, . . . ,Am􏼈 􏼉, whereAi is a minimal authorized set,
i.e., any superset of Ai can recover the secret. According to
the access structure, the dealer sends each shares to the
corresponding shareholder in private. After share genera-
tion, if a shareholder setP is a superset of an authorized set,
i.e., Ai ⊂ P, P can reconstruct the secret as long as the
shareholders inAi release shares to the others inP. If there
does not exist anyAi such thatAi ⊂P, the secret cannot be
recovered by P.

SS schemes are classified into many types, such as (t, n)

threshold SS [3, 4], weighted threshold SS [5, 6], hierarchical
threshold SS [7, 8], multilevel threshold SS [9, 10], multi-
partite SS [11, 12], and so on. *e most classical SS is (t, n)

threshold SS. *ere are n shareholders in a (t, n) threshold
SS scheme. A dealer divides a secret s into n shares and sends
each share to a shareholder securely. *en, any t or more

than t shareholders can collaborate to obtain the secret s by
pooling their shares together while any up to t − 1 share-
holders cannot.*e value of t is called the threshold of the SS
scheme.

Obviously, in a (t, n) threshold SS scheme, whether or
not a shareholder set is able to recover the secret is totally
dependent on the number of shareholders in the set.
Hence, (t, n) SS cannot work in many cases. For example,
suppose a big company BC consists of five constituent
companies which share the final decision rights of BC
equally. Each constituent company has several share-
holders who can represent the constituent company to
confer with representatives of the other constituent
companies on the final decision of BC. Although different
shareholders in a constituent company own different
shares, they have the same rights. In such a scene, if a
shareholder set is able to make a decision of BC, at least
five shareholders are included in the set. However, it is
far from that any five shareholders can do that. Only if a
shareholder set includes the representatives from all the
five constituent companies, the set can make a decision of
BC. *erefore, the given access structure is not just
threshold.
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Farras et al. [11] first proposed the notion of multipartite
SS which can solve the above problem. In a multipartite SS
scheme, shareholders are divided into several disjoint par-
titions and each partition has a part access structure. If a
shareholder set satisfies all the part access structures, it can
recover the secret. But as long as the shareholder set does not
satisfy any one part access structure of a partition, the secret
cannot be obtained. Later, Tassa and Dyn [12] and Hsu and
Harn [13] utilized bivariate interpolation and Chinese re-
mainder theorem (CRT) to implement multipartite SS
schemes. Obviously, if each threshold of part access struc-
ture equals one, the above problem can be solved. However,
in the multipartite SS schemes, if the threshold is equal to
one in a partition, all the shareholders in the partition get the
same share. In terms of security, different shareholders are
supposed to keep different shares even when they are in the
same partition. For this purpose, we propose a new SS
named grouped secret sharing (GSS) in this paper.

Informally, suppose that there are totally n shareholders
in a SS scheme.*ey are divided intom disjoint groups. Each
shareholder keeps a distinct share and belongs to a group. If
a shareholder set shares at least one shareholder with every
group, the shareholder set is allowed to recover the secret.
Otherwise, the secret cannot be reconstructed. *en, the SS
scheme is a GSS scheme.

In order to implement GSS, this paper uses Lagrange
interpolation polynomials (LIPs) and Chinese remainder
theorem (CRT) to design two GSS schemes, respectively.
*ereinto, LIP as a method of linear combination plays an
important role in numerical analysis. Shamir first used it to
design a (t, n) threshold SS scheme [1] in 1979. Later, LIP
became the most common tool to design SS schemes because
it is very simple and efficient. *ere are many schemes
[14, 15] based on LIP. CRT is used to solve systems of linear
congruence equations. Mignotte first proposed a (t, n)

threshold SS scheme [16] based on CRT in 1982, but the
scheme is ramp instead of perfect because even an unau-
thorized shareholder set can obtain part of information
about the secret. Asmuth and Bloom modified Mignotte’s
scheme to give a perfect (t, n) threshold SS scheme [17].
*ere are also many other kinds of SS schemes [18, 19] based
on CRT.

Based on the above, the contributions of the paper are
listed as follows:

(1) *e paper proposes a kind of SS named grouped
secret sharing (GSS).

(2) Both LIP and CRT are utilized to construct two GSS
schemes.

(3) Although shareholders in a same group keep dif-
ferent shares, each one of them can represent the
group to participate in secret reconstruction.

*e outline of the paper is as follows. In the next section,
we provide the notion of CRT, Shamir (t, n) SS scheme,
Asmuth–Bloom (t, n) SS scheme, and the formal definition
of GSS as the preliminaries. A GSS scheme based on LIP and
correlative correctness and security analyses are shown in
Section 3. Analogously, a GSS scheme based on CRT and

correlative analyses are given in Section 4. For a better il-
lustration, we give two numerical examples in Section 5.
Some discussions about perfectness and information rate are
shown in Section 6. We conclude the work in Section 7.

2. Preliminaries

In this section, we introduce some preliminaries including
CRT, Shamir (t, n) SS scheme, Asmuth–Bloom (t, n) SS
scheme, and the formal definition of GSS.

2.1. Chinese Remainder &eorem (CRT) [20]. Given the
following system of linear congruence equations:

x ≡ a1modm1;

x ≡ a2modm2;

⋮

x ≡ anmodmn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

if all moduli are pairwise co-prime, i.e., gcd(mi, mj) � 1 for
i≠ j, CRT illustrates that the system must have solutions for
any integer of a1, a2, . . . , an. Define M � m1, m2, . . . , mn,
Mi � M/mi, and ti ≡M−1

i modmi for i � 1, . . . , n. *en, the
system has an unique solution in ZM:

x � 􏽘

n

i�1
aitiMi

⎛⎝ ⎞⎠modM. (2)

2.2. Shamir’s (t, n) &reshold SS Scheme. In Shamir’s (t, n)

threshold SS scheme, there are n shareholders
U � U1, U2, . . . , Un􏼈 􏼉 and a dealer D who is trusted by all
shareholders. *e scheme consists of two algorithms.

2.2.1. Share Generation. *e dealer D randomly selects a
polynomial f(x) of degree t − 1:
f(x) � a0 + a1x + a2x

2 + · · · + at−1x
t− 1modp, where all

coefficients are in Zp. *e secret is constant term of f(x),
i.e., s � f(0) � a0. D picks n different positive integers to
compute n shares si � f(xi) for i � 1, 2, . . . , n, where xi is
public information associated with shareholder Ui.*en, the
dealer D securely sends the share si to the corresponding
shareholder Ui.

2.2.2. Secret Reconstruction. Assume that m(m≥ t) share-
holders U1, U2, . . . , Um work together to recover the secret.
Each shareholder Ui releases its share si to the others. After a
shareholder receives the other m − 1 shares, it can use LIP to
recover the secret:

s � f(0) � 􏽘
m

i�1
f xi( 􏼁 􏽙

m

j�1,j≠ i

xj

xj − xi

modp. (3)

2.3. Asmuth–Bloom (t, n) &reshold SS Scheme. *ere is a
dealer D and n shareholders U � U1, U2, . . . , Un􏼈 􏼉 in

2 Security and Communication Networks



Asmuth–Bloom (t, n) threshold SS scheme which also
consists of two algorithms.

2.3.1. Share Generation. At first, the dealer D picks a prime
number p0 and a sequence of pairwise co-prime positive
integers p1, p2, . . . , pn with p1 <p2 < · · · <pn,
p0, pn−t+2, pn−t+1, . . . , pn <p1, p2, . . . , pt, and
gcd(p0, pi) � 1 for i � 1, 2, . . . , n. *en, D picks a random
integer α and a secret s in Zp0

, such that
s + αp0 <p1, p2, . . . , pt. Next, D computes n shares si � (s +

αp0)modpi for i � 1, 2, . . . , n, where pi is public information
associated with shareholder Ui. Finally, the dealer D securely
sends the share si to the corresponding shareholder Ui.

2.3.2. Secret Reconstruction. Assume that m(m≥ t) share-
holders U1, U2, . . . , Um want to recover the secret. Each of
them releases its share to the others. After a shareholder
receives the other m − 1 shares, he gets a system of linear
congruence equations:

s + αp0 ≡ s1modp1;

s + αp0 ≡ s2modp2;

⋮

s + αp0 ≡ smmodpm.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Using the standard CRT, the value of s + αp0 can be
computed as

s + αp0 � 􏽘
m

i�1

P

pi

yisimodP, (5)

where P � p1, p2, . . . , pm and yi(P/pi)modpi � 1. *en, the
secret s can be obtained as s � s + αp0modp0.

2.4.GroupedSecret Sharing (GSS). In the following, we give a
formal definition of GSS.

Definition 1 (grouped secret sharing). For an SS scheme, let
U be a set of n shareholders and assume thatU is composed
of m disjoint groups, i.e.,U � ∪ m

i�1Ui, whereUi is a set of ni

shareholders such that n � n1 + n2 + · · · + nm and Ui ∩Uj �

∅ for all 1≤ i≤m, 1≤ j≤m and i≠ j. Every shareholder
keeps a unique share. If the access structure Γ of the scheme
is shown as

Γ � P|P ⊂ U,P∩Ui ≠∅, ∀i ∈ 1, 2, . . . , m{ }􏼈 􏼉, (6)

where P is a shareholder set.
In other words, if P can reconstruct the secret, it must

share at least one shareholder with each of the m disjoint
groups. If so, the SS scheme is a GSS scheme. Figure 1 shows
the model of GSS.

2.5. Introduction to Lattice. Because some security analyses
need to use lattice, we give some definitions about lattice.

Definition 2 (lattice). Given n linearly independent vectors
b1, b1, . . . , bn ∈ Zm, the lattice generated by the n vectors is

L b1, b2, . . . , bn|( 􏼁 � 􏽘 xibixi| ∈ Z􏽮 􏽯. (7)

Vectors b1, b1, . . . , bn ∈ Zm are the basis of L.

Definition 3 (the closest vector problem). Given a vector w
that is not in a lattice L, find a vector v ∈ L that is closest to w.

In the lattice with high dimensions, it is difficult to solve
CVP in polynomial time. However, CVP is solvable in a
reduced basis with low dimensions. LLL algorithm was
proposed by Lenstra, Lenstra, and Lovász, and thus it is
called LLL algorithm. LLL algorithm uses Schmidt or-
thogonalization repeatedly to obtain a reduced basis. *e
detailed algorithm is shown in paper [21].

3. GSS Based on LIP

In this section, we first show how to implement a GSS based
on Shamir’s (t, n) threshold SS scheme. *e correctness and
security analyses are given in the next two subsections,
respectively.

3.1. Implementing a GSS Based on Shamir SS Scheme.
According to the above definition of GSS, any shareholder
Ui

k can represent the group Ui to participate in secret re-
construction but different shareholders should keep dif-
ferent shares even when they are in a same group. Hence,
this paper focuses on how to generate different shares in a
group while all shares can be used to recover the same secret.

Our GSS scheme based on LIP consists of three algo-
rithms: (1) main share generation for a group; (2) subshare
generation for a shareholder; and (3) secret reconstruction.

3.1.1. Main Share Generation for a Group. LetU be a set of n

shareholders. All the shareholders are divided into m dis-
joint groupsU � U1 ∪U2 ∪ · · · ∪Um􏼈 􏼉. A shareholder only
belongs to one group, i.e., Ui ∩Uj � ∅ if i≠ j. Each group
has ni shareholders such that n � n1 + n2 + · · · + nm.

A dealer D chooses two prime numbers p and g with
p>mg2. *en, D randomly picks a polynomial f(x) of
degree m − 1: f(x) � a0 + a1x + a2x

2 + · · · + am−1 xm− 1mod
p, where a0 ∈ Zg but the other coefficients are limited inZp,

Group

Shareholder

Secret

Figure 1: *e model of GSS.
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i.e., ai ∈ Zp for i � 1, 2, . . . , m − 1.*e secret s is equal to the
constant term of f(x), i.e., s � f(0) � a0.

As for a group Ui, the dealer D selects a positive integer
xi from Zp as public information associated with Ui, where
xi ≠ 0 and xi ≠xj if i≠ j. *en, D computes a main share for
group Ui as si � f(xi).

3.1.2. Subshare Generation for a Shareholder. After Algo-
rithm 1, each groupUi is allocated a main share. If there just
exists one shareholder in a group, the dealer can use 0 as the
random integer to generate a subshare for the only share-
holder. Otherwise, for each shareholder Ui

ki
(superscript i

denotes that the shareholder is in group Ui and subscript ki

is an integer from the interval [1, ni] and denotes that the
shareholder is the ki-th shareholder in Ui), the dealer D

computes a subshare si
ki
as

s
i
ki

� si 􏽙

m

j�1,j≠ i

xj

xj − xi

+ r
i
ki

g⎛⎝ ⎞⎠modp, (8)

where ri
ki
is a random integer picked by D and ri

ki
∈ Zg. D

sends si
ki
as private share to the corresponding shareholder

Ui
ki
securely.

3.1.3. Secret Reconstruction. Note that any SS scheme has the
monotone property. In other words, if a shareholder set M
can recover the secret, any superset of M can also realize
secret reconstruction.

If a shareholder setP is allowed to recover the secret s, at
least one shareholder Ui

ki
is included inP for i � 1, 2, . . . , m,

where ki is a random integer in Zmi+1. *en, without loss of
generality, P can be divided into two subsets M1 and M2,
where M1 � U1

k1
, U2

k2
, . . . , Um

km
􏽮 􏽯 and M2 � P − M1. In

terms of definition of GSS, the subset M1 is able to recover
the secret.

Each shareholder inM1 releases its subshare to the other
shareholders inP. After that, all the shareholders inP get m

shares s1k1
, s2k2

, . . . , sm
km
. *en, the secret can be obtained by

computing

s � 􏽘
m

i�1
s

i
ki
modp⎛⎝ ⎞⎠modg. (9)

3.2. Correctness Analysis. In order to demonstrate that the
proposed GSS scheme based on LIP can work correctly, we
give two steps to prove the equation
s � (􏽐

m
i�1 si

ki
modp)modg (Table 1).

Step 1: s + 􏽐
m
i�1 r

i
ki
g<p.

Step 2: s � (􏽐
m
i�1 s

i
ki
modp)modg.

· 􏽘
m

i�1
s

i
ki
modp⎛⎝ ⎞⎠modg

� 􏽘
m

i�1
si 􏽙

m

j�1,j≠ i

xj

xj − xi

+ r
i
ki

g⎛⎝ ⎞⎠modp
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
modg

� 􏽘
m

i�1
si 􏽙

m

j�1,j≠ i

xj

xj − xi

⎛⎝ ⎞⎠modp + 􏽘
m

i�1
r

i
ki

g
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
modpmodg

� s + 􏽘
m

i�1
r

i
ki

g⎛⎝ ⎞⎠modpmodg

� s + 􏽘
m

i�1
r

i
ki

g⎛⎝ ⎞⎠modg

� s.

(10)

On account of Step 1 and Step 2, it is proven that the
secret s can be obtained by computing (􏽐

m
i�1 si

ki
modp)modg.

3.3. Security Analysis. In this section, we give two theorems
to prove the security of the proposed GSS based on LIP.
Because secret s is uniformly distributed in Zg, the prob-
ability of obtaining s from no share is 1/q. In general, g is a
large number such that it is impossible to guess the secret s

directly without any information. *erefore, if the proba-
bility of an event occurring is equal to or less than 1/q, the
event can be considered as impossibility.

Theorem 1. In the GSS based on LIP, a subshare si
ki
is valid

just in the groupUi, while it is invalid in any other groupUj

where i≠ j.

Table 1: Proof of step 1 in GSS based on LIP.

Formulas Remarks
s + 􏽐

m
i�1 ri

ki
g

≤s + mg(g − 1) Remark 3.1: ri
ki
∈ Zg

<g + mg2 − mg Remark 3.2: s ∈ Zg

<p. Remark 3.3: p>mg2
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Proof. In the light of correctness analysis, we have proved
that the subshare si

ki
is valid inUi. Hence, we give the proof

of the latter part of *eorem 1 in the following. In more
detail, we should prove that the probability of si

ki
being valid

in Uj is no more than 1/q.
If si

ki
is valid in Uj, it means si

ki
�

(sj 􏽑
m
h�1,h≠ j(xh/xh − xj) + r

j

kj
g)modp. In the equation, sj

has a uniform distribution in Zp since it is computed as sj �

f(xj) and all the coefficients of f(x) are unknown. And r
j

kj

can be any integer over Zg. From the equation, we get

sj � 􏽙

m

h�1,h≠ j

xh

xh − xj

⎛⎝ ⎞⎠

− 1

s
i
ki

− r
j

kj
g􏼒 􏼓modp. (11)

Define q(r
j

kj
) � (si

ki
− r

j

kj
g)modp with only one inde-

pendent variable r
j

kj
(r

j

kj
∈ Zg). *en, given a fixed value of

si
ki
, q(r

j
x) � q(r

j
y) holds if and only if r

j
x � r

j
y for r

j
x, r

j
y ∈ Zg.

Because if there exist r
j
x and r

j
y such that q(r

j
x) � q(r

j
y), there

must be an integer v such that (r
j
x − r

j
y)g � vp, i.e.,

p|(r
j
x − r

j
y). In this way, we can get r

j
x � r

j
y, i.e., v � 0 be-

cause r
j
x, r

j
y ∈ Zg and p>mg2. Furthermore, q(r

j

kj
) is a 1-to-

1 function, i.e., q(r
j

kj
) also has g values corresponding to g

values of r
j

kj
. In the same way, sj has g values corresponding

to g values of q(r
j

kj
) because (􏽑

m
h�1,h≠ j(xh/xh − xj))

− 1 is a
fixed value. However, sj has a uniform distribution in Zp.
Hence, the probability that equation (11) holds is g/p, which
is less than 1/g due to p>mg2.*is means it is impossible to
make equation (11) true. In other words, the subshare si

ki
is

invalid in any other group Uj, where i≠ j. □

Theorem 2. In the GSS based on LIP, for a shareholder setP,
if there exists a group Ui such that P∩Ui � ∅, the set P
cannot recover the secret s.

Proof. Without loss generality, suppose that P � U − U1. In
otherwords,P includes shareholders in all the groups exceptU1.
Besides, suppose that at least two shareholders exist in a group.

Now, let us prove that if P can recover the secret s, it
must know the exact value of the main share s1.

In group Ui(i≠ 1), we have

s
i
1 � sic + r

i
1g􏼐 􏼑modp,

s
i
2 � sic + r

i
2g􏼐 􏼑modp,

⎧⎪⎨

⎪⎩
(12)

where c � 􏽑
m
j�1,j≠ i(xj/xj − xi). In the equation, si

1, si
2, c, and

g are known, while si, ri
1, and ri

2 are unknown. Although
there exist three unknown numbers in two equations, they
can still be recovered because si

1, si
2 ∈ Zp, si, ri

1, ri
2 ∈ Zg while

p>mg2. In other words, si, ri
1, ri

2 are very short compared

with si
1, si

2, *erefore, we can construct a lattice and utilize
lattice basis reduction algorithm to recover si, ri

1, ri
2. From

equation (12), we can deduce

s
i
1c − s

i
2c􏼐 􏼑 g

− 1modp􏼐 􏼑 ≡ r
i
1c − r

i
2cmodp. (13)

*en, construct a lattice L as follows:

L �

Mp 0 0

Mc 1 0

Mc 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

Define a target vector t � (M(si
1c − si

2c)(g− 1modp), 0, 0),
where M is a prime greater than g to guarantee the distance of
any lattice vector far away from t is greater than M.

Note that ri
1, ri

2 ∈ Zg; then, the distance of t far away
from lattice L is

0, r
i
1, r

i
2􏼐 􏼑

�����

����� �

����������

r
i
1􏼐 􏼑

2
+ r

i
2􏼐 􏼑

2
􏽲

≤
�
2

√
g. (15)

We claim that vector
v � (M(si

1c − si
2c)(g− 1modp), ri

1, ri
2)) is the closest lattice

point far away from t. Finally, we invoke LLL algorithm to
recover ri

1 and ri
2 by solving the closest vector problem

(CVP(v, L)). Once we recover ri
1 and ri

2, si can be obtained
easily. After that, we get m − 1 main shares si for
i � 2, 3, . . . , m to construct m − 1 coordinates on the original
polynomial f(x) such as (xi, si).

Now, suppose that we can recover the secret s; it means
that we obtain another coordinate (0, s). *en, f(x) can be
reconstructed from (0, s) and m − 1 coordinates (xi, si)

because the degree of f(x) is m − 1.
If we obtain f(x), the main share s1 can be computed as

f(x1) easily. However, we do not have any information
about s1, since no shareholder in group U1 is concluded in
P. As a deduction, it means thatP cannot recover the secret
s if there exists a group Ui such that P∩Ui � ∅. □

4. GSS Based on CRT

In this section, we first implement a GSS based on
Asmuth–Bloom (t, n) threshold SS scheme. *e related
correctness and security analyses are given in the following.

4.1. Implementing a GSS Based on Asmuth–Bloom SS Scheme.
Our GSS scheme based on CRTconsists of three algorithms:
(1) main share generation for a group; (2) subshare gen-
eration for a shareholder; and (3) secret reconstruction.

Table 2: Proof of step 1 in GSS based on CRT.

Formulas Remarks
y + 􏽐

m
i�1 ri

ki
(P/pi)p0

<s + αp0 + mp2
0P/pi Remark 4.1: ri

ki
∈ Zp0

<s + αp0 + mp2
0P/p1 Remark 4.2: p1 <p2 < · · · <pm

<s + αp0 + (p0 − 1)P/p0 Remark 4.3: m(p0)
3 <p1(p0 − 1)

<P/p0 + (p0 − 1)P/p0 Remark 4.4: s + αp0 < (p1, p2, . . . , pm)/p0
� P.
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4.1.1. Main Share Generation for a Group. LetU be a set of n

shareholders. All the shareholders are divided into m dis-
joint groupsU � U1 ∪U2 ∪ · · · ∪Um􏼈 􏼉. A shareholder only
belongs to one group, i.e., Ui ∩Uj � ∅ if i≠ j. Each group
has ni shareholders such that n � n1 + n2 + · · · + nm.

At first, the dealer D picks a prime number p0 and a
sequence of pairwise co-prime positive integers
p1, p2, . . . , pm with p1 <p2 < · · · <pm, (m(p0)

3/p0 − 1)<p1
and gcd(p0, pi) � 1 for i � 1, 2, . . . , m, where pi is a public
modulus associated with the group Ui. *en, D picks a
random integer α and secret s in Zp0

, such that
y � s + αp0 <p1, p2, . . . , pm/p0. Finally, for each group Ui,
the dealer D computes a main share si as
si � (s + αp0)modpi.

4.1.2. Subshare Generation for a Shareholder. After Algo-
rithm 1, each group Ui is allocated a main share. Let P �

p1, p2, . . . , pm and ai � (P/pi)
− 1modpi. If there just exists

one shareholder in a group, the dealer can use 0 as the
random integer to generate a subshare for the only share-
holder. Otherwise, for each shareholder Ui

ki
in groupUi, the

dealer D computes a subshare si
ki
as

s
i
ki

� si

P

pi

ai + r
i
ki

P

pi

p0􏼠 􏼡modP, (16)

where ri
ki
is a random integer picked by D and ri

ki
∈ Zp0

. D

securely sends si
ki
as a private share to the corresponding

shareholder Ui
ki
.

4.1.3. Secret Reconstruction. If a shareholder P can recover
the secret, without loss of generality, it is divided into two
subsets M1 and M2, where M1 � U1

k1
, U2

k2
, . . . , Um

km
􏽮 􏽯 and

M2 � P − M1. M1 can recover the secret due to the defi-
nition of GSS.

Each shareholder inM1 releases its subshare to the other
shareholders inP. After that, all the shareholders inP get m

shares s1k1
, s2k2

, . . . , sm
km
. *en, the secret can be obtained by

computing

s � 􏽘
m

i�1
s

i
ki
modP⎛⎝ ⎞⎠modp0. (17)

4.2. Correctness Analysis. In order to demonstrate that the
proposed GSS scheme based on CRTcan work correctly, we
give two steps to prove s � (􏽐

m
i�1 si

ki
modP)modp0 (Table 2).

Step 1: y + 􏽐
m
i�1 r

i
ki

(P/pi)p0 <P.
Step 2: s � (􏽐

m
i�1 s

i
ki
modP)modp0.

· 􏽘

m

i�1
s

i
ki
modP⎛⎝ ⎞⎠modp0

� 􏽘
m

i�1
si

P

pi

􏼠 􏼡ai + r
i
ki

P

pi

􏼠 􏼡p0modP
⎧⎨

⎩

⎫⎬

⎭modp0

� 􏽘
m

i�1
si

P

pi

􏼠 􏼡aimodP + 􏽘
m

i�1
r

i
ki

P

pi

􏼠 􏼡p0
⎛⎝ ⎞⎠modP

⎧⎨

⎩

⎫⎬

⎭modp0

� y + 􏽘

m

i�1
r

i
ki

P

pi

􏼠 􏼡p0
⎧⎨

⎩

⎫⎬

⎭modPmodp0

� s + αp0 + 􏽘

m

i�1
r

i
ki

P

pi

􏼠 􏼡p0
⎧⎨

⎩

⎫⎬

⎭modp0 � s.

(18)

On account of Step 1 and Step 2, it is proven that the
secret s can be obtained by computing
(􏽐

m
i�1 si

ki
modP)modp0.

4.3. Security Analysis. In this section, we give two theorems
to prove the security of the proposed GSS based on CRT.
Because the secret s is uniformly distributed in Zp0

, the
probability of obtaining s from no information is 1/p0.
*erefore, if the probability of an event occurring is equal to
or less than 1/p0, the event can be considered as
impossibility.

Theorem 3. In the GSS based on CRT, a subshare si
ki
is valid

just in the groupUi, while it is invalid in any other groupUj

where i≠ j.

Proof. According to the correctness analysis, we have
proved that the subshare si

ki
is valid inUi. Hence, we give the

proof of the latter part of *eorem 3 in the following. In
more detail, we should prove that the probability of si

ki
being

valid in Uj is no more than 1/p0.
If si

ki
is valid in Uj, it means

s
i
ki

� sj

P

pj

aj + r
j

kj

P

pj

p0􏼠 􏼡mod , (19)

where si
ki
, P/pj, and aj are fixed values; sj has uniform

distributions in Zpi
; and r

j

kj
can be any integer over Zp0

.
Because r

j

kj
has p0 alternative values, there are at most p0

alternative values of sj to make equation (19) true. And due
to sj ∈ Zpj

, the probability that equation (19) holds is less
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than p0/pj. *en, on account of p1 <p2 < · · · <pm and
(m(p0)

3/p0 − 1)<p1, we can get p0/pj <p0/p1 < 1/p0.
*erefore, equation (19) cannot be satisfied. In other words,
the subshare si

ki
is invalid in any other group Uj, where

i≠ j. □

Theorem 4. In the GSS based on CRT, for a shareholder set
P, if there exists a groupUi such thatP∩Ui � ∅, the setP
cannot recover the secret s.

Proof. Without loss generality, suppose that P � U − U1.
In other words, P includes shareholders in all the groups
except U1. Besides, suppose that at least two shareholders
exist in a group.

Let us prove the following proposition firstly. □

Proposition 1. If P can recover the secret s, s can also be
recovered from m − 1 main shares si for i � 2, 3, . . . , m.

From the correctness analysis, we know all subshares in the
same groupUi are totally equivalent, i.e., si

k is equivalent to si
h

when they are used to participate in secret reconstruction,
where si

k � (si(P/pi)ai + ri
k(P/pi)p0)modP, si

h � (si(P/pi)

ai + ri
h(P/pi)p0)modP and ri

k ≠ ri
h. *erefore, we can use m −

1 main shares and random integers which are all selected from
Zp0

to generate another setP′ such that |P∩Ui| � |P′ ∩Ui|

for i � 2, 3, . . . , m.*en, ifP can recover the secret, it means s

can also be reconstructed from P′.
Now, the correctness of Proposition 1 has been proved.

Its converse-negative proposition can be stated as follows. If
s cannot be recovered from m − 1 main shares si for
i � 2, 3, . . . , m, P also cannot recover the secret s. Obvi-
ously, the converse-negative proposition is also true.

*en, we will use the deduction to prove Theorem 4. In
group Ui(i≠ 1), we have

s
i
1 � si

P

pi

ai + r
i
1
P

pi

p0􏼠 􏼡modP⟹ s
i
1
pi

P
� siai + r

i
1p0modpi,

(20)

because (P/pi)|s
i
1, gcd((P/pi), pi) � 1, and gcd(ai, pi) � 1.

*en, we get

e
i
1 � siai + r

i
1p0􏼐 􏼑modpi,

e
i
2 � siai + r

i
2p0􏼐 􏼑modpi,

⎧⎪⎨

⎪⎩
(21)

where ei
1 � si

1(pj/P)modpi and ei
2 � si

2(pj/P)modpi. In the
equation, ei

1, ei
2, c, and p0 are known, while si, ri

1, and ri
2 are

unknown. In a similar way, although there exist three un-
known numbers in two equations, they can still be recovered
because ei

1, ei
2 ∈ Zpi

, si, r1, r2 ∈ Zp0
while pi >p1 > (m(p0)

3/
p0 − 1). In other words, si, ri

1, ri
2 are very short compared

with ei
1, ei

2, *erefore, we still construct a lattice and utilize
lattice basis reduction algorithm to recover si, ri

1, ri
2. From

equation (21), we can deduce

e
i
1ai − e

i
2ai􏼐 􏼑 p

−1
0 modpi􏼐 􏼑 ≡ r

i
1ai − r

i
2aimodpi. (22)

*en, we still construct the lattice L as follows:

L �

Mp 0 0

Mai 1 0

Mai 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (23)

Define a target vector t � (M(ei
1ai − ei

2ai)

(p−1
0 modpi), 0, 0), where M is a prime greater than p0 to

guarantee the distance of any lattice vector far away from t is
greater than M.

Note that ri
1, ri

2 ∈ Zp0
; then, the distance of t far away

from lattice L is

0, r
i
1, r

i
2􏼐 􏼑

�����

����� �

����������

r
i
1􏼐 􏼑

2
+ r

i
2􏼐 􏼑

2
􏽲

≤
�
2

√
p0. (24)

We claim that vector v � (M(ei
1ai − ei

2ai)(p−1
0

modpi), ri
1, ri

2)) is the closest lattice point far away from t.
Finally, we still invoke LLL algorithm to recover ri

1 and ri
2 by

solving the closest vector problem (CVP(v, L)). Once we
recover ri

1 and ri
2, si can be obtained easily.

After that, we get m − 1 main shares si for i � 2, 3, . . . , m.
Given the m − 1 main shares, we can just obtain y′ by CRT
from the following system of equations:

y′ ≡ s2modp2,

y′ ≡ s3modp3,

· · ·

y′ ≡ smmodpm,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

where y′ ∈ ZP′ , P′ � p2, p3, . . . , pm, and y′ � ymodP′, i.e.,
y � y′ + βP′ from some integer β. However, from Figure 2,
there are at least (P/p0)/P′ � p1/p0 >m(p0)

2/(p0 − 1)>p0
possible values of β such that y � y′ + βP′. In other words,
the probability of recovering s from m − 1 main shares is less
than 1/p0. According to the converse-negative nature of
Proposition 1, the set P cannot recover the secret s if there
exists a group Ui such that P∩Ui � ∅.

5. Numerical Examples

In this section, we give two numerical examples to illustrate
the two GSS schemes, respectively. In both examples, sup-
pose that there are m � 3 groupsU1 with 2 shareholders,U2
with 3 shareholders, and U3 with 2 shareholders.

Example 1. Firstly, the dealer D selects two prime numbers
g � 7 and p � 157 such that p>mg2. *en, D generates a
degree-2 polynomial f(x) � 5 + 128x + 73x2modp, where
secret s is equal to 5.

For group U1, D selects an integer x1 � 35 as the public
information associated withU1 and computes f(x1) � 24 as
its main share. For groupU2, D selects an integer x2 � 92 as
the public information associated with U2 and computes
f(x2) � 83 as its main share. For group U3, D selects an
integer x3 � 136 as the public information associated with
U3 and computes f(x3) � 151 as its main share.

For the two shareholders U1
1 and U1

2 in U1, the dealer D

uses two random integers r11 � 2 and r12 � 5 to compute
subshares s11 � s1(x2/x2 − x1)(x3/x3 − x1) + r11gmodp � 12
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and s12 � s1(x2/x2 − x1)(x3/x3 − x1) + r12gmodp � 33. For
three shareholders U2

1, U2
2, and U2

3 in U2, D selects three
random integers r21 � 1, r22 � 3, and r23 � 6 to compute
subshares s21 � 24, s22 � 38, and s23 � 59. For the two share-
holders U3

1 and U3
2 inU3, D picks two random integers r31 �

2 and r32 � 6 to compute subshares s31 � 4 and s32 � 32. After
that, the dealer D sends each subshare to the corresponding
shareholder securely.

Secret reconstruction 1: If U1
1, U2

3 and U3
2 work together

to recover the secret, each of them releases its share to the
others. *en, the secret is evaluated as
s � (s11 + s23 + s32)modpmodg � (12 + 59 + 32)mod157mod
7 � 5.

Secret reconstruction 2: If U1
2, U2

1 and U3
1 collaborate to

recover the secret, each of them releases its share to the
others. *en, the secret is evaluated as s � (s12+

s21 + s31)modpmodg � (33 + 24 + 4)mod157mod7 � 5.

Example 2. Firstly, the dealer D picks a prime number p0 �

7 and 3 pairwise co-prime moduli p1 � 173, p2 � 179 and
p3 � 181 such that (mp3

0/p0 − 1)<p1 and
gcd(p0, p1) � gcd(p0, p2) � gcd(p0, p3) � 1, where pi is
public modulus associated with group Ui for i � 1, 2, 3.
*en, D selects a secret s � 5 and a random integer α � 7569
such that s + αp0 <p1p2p3/p0.

For group U1, the dealer D computes a main share
s1 � s + αp0modp1 � 50. Main shares for U2 and U3 are
computed as s2 � s + αp0modp2 � 4 and
s3 � s + αp0modp3 � 136.

For the two shareholders U1
1 and U1

2 in U1, the dealer D

uses two random integers r11 � 2 and r12 � 4 to compute
subshares s11 � s1(P/p1)a1 + r11(P/p1)p0modP � 4924648
and s12 � s1(P/p1)a1 + r12(P/p1)p0modP � 5378234, where
P � p1 ∗p2 ∗p3 and a1(P/p1) � 1modp1. For the three
shareholders U2

1, U2
2 and U2

3 in U2, D selects three random
integers r21 � 1, r22 � 3 and r23 � 5 to compute subshares
s21 � 3945438, s22 � 4383820 and s23 � 4822202. For the two
shareholders U3

1 and U3
2 inU3, D picks two random integers

r31 � 3 and r32 � 6 to compute subshares s31 � 3716040 and
s32 � 4366347. After that, the dealer D sends each subshare to
the corresponding shareholder securely.

Secret reconstruction 1: if U1
2, U2

1, and U3
2 work together

to recover the secret, each of them releases its share to the
others. *en, the secret is evaluated as s � (s12 + s21+ s32) mod
P modp0 � (5378234 + 3945438 + 4366347) mod 5605027
mod7 � 2479965mod7 � 5.

Secret reconstruction 2: if U1
1, U2

2, and U3
1 collaborate to

recover the secret, each of them releases its share to the
others. *en, the secret is evaluated as s � (s11+

s22 + s31)modPmodp0 � (4924648+ 4383820+ 3716040)mod
5605027mod7 � 1814454mod7 � 5.

6. Discussion

In this section, we show both the two GSS schemes are
perfect SS schemes. *en, we give some discussions about
the information rate for the two GSS schemes.

6.1. Perfect SS

Definition 4. Perfect SS: in an SS scheme, let s, S, P, and λ
be the secret, secret space, a shareholder set, and share set of
P. *e SS is perfect with respect to probability distribution
of s on the secret space S if

(1) H(s)≥ 0.
(2) H(s|λ) � 0 if P is an authorized set.
(3) I(s; λ) � H(s) − H(s|λ) � 0 if P is not an autho-

rized set.

In the GSS scheme based on LIP, secret space is S � Zg,
and hence H(s) � log2 g> 0. From the correctness analysis
in Section 3, any authorized set can recover the secret by
executing the algorithm in secret reconstruction, so the
second condition holds. From*eorem 2, the probability of
obtaining the secret from the shares kept by an unauthorized
shareholder set P is also 1/g, i.e., H(s|λ) � H(s) � log2 g.
*erefore, the GSS scheme based on LIP is a perfect SS
scheme.

In the same way, we can get that the GSS scheme based
on CRT is also a perfect SS scheme.

6.2. Information Rate

Definition 5. Information rate: in an SS scheme, let s be the
secret and S � s1, s2, . . . , sn􏼈 􏼉 be the share set. *en, the
information rate of the scheme is defined as

ρ � min
si∈S

log2|s|
log2 si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (26)

According to [22], the information rate of a prefect SS
scheme is no more than 1. Besides, the higher ρ is, the more
effectively the SS scheme works. In the GSS scheme based on
LIP, secret s is in Zg while every share si is in Zp. *erefore,
the information rate ρ is equal to log2 g/log2 p, which is
between 1/3 and 1/2 because p>mg2. Although ρ is less than
1, it is still acceptable. However, in the GSS based on CRT,
secret s is in Zp0

while every share si is in ZP, where P is a
product of m module and each modulus is greater than p0.
*erefore, the information rate is very low.We just show the
scheme to prove that CRT also can be used to design GSS
scheme. In practice, the first GSS scheme based on LIP is
more advisable.

7. Conclusions

In this paper, we propose a kind of secret sharing which is
named group secret sharing (GSS). By modifying Shamir

0 s p0 y′ yp′ p/p0

Figure 2: Relationship among parameters.
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and Asmuth–Bloom (t, n) threshold SS schemes, we im-
plement two GSS schemes based on LIP and CRT, re-
spectively. *e correctness analysis shows that the two GSS
schemes can work correctly and the security analysis proves
that the two schemes are secure. For a better illustration, two
numerical examples are also given. Both the two GSS
schemes are perfect, but the GSS based on LIP is more
effective because its information rate is higher than the other
one.
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