
Research Article
Neural Cryptography Based on Generalized Tree Parity
Machine for Real-Life Systems

Sooyong Jeong ,1 Cheolhee Park ,2 Dowon Hong ,2 Changho Seo ,1

and Namsu Jho 3

1Department of Convergence Science, Kongju National University, Kongju 32588, Republic of Korea
2Department of Mathematics, Kongju National University, Kongju 32588, Republic of Korea
3Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea

Correspondence should be addressed to Dowon Hong; dwhong@kongju.ac.kr

Received 29 October 2020; Revised 30 December 2020; Accepted 19 January 2021; Published 4 February 2021

Academic Editor: Flavio Lombardi

Copyright © 2021 Sooyong Jeong et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Traditional public key exchange protocols are based on algebraic number theory. In another perspective, neural cryptography,
which is based on neural networks, has been emerging. It has been reported that two parties can exchange secret key pairs with the
synchronization phenomenon in neural networks. Although there are various models of neural cryptography, called Tree Parity
Machine (TPM), many of them are not suitable for practical use, considering efficiency and security. In this paper, we propose a
Vector-Valued Tree Parity Machine (VVTPM), which is a generalized architecture of TPM models and can be more efficient and
secure for real-life systems. In terms of efficiency and security, we show that the synchronization time of the VVTPM has the same
order as the basic TPM model, and it can be more secure than previous results with the same synaptic depth.

1. Introduction

Traditionally, protocols based on public key cryptosystems have
been widely used in key exchange (e.g., Diffie–Hellman [1] and
RSA [2]) and the shared secret keys can be used in many
applications, such as digital certificate, digital signature, and
embedded system [2–4]. ,ese key exchange protocols are
fundamentally based on algebraic number theory [5]. As an
alternative approach for a public key system, research studies on
neural cryptography have been conducted [6–11]. Instead of the
traditional number theory-based cryptography, neural cryp-
tography can build key exchange protocols based on the syn-
chronization phenomenon in neural networks [8]. Moreover,
the neural cryptography ensure that the key cannot be inferred,
even if an attacker knows the details of the algorithm and can
monitor the communication channel. By sharing the same
neural network structure (called a Tree Parity Machine, TPM),
both entities that are involved in key exchange protocol can
share a secret key by synchronizing the shared neural network.

In the conventional neural cryptography [8], each party
constructs own TPM with shared parameters and chooses

initial random weight values for the TPM. ,en, they
generate a random input vector and calculate their own
output values by feeding the generated common input into
the TPM. By exchanging the output values, they update their
own weight values with a given learning rule. ,ese pro-
cedures are repeated until the weight vectors are fully
synchronized, and the synchronized weight vector can be
used as a shared secret key (Note that the initial weight
vector should be kept secret, as with the private key of the
PKC system, while on the other hand, the input/output
values can be known to anyone, including adversaries).
Similar to the existing PKC system, the exchanged keys can
be used in various applications. For example, the key which
is generated by neural cryptography can be used in block
cipher for encryption such as SDES, AES, and Rijndael
[12, 13]. Moreover, it can be used in the stream cipher by
applying it to the LFSR structure [14].

In the field of neural cryptography, various key exchange
protocols have been proposed to improve security and ef-
ficiency. ,ese protocols can be divided into three categories
according to their approaches: sanitizing input value,

Hindawi
Security and Communication Networks
Volume 2021, Article ID 6680782, 12 pages
https://doi.org/10.1155/2021/6680782

mailto:dwhong@kongju.ac.kr
https://orcid.org/0000-0001-7729-5511
https://orcid.org/0000-0002-3637-9951
https://orcid.org/0000-0001-9690-5055
https://orcid.org/0000-0002-0779-3539
https://orcid.org/0000-0003-1721-5350
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6680782

disturbing output value, and reconstructing model archi-
tecture. In the case of sanitizing input value, input values are
generated by adding uncertainty to input values depending
on the hidden units of participants to make it advantageous
for bidirectional learning (participant-side) and disadvan-
tageous for unidirectional learning (adversary-side) [15, 16].
In the case of disturbing output value, participants add noise
to calculated output values to prevent an adversary from
identifying the real output values [17, 18]. However, this
approach requires the additional assumption that partici-
pants have to previously share auxiliary information. In
terms of reconstructing model architecture, research has
been conducted to improve the security and efficiency of
neural cryptographic algorithms by rebuilding internal
components of the TPM [19–21]. It was reported that the
efficiency of the TPM can be improved by transforming the
process of output calculation and expanding the number of
output values [19, 20]. Recently, a method that can improve
the security of the TPM while preserving its efficiency by
extending the structure of the TPM was proposed [21]. In
[21], the authors applied complex numbers to all internal
components, instead of an integer system, to extend the
original TPM model. Especially, they showed that partici-
pants can exchange a pair of secret keys with a higher level of
security. However, it is still difficult to ensure the reasonable
levels of security required in real-life systems with these
results.

In this paper, we propose a Vector-Valued Tree Parity
Machine (VVTPM), which is an extended model of the
basic TPM architecture, in which we apply a vector-
valued system to the internal components of the TPM.
Since the parameters of the VVTPM are vector values, our
architecture can generate multiple pairs of secret keys in a
run of the protocol while improving security and pre-
serving efficiency. Moreover, the VVTPM can be a
generalized model for architecturally extended TPM
models, including the original TPM. Since our approach
can control the size of the secret key by varying the
number of vectors, the VVTPM can achieve a reasonable
security level to apply to real-life systems. In order to
verify the improvement of security, we theoretically
analyze the synchronization process on both participant-
side and adversary-side. ,en, we show that the VVTPM
can improve security with the same degree of synchro-
nization as the original TPM. Furthermore, we show that
our model can be applied to real-life systems with
comprehensive experiments under various conditions.
◉ Contribution: this paper provides four main

contributions:

(1) A novel model of neural cryptography: we propose a
novel model of neural cryptography, called Vector-
Valued Tree Parity Machine, which can generate
flexible lengths of secret keys by varying the number
of vectors while increasing security and preserving
the synchronization time.

(2) A generalized version of the existing TPM models:
from the perspective of reconstructing model

architecture, the VVTPM can be a generalized
version of the structural expanded models, in-
cluding the original TPM model. Besides the basic
TPM, we show that recent results (i.e., the com-
plex-valued model [21]) can be interpreted by our
model.

(3) ,eoretical proof of security and efficiency: we first
show that the synchronization time of the VVTPM
has the same order as the original TPMmodel, which
means that efficiency can be preserved. ,en, we
prove that, with the same synaptic depth, the security
of the VVTPM can be increased according to the
number of vectors.

(4) Experimental verification: in our experiment, we
apply the most powerful attacker in an adversarial
scenario that has not been considered in recent work
[21, 22]. Furthermore, we explore various learning
rules to show that our model does not depend on a
specific learning rule. Along with the theoretical
analysis, we experimentally show, from the per-
spective of the efficiency, that the VVTPM can
synchronize a shared model with the same rounds as
the basic TPM. Finally, we demonstrate the possi-
bility that the VVTPM can achieve the reasonable
security level required in real-life systems.

,is paper is organized as follows: Section 2 describes
the related work that is the basis of this study, and we
explain the existing TPM and attack scenarios in Section 3.
Section 4 proposes the novel model, which is called Vector-
Valued Tree Parity Machine and describes the learning
process. ,en, we theoretically analyze synchronization
time and security in Section 5 and show the empirical
results of our experiments in Section 6. Finally, we con-
clude in Section 7.

2. Related Work

Various research studies have been studied on neural
cryptography, and we briefly review prior work on neural
cryptography. We categorize the previous studies into four
categories:

Original TPM: extensive studies have been conducted
on neural cryptography. Mislovaty et al. [6], Rosen-Zvi
et al. [7], and Kanter et al. [8] proved that the syn-
chronization of two Tree Parity Machines (TPMs) can
be achieved by mutual learning rules. In particular, it
was shown that the synchronization of the TPMs can be
used as a cryptographic key exchange protocol [8, 9].
Starting with these results, Ruttor et al. [10] analyzed
the process of synchronization in the overall TPM
structure and showed that there are two main steps,
attractive and repulsive steps. Based on these steps,
Ruttor et al. [11] proved that the synchronization time
of two TPMs depends on the synaptic depth L. In [11],
the authors showed that the synchronization of a single
weight value between TPMs is identical to the gamblers’

2 Security and Communication Networks

ruin problem [23], and the synchronization of the
TPMs can be proved by an extended theorem of
gamblers’ ruin problem.
Advanced protocols: in order to use TPM-based neural
cryptography, various results that extend the basic
concept of the TPM have been proposed. Santhana-
lakshmi et al. [24] and Allam and Abbas [25] proposed
new protocols for exchanging group keys by extending
basic neural cryptography. As an extended building
block of key exchange, Volkmer [26] proposed an
authenticated key exchange protocol based on the
TPM. In addition, Allam et al. [27] showed that key
exchange with authentication can be achieved through
secret boundaries. As mentioned above, since it is
difficult to use the traditional PKC algorithms in re-
source-constrained environments, Chen et al. [28]
proposed TinyTPM to enable key exchange in em-
bedded systems. For the practical use of TPM-based key
exchange protocols, Volkmer and Wallner [29] pro-
posed a rekeying algorithm for generating new keys by
reusing the previously exchanged key.
Security under attack scenarios: to analyze the security
of the TPM models, various attack models have been
proposed [30–32] (e.g., simple attack, geometric attack,
genetic attack, and majority attack). In security analysis
under various attack scenarios, it was reported that
participants can prevent attacks by increasing synaptic
depth. However, if the synaptic depth is increased, the
efficiency of the TPM is decreased; that is, the syn-
chronization time of the TPM can increase along with
the synaptic depth. In order to investigate TPM pa-
rameters that satisfy reasonable security, Salguero
Dorokhin et al. [22] experimentally analyzed security
with a geometric attack by varying the internal pa-
rameters. However, they only considered the geometric
attack, and hence, it is unclear whether their optimal
parameters satisfy reasonable security against a ma-
jority attack, which is the most powerful attack.
Variations of TPM: in order to improve efficiency
and security, various key exchange protocols have
been proposed. ,ese protocols can be divided into
three categories according to their approaches:
sanitizing input values, disturbing output values,
and reconstructing model architecture. In the case of
sanitizing input values, hidden units are used for
generating input values in order to confuse the input
values [15]. Since the attacker cannot know the
hidden units of the two participants, public input
values are partially changed into private values.
,erefore, it is more difficult for the attacker to
attack TPMs than before due to the confidentiality of
the input values. On the other hand, hidden units
can indirectly affect the generation of input values.
In order to accelerate bidirectional learning, par-
ticipants generate input values related to hidden
units of them, instead of random values [16]. In the
case of disturbing output values, a mechanism, called
Do not Trust My Partner (DTMP), has been

proposed [17, 18]. DTMP allows two participants to
add preagreed noise to a calculated output value to
confuse an attacker who tries to use public output
values maliciously. However, this mechanism re-
quires an additional condition that the two partic-
ipants must have a prior consultation for noise
generation. In terms of reconstructing model ar-
chitecture, new mechanisms that are modified from
the original TPM by rebuilding internal components
are proposed. While the original TPM generates an
output value by the product of hidden units, the
mechanism proposed in [19] generates the output
value through a more complicated process in the
output calculation. By extending this method, the
Two-layer Tree-connected Feedforward Neural
Network (TTFNN), which generates a 2 bit output
value, has been proposed [20]. Recently, an archi-
tecture that can improve the security of the TPM
while preserving the efficiency was proposed by
extending the construct of the original TPM [21]. In
[21], the authors proposed the Complex-Valued Tree
Parity Machine (CVTPM) that applies complex
numbers for all internal parameters and showed that
the CVTPM can ensure a higher level of security.
However, they only considered the geometric attack,
and hence, it is unclear whether the CVTPM satisfies
reasonable security against the majority attack.

In this paper, we propose a novel model of the TPM,
called Vector-Valued Tree Parity Machine (VVTPM), in
which the architecture can generalize the previously pro-
posed algorithms and satisfies a reasonable level of security
for real-life systems while preserving efficiency.

3. Background

Before discussing our neural cryptography model, we ex-
plain the original neural cryptography called a Tree Parity
Machine. Moreover, we also explain attack scenarios to
experimentally verify the security of various TPMs, in-
cluding our model which is presented in Section 4.

3.1. Tree Parity Machine. ,e original TPM is a multilayer
feedforward network that consists of an input layer, an
output layer, and one hidden layer. ,e input layer
consists of N × K binary values xi,j ∈ −1, 1{ }, and par-
ticipants determine random (common) values for each
round.,e hidden layer consists of independent K values,
and each value is connected with N input values. Gen-
erally, the number of hidden unit K is fixed at 3 con-
sidering the security and efficiency. Each hidden unit is
calculated using N input values and weight values, where
the weight values have integer values between –L and L

(wi,j ∈ −L, −L + 1, . . . , L{ }). Note that the index
i � 1, . . . , K denotes the i-th hidden unit, and the index
j � 1, 2, . . . , N denotes the j-th input value. ,e i-th
hidden unit σi is calculated by the product of the cor-
responding input and weight values as follows [8]:

Security and Communication Networks 3

σi � sgn hi(,

hi �
1
��
N

√ Wi · Xi �
1
��
N

√

N

j�1
wi,j · xi,j,

(1)

where Wi is the vector of weight values (e.g.,
Wi � [wi,1, wi,2, . . . , wi,N]) and Xi is the vector of input
values (e.g.Xi � [xi,1, xi,2, . . . , xi,N]). Moreover, the intrinsic
value hi is called a local field of the hidden layer, and sgn(·) is
a sign function. If the local field hi of the hidden layer is 0,
hidden unit σi is set by −1. Consequently, the output τ of the
TPM is calculated by the product of the hidden units:

τ �
K

i�1
σi, (2)

where the result becomes a binary value either 1 or −1.
Based on a given structure of the TPM, the sender and

receiver randomly initialize weight values, generate new
random input values for each round, and exchange calcu-
lated output values. ,en, they update their own weight
values according to learning rule when the outputs of the two
parties are the same value, as follows [8]:

(a) Hebbian learning rule:

w
+
i,j � g wi,j + xi,jτθ σiτ(θ τAτB

 . (3)

(b) Anti-Hebbian learning rule:

w
+
i,j � g wi,j − xi,jτθ σiτ(θ τAτB

 . (4)

(c) Random walk learning rule:

w
+
i,j � g wi,j + xi,jθ σiτ(θ τAτB

 . (5)

Note that the function θ(·) returns 1 if the input is
positive, otherwise 0, and g(·) is a function that bounds the
maximum (or minimum) of weights:

g(w) �
sgn(w) · L, for |w|>L,

w, otherwise.
 (6)

When the parties agree to update the weight by the given
learning rule, only weight values where the related hidden
unit is equal to the output value are updated. Otherwise, the
parties skip that round without updating weights and
proceed to the next round. ,ese procedures are repeated
until the weight vectors are fully synchronized, and identical
weight vectors can be used as a shared secret key.

3.2. Attack Scenarios. In the original TPM, the synchronized
weight values can be used as a shared secret key. Similar to
the PKC system, the goal of an attacker is to disclose the
synchronized weight values of TPM. ,e main problem to
achieve the adversarial purpose is that the internal repre-
sentations (σ1, σ2, . . . , σK) of sender and receiver are un-
known. Since the update of weights depends on hidden
units, the success of attack depends on the prediction of

hidden units. In order to predict hidden units accurately,
various attack scenarios have been proposed [30–32]. ,ese
attack scenarios can be divided into two categories according
to the resource of attacker: using single TPM and multiple
TPMs.

In the case of using a single TPM, the simple attack and
geometric attack are proposed.,e simple attacker performs
with the same structure and learning process as the two
parties. In order to guess the hidden units of two the parties,
the attacker uses the output value of the two parties instead
of their own output value for updating weight values.
However, since the simple attacker only uses public infor-
mation and targets the vulnerability of the most basic
property on the TPM, various high-dimensional attacks
have been proposed [30–32]. ,e geometric attack, which
performs better than the simple attack, uses the property of a
local field [30]. If an absolute value of the local field is low,
the two hidden units will be different, with high probability
according to the geometric property of the local field.
,erefore, when the output values of the participants and
attacker are different, the attacker changes the hidden unit
with the minimum absolute value of the local field (e.g.,
|hE

1 |, |hE
2 |, . . . , |hE

K|) and updates their own weight values with
changed hidden units. Although the geometric attack is
considered a more powerful scenario than the simple attack,
it can easily be prevented by increasing the synaptic depth L
of the TPM.

To overcome this limitation, the genetic attack and
majority attack are proposed from the perspective of using
multiple TPMs [31, 32]. ,e genetic attacker predicts hidden
units using an evolutionary algorithm, which is different
from previous approach.,e attacker starts with single TPM
and proceeds with the mutation step to generate multiple
TPMs. In the mutation step, the attacker considers all
conditions of hidden units that can occur in each round
according to the output value of two participants. Conse-
quently, genetic attacker can use up to M neural networks
and can be more effective when the synaptic depth is rel-
atively small [31]. As an efficient approach for the relatively
large value of synaptic depth, the majority attack based on
the geometric attack is proposed. Similar to the genetic
attacker, majority attack uses an ensemble of M-TPMs and
predicts hidden units by using the geometric property of
local field. Initially, similar to the geometric attack, each
hidden unit is changed by the minimum absolute value of
local field for M-TPMs [32]. ,en, the most frequently
raised internal representation is selected through a majority
vote in the changed hidden units, and applied to M-TPMs to
update weight values. Although geometric attack can be
prevented by increasing the synaptic depth L, majority at-
tacker can perform a relatively efficient attack even if the
synaptic depth is increased. ,erefore, the majority attack
can be considered as the most powerful attack compared to
the previous attacks (i.e., simple attack, geometric attack,
and genetic attack).

Based on these attack scenarios, previous studies have
tried to find the optimal learning rule and the number of
hidden units in terms of security and efficiency. Conse-
quently, since other rules have limitations under certain

4 Security and Communication Networks

conditions, the random walk learning rule is generally used
in many studies. In the case of the Hebbian learning rule, it
can be very vulnerable to various attacks [33] even when the
synaptic depth is relatively large. Conversely, when one uses
the anti-Hebbian learning rule, such attacks can be resisted.
However, in this case, the synchronization time increases
exponentially compared to the other rules. ,erefore, the
random walk learning rule is widely exploited, considering
the trade-off between security and efficiency. From a similar
viewpoint, the number of hidden units K is usually fixed at 3.
If K � 1, 2, it can be very vulnerable to a simple attacker who
updates his/her TPM only using the output values of both
parties, and if K> 3, the synchronization time increases
exponentially [30].

Previous studies measured the security by using the
probability of various attacks. Most recent studies
measured the security by applying the geometric attack
[21, 22]. However, the majority attack which is based on
the geometric attack can be applied regardless of synaptic
depth L unlike other attacks (i.e., simple attack, genetic
attack, and geometric attack), and hence, it can be
considered as the most powerful attack. ,erefore, we
apply the majority attack to measure the security and
compare with the previous TPM.

4. Vector-Valued Tree Parity Machine

Although various models of TPM have been proposed,
many of them are not suitable for practical use in terms of
security and efficiency. For this reason, we propose a
novel model of neural cryptography (called a Vector-
Valued Tree Parity Machine, VVTPM) which is the
generalized model of the original TPM. First, we show the
architecture of VVTPM and discuss the synchronization
algorithm including learning rules to update the weight
vectors.

4.1. Architecture. ,e architecture of the Vector-Valued
Tree Parity Machine (VVTPM) is shown in Figure 1. ,e
structure of the VVTPM is similar to the existing TPM, but
all internal parameters of the VVTPM are vectorized values.
In our architecture, input values are defined as

X
k

�

X
k
1

X
k
2

⋮

X
k
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

x
k
11 x

k
12 · · · x

k
1N

x
k
21 x

k
22 · · · x

k
2N

⋮ ⋮ ⋱ ⋮

x
k
n1 x

k
n2 · · · x

k
nN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where the index n denotes the number of vectors and
k � 1, 2, . . . , K denotes the k-th hidden unit. Note that, as
with the previous studies, we set the number of hidden
units K at 3. If K � 1, 2, the simple attacker can easily
synchronize and succeed the attack, and if K> 3, the
synchronization time increases exponentially which is
inefficient. ,e weight values which map input values to
hidden units are defined as

W
k

�

W
k
1

W
k
2

⋮

W
k
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

w
k
11 w

k
12 · · · w

k
1N

w
k
21 w

k
22 · · · w

k
2N

⋮ ⋮ ⋱ ⋮

w
k
n1 w

k
n2 · · · w

k
nN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where wk
i,j ∈ −L, −L + 1, . . . ,{ }, i � 1, . . . , n denotes the i-th

vector of weight, j � 1, 2, . . . , N denotes the j-th input value,
and L is the synaptic depth of the VVTPM.

,e k-th hidden unit vector σk is calculated as follows:

σk
�

σk
1

σk
2

⋮

σk
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� sgn h
k

 ≜

sgn h
k
1

sgn h
k
2

⋮

sgn h
k
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where hk �

h
k
1

h
k
2
⋮
h

k
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, hk

i � 1/
��
N

√
Xk

i · Wk
i � 1/

��
N

√

N
j�1 xk

i,j · wi,

jk, (k � 1, 2, . . . , K , i � 1, 2, . . . , n).
Finally, the output of the VVTPM is generated as

τ �

τ1

τ2

⋮

τn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� σ1 ⊙ σ2 ⊙ · · · ⊙ σK ≜

K

k�1
σk
1

K

k�1
σk
2⋮

K

k�1
σk

n
⎤⎦,⎡⎣

(10)

where ⊙ denotes the Hadamard product.
When the number of vector n � 1, 2, the VVTPM is

identical to the TPM [6] and CVTPM [21], respectively. If
n � 1, all parameters that are vectors in the VVTPM become
a single variable with one integer value as a TPM. Fur-
thermore, if n � 2, all parameters become vectors with two
elements, and these states can interpret the real part and the
imaginary part of the complex value. ,erefore, in this case,
the VVTPM is identical to the CVTPM. Consequently, we
stress that the VVTPM can generalize structural expanded
models including TPM and CVTPM.

Moreover, since each element of the output vector can be
generated independently, the synchronization time of the
VVTPM has the same order as the existing TPM (we will
prove this in Section 5). Additionally, the VVTPM can
exchange flexible-sized secret key pairs (i.e., n × N × K-sized
keys) in a run of the protocol while the conventional TPM
can shareK × N-sized secret keys. As a result, it is possible to
improve security over the conventional TPM while pre-
serving efficiency.

In addition, the VVTPM can be used in various appli-
cations. For example, since two participants can exchange
the synchronized key by using VVTPM, they can create a
secure channel to mutual communication (Figure 2). Instead
of existing PKC, the original TPM also can be applied as the
key exchange protocol and can be used with block cipher or
stream cipher. Since the existing TPM takes exponentially

Security and Communication Networks 5

long time to share large keys, it is not suitable to use in real-
life systems. However, the VVTPM can generate various
sizes of key by adjusting the number of vector n and share a
key within polynomial time.

4.2. Synchronization Algorithm. Two parties use the same
VVTPM structure for synchronization, and the VVTPM can
synchronize weights with Algorithm 1.

,e inputs of the learning process are parameters for
the VVTPM, i.e., the number of hidden units, the syn-
aptic depth L, the number of input values for each hidden
unit N, and the number of vector n. Note that WS(or WR)
denotes the set of weight matrices (i.e.,
WS � W1S

, W2S

, . . . , WKS

) of the sender S (or the re-
ceiver R). First, the sender and receiver initialize their
own weight values WkS/R to a random integer from –L to L

where k � 1, . . . , K. ,en, public common input vectors
Xk

i are randomly generated for all i and k, and the two
parties calculate the local field vector of the hidden layer
by the inner product of the input vector and the weight
vector. In order to calculate the output vector, they ex-
tract sign values of the local field vector and generate the
output vector of the VVTPM by the Hadamard product of
hidden unit vectors. Finally, they share the own output
vector in public. If the output values of the two parties are
identical, they update weight vectors where τiS/R � σkS/R

i for
all i and k. ,is process is repeated until synchronization
is complete, i.e., until the sets of weight matrices WS and
WR are identical. When the weight vectors are fully
synchronized, the identical weight matrix becomes the
output of the algorithm.

In the running of the algorithm, the two parties use a
learning rule to update the weight vectors. ,ere are three
learning rules as follows:

(a) Hebbian learning rule:

W
k+

i � g W
k
i + X

k
i

T
⊙ τiS/R ⊙ θ σk

i ⊙ τ
iS/R

 ⊙ θ τiS ⊙ τiR
 .

(11)

(b) Anti-Hebbian learning rule:

W
k+
i � g W

k
i − X

k
i

T
⊙ τiS/R ⊙ θ σk

i ⊙ τ
iS/R

 ⊙ θ τiS ⊙ τiR
 .

(12)

(c) Random walk learning rule:

W
k+

i � g W
k
i + X

k
i

T
⊙ θ σk

i ⊙ τ
iS/R

 ⊙ θ τiS ⊙ τiR
 .

(13)

5. Analysis of Security and Efficiency

,e VVTPM, which is an extended model of the TPM is
expected to achieve a reasonable security level while the
synchronization time has the same degree as the original
TPM. To prove these improvements, we analyzed the syn-
chronization phenomenon on both the participant-side and
adversary-side. In particular, the process of performing
bidirectional learning by exchanging calculated output
values by two participants can be interpreted as a syn-
chronization of the participant-side. Conversely, the process

τ

W1
W2 W3

X1 X2 X3

σ2σ1 σ3

Figure 1: VVTPM architecture with K� 3, N� 5.

Synchronization

VVTPM

Output

n × N × K-sized key
(shared key)

The number of vector n
input size N × K

Input

Figure 2: Architecture of sharing the key by using the VVTPM.

6 Security and Communication Networks

of performing unidirectional learning by observing the
exchanged output values of the two participants can be
interpreted as a synchronization of the adversary-side.

5.1. Synchronization Time. To prove the synchronization
time of the two participants, the overlap of internal repre-
sentations (or hidden units) must be precisely recognized.
However, the internal representations (σ1, σ2, . . . , σK) are
invisible to each other, so we have to consider two main
possibilities during synchronization.

Case 1. If output values for both participants are identical
and each hidden unit of the participants is the same
(τiS � σkS

i � σkR

i � τiR where i � 1, .., n and k � 1, . . . , K),
the participants update their ownweight vectorsWkS

i ,WkR

i

corresponding to the hidden unit σkS/R

i in the same di-
rection. If one of two weight values is –L or L, the distance
of both weights will be decreased. Consequently, these
attractive steps accelerate synchronization.
Case 2. If output values for both participants are
identical (τiS � τiR) and each hidden unit of the par-
ticipants is not the same (σkA

i ≠ σkB

i), only one of the two
weights will be changed. ,en, when the two weight
vectors were perfectly synchronized, the synchroniza-
tion will be broken, except that they are adjusted by the
boundary value. ,ese repulsive steps reduce the
overlap between both weight vectors, which delays
synchronization.

In the case of bidirectional learning, the attractive and
repulsive steps occur appropriately, and finally, perfect
synchronization can be achieved. However, since the at-
tacker synchronizes by observing the output values of the
two parties, the repulsive step will occur more frequently
than the attractive step. ,erefore, unidirectional learning
needs much more time than bidirectional learning.

,e synchronization of two weight values has the same
property as the two random walkers with boundary values [11].
In the case of a randomwalk with reflecting boundaries, the two
random walkers exist within the range of 1 to d, and we can
define that the initial position of the left walker is z. Moreover,
the right walker starts at a distance d from the left random
walker, and the two points move one by one in the same di-
rection in each round. If either point reaches the boundary
value, the distance between the two points decreases to d − 1.
,is procedure is repeated until the distance between the two
points is 0, and synchronization is complete. Since the learning
process of the TPM is an extension of two random walkers, full
synchronization of twoweight values in the TPM can be proved
theoretically by using the classical gamblers’ ruin problem [23].

Since the synchronization time of two random walkers
depends on the boundary value, the overall synchronization
time of the original TPM 〈tsync〉 increases in proportion to
L2 [33]:

tsync∝
4
3
L
2
. (14)

Unlike bidirectional synchronization, the attacker is only
allowed to synchronize by observing the input and output

values. ,erefore, unidirectional synchronization of attacker
requires a relatively longer time than the two participants.
Consequently, bidirectional synchronization increases lin-
early, but the synchronization time of the attacker tattsync
increases exponentially with synaptic depth L:

t
att
sync∝ e

c1L+c2L2
. (15)

In the case of the VVTPM, each output τk can be cal-
culated independently. Intuitively, if the number of vector
n � 3, elements of the output vector τ1, τ2, τ3 are calculated
independently, and these calculations can be performed in
parallel. In other words, the synchronization time of the
VVTPM tVVTPMsync also increases in proportion to L2 similar to
the original TPM:

t
VVTPM
sync ∝ max L

2
1, L

2
2, . . . , L

2
n . (16)

Consequently, if VVTPM and TPM have the same
synaptic depth L, their synchronization time has the same
order.

5.2. Security Analysis. ,e sender and receiver can achieve
the full synchronization by exchanging the output values
related to their internal representations, so the attractive step
and the repulsive step occur in an appropriate proportions.
However, as mentioned above, unidirectional learning takes a
relatively long time to achieve synchronization. To overcome
this limitation, various attack scenarios have been proposed.
Among them, we consider the majority attack scenario which
is the most powerful attack, to prove its security.

In all attack scenarios including majority attack, the goal
of attackers is to synchronize the weighs before the two
parties achieve full synchronization. In other words, we can
say that the attack is successful when the synchronization
time of unidirectional learning is faster than bidirectional
learning. ,erefore, the probability of success of an attack
can be expressed as follows [33]:

P t
att
sync ≤ tsync �

∞

t�0
P
att
sync(t)

d

dt
Psync(t)dt, (17)

which is the probability of tattsync ≤ tsync under the assumption
that the two synchronization times are uncorrelated random
variables. In this equation, tattsync and tsync are the synchroni-
zation time between the attacker and the two parties, and the
synchronization time between the two parties. Additionally,
Patt
sync(t) and Psync(t) are the cumulative probability distribu-

tion of each synchronization time. Using the Gumbel distri-
bution [34], equation (17) can be approximated as follows:

P t
att
sync ≤ tsync ≈ 1 − exp −

tsync

t
att
sync

⎛⎝ ⎞⎠. (18)

,is means that the probability of success of an attack is
proportional to the ratio of the average values of the two
synchronization times which are functions of the synaptic
depth L. With equations (14) and (15), the ratio of the two
synchronization times, which are a function of L, can be
calculated as follows:

Security and Communication Networks 7

t
att
sync

tsync
∝

L
2

e
c1L+c2L2 . (19)

Consequently, the synaptic depth L is most important
for the security of neural network key exchange protocols.
When L≫ 1, the ratio of the two synchronization times
becomes very small (equation (19) and the probability of
success of the attacker can be approximated as

P t
att
sync ≤ tsync ∝L

2
e

−c1L
e

−c2L2
. (20)

Since the probability of success of the attacker decreases
exponentially as synaptic depth L increases, the two parties
can adjust L to achieve the desired level of security.
According to the experimental results in [33], the probability
of success of a majority attack decreases exponentially in
proportion to L and is approximated as follows:

Patt ≈ e
−0.17(L−2.0)

, (21)

which is based on equation (20).
In the case of the VVTPM, the attack probability of a

majority attacker can be analyzed by extending the security
analysis proved above. Since output vectors τ1, τ2, . . . , τn are all
independently calculated, the majority attacker has to usemore
resources than the TPM to infer each weight vectors. In other
words, the attack must be performed with respect to each
output vector separately, and the probability of success of the
majority attacker who has to disclose all key values can be
reduced in proportion to n. Since each attack divided by n is the
same as the attack of the original TPM, the attack probability of
a majority attack for the VVTPM is calculated as follows:

P
VVTPM
att � P

τ1
attP

τ2
att · · · P

τn

att ≈ P
TPM
att

n
<P

TPM
att , (22)

where Pτi

att is the probability of success of a majority attack on
each weight vector and is calculated with the same value as
PTPM
att which is the probability of success of the original TPM.

6. Implementation

,e synchronization time of the VVTPM increases in pro-
portion to L2 as in the original TPM, and the attack probability
of a majority attack decreases exponentially in proportion to
n × L. To show these results experimentally, we analyzed the
VVTPM under various conditions. Since the original TPM fixes
the number of hidden units K at 3 and the weight values are
updated by the randomwalk learning rule, we followed the same
configurations for all experiments to compare it with the original
TPM. All experimental results were measured on a computer
with 3.70GHz eighth generation Intel Core i7-8700K CPU.

To prove that the synchronization times of the VVTPM
and TPM increase in proportion to the same order (L2), we
used the Frobenius norm of a matrix to show the variation of
the overlap. ,e Frobenius norm can be defined as follows:

W
kS

− W
kR

�����

����� F ≜

���

n

i�1

N

J�1
w

kS

i,j − w
kR

i,j

2

, for k � 1, . . . , K.

(23)

When the two weight vectors are fully synchronized, the
Frobenius norm decreases to 0. To compare TPM, CVTPM,
and VVTPM, without loss of generality, we set the number
of vectors as n � 1, 2, and 5. Figure 3 shows the relationship

Input K, L, N, n
(1) Initialize WkS

(WkR

) randomly for k � 1, . . . , K

(2) while WS ≠WR do
(3) for k from 1 to K
(4) for i from 1 to n
(5) generate Xk

i randomly
(6) end

(7) hkS/R⟵ 1/
��
N

√
X

k
1 · W

kS/R

1

X
k
2 · W

kS/R

2
⋮

X
k
n · W

kS/R

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8) σkS/R⟵ sgn(hkS/R
)

(9) end
(10) τS/R⟵ σ1S/R ⊙ σ2S/R ⊙ . . . ⊙ σkS/R

(11) for i from 1 to n
(12) for k from 1 to K
(13) if τiS � τiR then
(14) WkS

i ⟵ Learningrule(WkS

i)where i satisfies τiS � σkS

i

(15) WkR

i ⟵ Learningrule(WkR

i)where i satisfies τiR � σkR

i

(16) end
(17) end
(18) end
(19) end

Output Wk

ALGORITHM 1: Learning process of key exchange for VVTPM.

8 Security and Communication Networks

between the number of iterations and Frobenius norm. Each
line represents one synchronization process, and the re-
peated experimental results all exhibit a similar pattern, so
only one result is shown for each n values. At the beginning
of synchronization, since the VVTPMhas a larger number of
weight values than other models, the starting values of the
Frobenius norm can be higher. However, during synchro-
nization, the flow of the decreasing Frobenius norm pro-
ceeds similarly. As a result, we verified that the
synchronization time has the same order regardless of in-
ternal structure.

In order to verify a more reliable process of synchro-
nization, we also measured the time of synchronization of
the TPM, CVTPM, and VVTPM based on these results. To
obtain more fair results in the measurement of synchro-
nization, we measured not the time but the number of
rounds that occurred up to full synchronization for both
users using each model with K � 3, N � 1000.

Figure 4 shows a graph showing the number of rounds
that occurred up to full synchronization for both users using
VVTPM. Experiments were performed for three values of
synaptic depth, and each point represents the average value
of the experimental results repeated 10,000 times. When
comparing the original TPM (n � 1), CVTPM (n � 2), and
VVTPM, the average number of rounds does not make a
difference despite the increase in the value of n. ,is shows a
similar aspect not only in the average value, but also in the
median value (see Table 1). Since each vector value can be
calculated independently, the number of vector n does not
affect the synchronization time. Consequently, the syn-
chronization time of the VVTPM has the same degree as the
original TPM regardless of the number of vector n.

Most recent studies have conducted experiments using
the geometric attack to measure the security level [18, 19].
However, the majority attack, which is improved from the
geometric attack, is the most powerful attack against the
original TPM. ,erefore, in order to verify a rigorous se-
curity level experimentally, we measured the probability of
success of a majority attack on the VVTPM.

In the majority attack scenario, the condition of success
is for the attacker to find out all weight values before the
participants are fully synchronized. In other words, if the
attacker’s unidirectional learning finishes synchronization
earlier than the bidirectional learning between the partici-
pants, it is considered that the attack is successful. However,
the participants only exchange common inputs and calcu-
lated outputs, and it is difficult to determine when full
synchronization is achieved. ,erefore, an attack is defined
as successful if the attacker achieves synchronization of 98%
or more of the weights when the weights of both participants
are exactly the same.

In previous studies, experiments were conducted by
setting the target security level to 10− 4, and accordingly, we
also set 10− 4 to conduct experiments. Moreover, we verified
the possibility that the security of the VVTPM can be im-
proved to the reasonable security level required in real-life
systems.

Figure 5 shows a graph, showing the probability of
success of a majority attacker according to the size of vector
n. Similar to synchronization time, we set the parameter
K � 3, N � 1000 and the number of networks for the
majority attacker M � 100. Furthermore, we only used the
random walk learning rule and each point represents the
attack probability among a total of 10,000 attacks. As
mentioned above, the success of an attack is defined as
when the attacker achieves synchronization of 98% or more
of the weights when both participants achieve full syn-
chronization. ,e attack probability PE decreases as the
number of vectors increases, as shown in equation (18).
Also, confirming the value in Table 2, when L � 15, the
original TPM(n � 1) has an attack probability of 3%, but a
VVTPM with n of 3 or more has an attack probability of
10− 4 which is the target security level. When we use the
original TPM with L � 57, we can achieve the target se-
curity level 10− 4. However, if we set L � 57, a very long time
is required for complete synchronization, and it is prac-
tically impossible to use in real-life systems. As a result of
the experiment, when the case of L � 40, it takes about

1800

1600

1400

1200

1000

800

600

400

200

3000

n = 1
n = 2
n = 5

6000 9000

Fr
ob

en
iu

s n
or

m

12000 15000
0

Figure 3: Frobenius norm between the weight matrix of TPM, CVTPM, and VVTPM.

Security and Communication Networks 9

1,270,000 rounds and about 2minutes to complete syn-
chronization. On the other hand, when we use the VVTPM
with n � 3, L � 15, it takes only about 24,000 rounds and
about 2 seconds. In other words, we can achieve syn-
chronization in an incomparably faster time than the
original TPM. Moreover, when the participants use the
VVTPM, a reasonable security level can be achieved in real-
life systems by increasing parameters n and L.

Similar to using the random walk learning rule, the
experimental results can be applied to the rest of the learning
rules (i.e., Hebbian learning rule and anti-Hebbian learning
rule). Figure 6 shows a graph that shows the probability of
success of a majority attacker according to the learning rules.
Similar to previous results, the VVTPM can increase security
in an attack scenario regardless of learning rule. In partic-
ular, when we apply the Hebbian learning rule to the original
TPM, it can be very vulnerable to various attacks even when
the synaptic depth is relatively large. However, in the case of
the VVTPM, we can increase security even with the Hebbian
learning rule by varying the number of vectors. ,erefore,
we can perform secure key exchange with the Hebbian
learning rule. On the contrary, when we apply the anti-
Hebbian learning rule, we can exchange the key securely
against various attacks regardless of models (e.g., TPM and
VVTPM). However, the anti-Hebbian learning rule still has

limitations in terms of efficiency and is not suitable to apply
to real-life systems.

Table 1: ,e average and median values for the number of rounds until full synchronization.

Number of vectors L � 10 L � 15 L � 20
Median Average Median Average Median Average

n � 1 6317 6625 16130 16814 32558 33781
n � 2 6544 6811 20462 21184 37575 42052
n � 3 8332 8688 23095 24039 35114 35655
n � 4 7512 7766 16651 17047 30506 31088
n � 5 7780 8016 17090 17476 31281 31905

1 2 3
n

4 5

L = 20
L = 15
L = 10

0

5000

10000

15000

20000

25000

30000

35000

40000

(t s
yn

c)

Figure 4: ,e number of rounds that occurred before full synchronization according to the number of vectors. From the top, each line
means the average value of a total of 10,000 experiments for synaptic depth L� 10, 15, and 20.

1 2 3
n

4 5

L = 20
L = 15
L = 10

0
0.005

0.01
0.015

0.02
PE

0.025
0.03

0.035
0.04

0.045

Figure 5: ,e probability of success of a majority attack with K� 3,
N� 1000, and M� 100. We used the random walk learning rule to
update the weight vectors and measure the values of the result with
10,000 repeated experiments.

10 Security and Communication Networks

7. Conclusions

In this paper, we proposed a novel architecture of neural
cryptography, called Vector-Valued Tree Parity Machine
(VVTPM), which can be applied to generate a flexible length
of secret key. In addition, the VVTPM can generalize the
extended model in terms of reconstructing model archi-
tecture, including the original TPM. In particular, it is not
only a generalized model, but it can also increase security
while preserving efficiency. By varying the number of vec-
tors, the VVTPM can achieve the reasonable security level
required in real-life systems. To verify the improvement of
security, we theoretically analyzed the process of synchro-
nization in terms of both bidirectional learning and uni-
directional learning. ,en, we showed that the
synchronization time of the VVTPM has the same order as
the existing TPM and proved that the security of the
VVTPM can be increased with the same synaptic depth
while preserving the synchronization time.

In our experiment, we applied the most powerful at-
tacker that has not been considered in recent work and set
the target security level to 10− 4, which has been considered
in previous results. In addition, we showed that the VVTPM
can achieve the higher level of security required in real-life
systems as well as the previously considered security level by
varying the number of vectors. Moreover, to verify that the
synchronization time of the VVTPM has the same order as

the original TPM, we measured the number of rounds for
full synchronization. As a result, we showed that the number
of vectors cannot affect the synchronization time of the
VVTPM and that the security level against the most pow-
erful attack can be controlled by varying the number of
vectors and synaptic depth. Additionally, we verified that the
improvement of security in the VVTPM can be preserved
regardless of learning rule.

Similar to original TPM, the VVPM can be applied in
many applications. Especially, it can be utilized to symmetric
cryptosystems (symmetric key generation) and stream ci-
pher systems (seed value) instead of the existing PKC.
Moreover, it would be interesting to analyze the effectiveness
of our model with other cryptosystems and to compare the
performance of neural cryptography with the existing key
exchange algorithms (e.g., PKC) in various environments.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science and ICT
(2019R1A2C1003146) and Electronics and Telecommuni-
cations Research Institute (ETRI) funded by the Korean
Government (21ZR1300, Core Technology Research on
Trust Data Connectome).

References

[1] M. E. Hellman, “An overview of public key cryptography,”
IEEE Communications Magazine, vol. 40, no. 5, pp. 42–49,
2002.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[3] ITU-T, Recommendation X.509, Information Tech-
nology–Open Systems Interconnection–9e Directory: Public-
Key and Attribute Certificate Frameworks, ITU, Geneva,
Switzerland, 2005.

[4] M. S. Anoop, “Security needs in embedded systems,” IACR
Cryptology ePrint Archive, vol. 198, p. 2008, 2008.

[5] N. Koblitz, A Course in Number 9eory and Cryptography,
Springer Science & Business Media, Berlin, Germany, 1994.

[6] R. Mislovaty, Y. Perchenok, I. Kanter, and W. Kinzel, “Secure
key-exchange protocol with an absence of injective func-
tions,” Physical Review E, vol. 66, no. 6, Article ID 066102,
2002.

[7] M. Rosen-Zvi, E. Klein, I. Kanter, and W. Kinzel, “Mutual
learning in a tree parity machine and its application to
cryptography,” Physical Review E, vol. 66, no. 6, Article ID
066135, 2002.

Table 2: ,e probability of success of a majority attack with
K � 3, N � 1000, and M � 100. (,e value 0.0000 means that the
attack was not successful in the entire 10,000 attack experiments).
Number of vectors L � 10 L � 15 L � 20
n � 1 0.1377 0.0306 0.0050
n � 2 0.0403 0.0007 0.0001
n � 3 0.0019 0.0001 0.0000
n � 4 0.0004 0.0000 0.0000
n � 5 0.0003 0.0000 0.0000

1 2 3
n

4 5

Hebbian
Anti-hebbian
Random walk

0

0.02

0.04

0.06

0.08
PE

0.1

0.12

0.14

Figure 6: ,e probability of success of a majority attack with K� 3,
N� 1000, L� 10, and M� 100 according to the learning rules. We
measured the values of the result with 10,000 repeated experiments.

Security and Communication Networks 11

[8] I. Kanter, W. Kinzel, and E. Kanter, “Secure exchange of
information by synchronization of neural networks,” Euro-
physics Letters (EPL), vol. 57, no. 1, p. 141, 2002.

[9] R. Mislovaty, E. Klein, I. Kanter, and W. Kinzel, “Public
channel cryptography by synchronization of neural networks
and chaotic maps,” Physical Review Letters, vol. 91, no. 11,
Article ID 118701, 2003.

[10] A. Ruttor, W. Kinzel, and I. Kanter, “Dynamics of neural
cryptography,” Physical Review E, vol. 75, no. 5, Article ID
056104, 2007.

[11] A. Ruttor, G. Reents, and W. Kinzel, “Synchronization of
random walks with reflecting boundaries,” Journal of Physics
A: Mathematical and General, vol. 37, no. 36, p. 8609, 2004.

[12] J. Daemen and V. Rijmen, “AES proposal: rijndael,” 1999.
[13] E. F. Schaefer, “A simplified data encryption standard algo-

rithm,” Cryptologia, vol. 20, no. 1, pp. 77–84, 1996.
[14] M. Murase, “Linear feedback shift register,” U.S. Patent NO.

5090035, 1992.
[15] A. Ruttor, W. Kinzel, L. Shacham, and I. Kanter, “Neural

cryptography with feedback,” Physical Review E, vol. 69, no. 4,
Article ID 046110, 2004.

[16] A. Ruttor, W. Kinzel, and I. Kanter, “Neural cryptography
with queries,” Journal of Statistical Mechanics: 9eory and
Experiment, vol. 2005, Article ID P01009, 1 page, 2005.

[17] A. M. Allam and H. M. Abbas, “On the improvement of
neural cryptography using erroneous transmitted information
with error prediction,” IEEE Transactions on Neural Networks,
vol. 21, no. 12, pp. 1915–1924, 2010.

[18] A. M. Allam and H. M. Abbas, “Improved security of neural
cryptography using don’t-trust-my-partner and error pre-
diction,” in Proceedings of the 2009 International Joint Con-
ference on Neural Networks, IEEE, Atlanta, GA, USA, June
2009.

[19] N. Mu, X. Liao, and T. Huang, “Approach to design neural
cryptography: a generalized architecture and a heuristic rule,”
Physical Review E, vol. 87, no. 6, Article ID 062804, 2013.

[20] X. Lei, X. Liao, F. Chen, and T. Huang, “Two-layer tree-
connected feed-forward neural network model for neural
cryptography,” Physical Review E, vol. 87, no. 3, Article ID
032811, 2013.

[21] T. Dong and T. Huang, “Neural cryptography based on
complex-valued neural network,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 11, 2019.

[22] E. ̀. Salguero Dorokhin, W. Fuertes, and E. Lascano, “On the
development of an optimal structure of tree parity machine
for the establishment of a cryptographic key,” Security and
Communication Networks, vol. 2019, Article ID 8214681,
10 pages, 2019.

[23] W. Feller, An Introduction to Probability 9eory and Its
Applications, John Wiley & Sons, Hoboken, NJ, USA, 2008.

[24] S. Santhanalakshmi, K. Sangeeta, and G. K. Patra, “Design of
group key agreement protocol using neural key synchroni-
zation,” Journal of Interdisciplinary Mathematics, vol. 23,
no. 2, pp. 435–451, 2020.

[25] A. M. Allam and H. M. Abbas, “Group key exchange using
neural cryptography with binary trees,” in Proceedings of the
2011 24th Canadian Conference on Electrical and Computer
Engineering (CCECE), IEEE, Ontario, Canada, April 2011.

[26] M. Volkmer, “Entity authentication and authenticated key
exchange with tree parity machines,” IACR Cryptology ePrint
Archive, vol. 112, p. 2006, 2006.

[27] A. M. Allam, H. M. Abbas, and M. Watheq El-Kharashi,
“Authenticated key exchange protocol using neural cryp-
tography with secret boundaries,” in Proceedings of the 9e

2013 International Joint Conference on Neural Networks
(IJCNN)IEEE, Dallas, TX, USA, August 2013.

[28] T. Chen, D. Yan, and S. Bai, “TinyTPM: a novel lightweight
key agreement scheme for sensor networks,” WRI Interna-
tional Conference on Communications andMobile Computing,
vol. 3, 2009.

[29] M. Volkmer and S. Wallner, “Tree parity machine rekeying
architectures,” IEEE Transactions on Computers, vol. 54, no. 4,
pp. 421–427, 2005.

[30] A. Kilmov, A. Mityagin, and A. Shamir, “Analysis of neural
cryptography,” International Conference on the 9eory and
Application of Cryptology and Information Security, Springer,
Berlin, Heidelberg, 2002.

[31] A. Ruttor, W. Kinzel, R. Naeh, and I. Kanter, “Genetic attack
on neural cryptography,” Physical Review E, vol. 73, no. 3,
Article ID 036121, 2006.

[32] L. N. Shacham, E. Klein, R. Mislovaty, I. Kanter, and
W. Kinzel, “Cooperating attackers in neural cryptography,”
Physical Review E, vol. 69, no. 6, Article ID 066137, 2004.

[33] A. Ruttor, “Neural synchronization and cryptography,” 2007,
https://arxiv.org/abs/0711.2411.

[34] E. J. Gumbel, “Les valeurs extrêmes des distributions statis-
tiques,”Annales de l’institut Henri Poincaré, vol. 5, no. 2, 1935.

12 Security and Communication Networks

https://arxiv.org/abs/0711.2411

