Hindawi

Security and Communication Networks
Volume 2021, Article ID 6682674, 9 pages
https://doi.org/10.1155/2021/6682674

Research Article

WILEY

Hindawi

Hardware Trojan Detection Based on Ordered Mixed Feature GEP

Huan Zhang ,12 Jiliu Zhou®,! Dongrui Gao 23 Xinguo Wang ,2 Zhefan Chen,*
and Hongyu Wang (*

College of Computer Science, Sichuan University, Chengdu 610065, China

2School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
JCenter for Information in Biomedicine, School of Life Sciences and Technology, University of Electronic
Science and Technology of China, Chengdu 611731, China

*Faculty of Science, Simon Fraser University, Burnaby V5A 186, Canada

Correspondence should be addressed to Jiliu Zhou; zhoujl@cuit.edu.cn
Received 28 December 2020; Revised 24 January 2021; Accepted 21 February 2021; Published 18 March 2021
Academic Editor: Liguo Zhang

Copyright © 2021 Huan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the hardware Trojan detection field, destructive reverse engineering and bypass detection are both important methods. This
paper proposed an evolutionary algorithm called Ordered Mixed Feature GEP (OMF-GEP), trying to restore the circuit structure
only by using the bypass information. This algorithm was developed from the basic GEP through three sets of experiments at
different stages. To solve the problem, this paper transformed the GEP by introducing mixed features, ordered genes, and

superchromosomes. And the experiment results show that the algorithm is effective.

1. Introduction

At all stages of the life cycle of integrated circuits (IC), there
are security vulnerabilities for hardware in the global
business model of semiconductor supply chain. In the
current hardware Trojan detection technology, destructive
reverse engineering [1-3] is good but costly bypass detection
[4-9] is the technology whose cost is low, which is a de-
velopment key direction at present.

An evolutionary algorithm called Ordered Mixed Fea-
ture GEP (OMF-GEP) is proposed in this paper. This al-
gorithm takes a single-circuit component as a node to form a
mixed feature of various logical or physical features of the
node. And it can find the original circuit by using the GEP
function regression ability.

2. Mixed Features

The logic value of a circuit or any kind of bypass information
such as voltage and current can be considered as a mani-
festation of a characteristic of the circuit. When only one
characteristic representation value is used to represent the
circuit, if other constraints are not added, there will

undoubtedly be a variety of circuits to meet the requirements
of this single feature. The two circuits are shown in Figure 1.

If you look only at the logical values, the two circuits are
completely equivalent, and both of which are

Y =CD. (1)

You can also see that in the circuit in Figure 1(b), inputs
A and B are used at all; that not, the input s A and B in the
first circuit do not actually affect the output.

This example is only the value of the circuit logic value
and the circuit bypass information detection, and there is a
similar situation. Multiple different circuit structures can be
obtained for the detection results of any single bypass in-
formation. It can be seen that only using logical values or
bypass information to describe the circuit will lead to too
much isomorphism to confirm the circuit structure.

The essence of hardware Trojan horse design is to add
additional circuit to normal circuits, but the performance of
the whole circuit on some features (the most common is the
logic value) is the same as that of the normal circuit, to
realize hiding. However, this additional circuit will inevi-
tably cause other circuit features to change.

mailto:zhoujl@cuit.edu.cn
https://orcid.org/0000-0003-4941-3167
https://orcid.org/0000-0001-6864-9509
https://orcid.org/0000-0002-2023-0765
https://orcid.org/0000-0002-2579-6805
https://orcid.org/0000-0002-3187-1939
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6682674

Security and Communication Networks

A o— C
Brt._?pg%g Y
C
D o——— Y

(a) (b)

FIGURE 1: Two circuits with the same logical value.

In this paper, the logic value of the circuit or any kind of
bypass information such as voltage and current is called a
feature. For the isomorphism of a feature, it is essentially due
to the superposition of the features of the circuit elements on
the feature. The features of multiple different circuit
structures with the feature are similar or even the same, so
that the corresponding circuit cannot be represented by the
result of a feature.

Then, when detecting multiple features at the same time,
multiple isomorphic circuits can be obtained from the de-
tection results of each feature, but the superposition features
of different features cannot be exactly the same. These
isomorphic circuits cannot be the same, where the same part
is a possible real circuit.

Figure 2 illustrates the application of the algorithm to a
diode-designed And gated circuit.

Its logical meaning is

Y=A-B.)

It has a lot of physical meaning. Here is description of its
voltage:

V, =min(V,, Vi) + V. (3)

Among them, V, represents voltage of the output po-

sition Y; V 4 and V represent the voltage values of two input

(YY) = G((xl,l’xl,Z’ e

Among them, y; (i = 1,...k) is the output values for the
adoption of the kth feature. x;;(i=1,....,k,j=1,...n) is
the ith input value for the adoption of the feature j.

Without losing generality, let us define

Y =¥y vl
X; = [xl)l-,xzyi, e Xy T, i=12,...,k (6)
X =[X}, Xps o os Xi].
Then, Expression 1 can be expressed as
Vi =G (Xpui)s (7)

which is Expression 2.

b} xl)n)a (-xz,l’ xz)z, oo

o Vee

D1
[
Ao < oY A —|
Y
B —|
D2
so—]
o o

FIGURE 2: And gate circuits.

locations A and B; Vg, represents the diode conduction
voltage for silicon tubes, and its value is often 0.7.
Then, the And gate can be expressed as

(ylogic’ yv) = Gand(xl,logio xz,logic’ X1y xz,v)' (4)

Then, a measurement of k features, »n input, and single-
output single-gate circuit can be expressed as Expression 1:

’xk,n))' (5)

,xz)n), ey (xk’l, xk’z, e

3. Algorithm 1: Single-Output Circuit

3.1. GEP Representation. In recent years, there have been
many studies based on evolutionary algorithms and mul-
tisource data such as data fusion of adaptive weighted
multisource sensor [10], the research on evolutionary al-
gorithm for symbolic network [11], the application of the
genetic algorithm in multiobjective multicast routing [12],
and multiplicity problems in genetic association studies [13].
Zhi and Liu [14] proposed a new GA algorithm for me-
chanical design optimization problems. These studies gave
us the inspiration to use the evolutionary algorithms in the
hardware Trojan detection.

Security and Communication Networks

Gene expression programming (GEP) [15] is an evo-
lutionary computing algorithm that has performed well in
the study of evolutionary hardware [16-22]. It can solve the
problem of tree structure very well. For the multi-input/
single-output tree structure circuit, it can be described as a
tree with n leaf nodes, which can be represented directly by
GEP. As shown in Figure 3, the 6-input/l-output logic
circuit can be easily represented as a tree structure, in which
the logic gate function is replaced by the logic symbol, and
the corresponding effective gene is

And, And, And, A, Not, And, And, B,C,Not, E,F,D. (8)

3.2. Algorithm of Mixed Feature GEP. One operator in GEP
represents only one kind of calculation, and a GEP indi-
vidual can only represent one test item, so the idea of al-
gorithm one is to merge the multiple test results of a basic

circuit into a function expression. Combined into a com-
pound function, that is, let a function represent multiple
calculations and evolve a representation close to the original
circuit. Specifically, these multiple detection values are in-
cluded in a function, the input of the function is multiple
values, and the output result is a vector, such as the
aforementioned gate circuit, which is still represented as
“And” in the GEP expression tree. However, its meaning has
become the following vector calculation:

And(A}, A,,... A,) =[F,(A), F,(4y), ..., F,(4,)].
9)
The A, = (k =1,...n) is the input value of a detection,
and F; (Ay) (k = 1,...n) is the result of this detection A, to
the input value.

For example, for this gate circuit, the symbol And means
the following:

And((Ls, Lg), (V45 V), (C4,Cp)) = [LyLp, min(V 4, Vi) + Vi, Cq + Cg. (10)

Among them, L, Ly represent the logical value (1 or 0)
of voltage input of the A or B point, V 4,V represent the
input voltage of the A or B point, and C4, Cy represent the
input current of the A or B point.

Thus, when using GEP evolution, a symbolic value
can simultaneously represent multiple unrelated items.
This algorithm will be called Mixed Feature GEP (MF-
GEP).

3.3. Experiment Setup. The experiment is limited to the use
of simple logic gate circuits, does not involve triggers, clocks,
etc., and does not consider time effects.

Four groups of experiments were designed.

Output m =1,

The number of features are k = 1,2,2, 3.

Three features are used: feature 1 is the logical value,
feature 2 is the voltage value, and feature 3 is the current
value.

As a comparative experiment, the parameters used are
identical as Table 1 shows.

3.4. Design of Fitness Function. The feature data are logic
data, voltage data, and current data, which have their own
fitness.

Logical data fitness is

N
Froge = 1_21’:1'})\/;)’|) (11)
which is Expression 3.

N is the number of test data, y; is the logic value cal-
culated according to the test data after decoding, and y is the
output logic value of the test data. Because it is a logical
value, the worst case is that each output decoded by the

individual is opposite to the test value, that s, |y; — y| = 1, so
Flogic is among the range of [0,1].
Voltage data fitness is

:1_M

(12)
vl (Vee = Vop)

>

which is Expression 4.

N is the number of test data, y; is the voltage value
calculated according to the test data after decoding, and y is
the output voltage value of the test data. At worst, each test
output value is either the highest level or the lowest level, and
each output decoded by the individual is opposite to the test
value |y; — y| = Ve — Vpp; therefore, F, is among the
range of [0, 1].

Current data fitness is

SSE
=1-—— (13)

F, = ,
SST

which is Expression 5.
Among them,

SSE = Z (i - 5’1’)2’

i=1

SST = Z ()’i - 71’)2’

i=1

(14)

where y; is the data observation, y; is the estimate value of
the y; which is calculated from the decoding expression, and
7y, is the average value of the variable y. That is, the SSE is the
Sum of Squared Errors and the SST is the Sum of Squares in
Total. F, the square of the multicorrelation coefficient in
statistics.

4 Security and Communication Networks

A o—

B

Co

D

E

F

D
(@ ()
FIGURE 3: A single-output circuit and its expression tree.
TaBLE 1: Parameter settings for experiment 1. Ao Y
Parameter Value B o
Stop Fitness=1
Selection mode Tournament, size =3 C
Population size 10000
Head length 20 D
Tail length 21
Chromosome length 1 E . A circuit with a Troi
Mutation rate 0.05 IGURE 4: A circuit with a Trojan.
Insert rate 0.1
ROOOt m.se? rate . 06011 data will not provide the (0111) value to trigger the Trojan,
NE-poIt Cross rate ’ and the output of the input value will be determined by the
Two-point cross rate 0.1 S
I evolved circuit.
nput number 4 . .

Output number 1 Its effective gene is
Function set Not, and, or

According to the previous algorithm description, the
individual fitness should be a combination of the three; then,
the individual fitness is

F:CI'Flogic+c2'Fvol+C3'Fcir’ (zckzl)) (15)

which is Expression 6: individual fitness expression.
C,,C,, C; are the weight of three features in the final
fitness.

3.5. Experiment. Figure 4 shows a circuit. Its Boolean ex-
pression is

Y = A+ BCD' + BC'D. (16)

Its calculation is
{ 0, (ABCD)<(0101),0or (ABCD) = (0111),.

1, else.
(17)
The input value (ABCD) = (0111), can be seen as the
Trojan trigger conditions. When there are more pins, only
part of the value can be tested, and you may miss the input
(ABCD) = (0111),. In the following experiment, the input

Or, A, Or, And, And, B, And, B, And, Not, D, C, Not, C, D.
(18)

Using different combination forms, we designed 4
groups of experiments. Considering that the logic value is
required to be correct first in the circuit, the voltage value
and the current value must be meaningful on the basis of the
correct logic value, so the logic value is included in each
group of experiments, and the fitness of the individual
combines several data; the logical value accounts for a larger
proportion. Table 2 shows the results of the experiments.

The experimental results show the following:

(1) Only using a single feature cannot find Trojan circuit.

(2) Using multiple features can effectively discover
Trojan circuits.

(3) The features with direct correlation have no effect on
the discovery probability of Trojan horse: in ex-
periment 2, two features of logic value and voltage
are used at the same time, and the Trojan horse
cannot be found; in experiment 4, although three
features are used, the probability of finding Trojan
horse is not higher than that of real 3. The reason is
that in digital circuits, the logical value itself is
expressed by the voltage value; for example, the
voltage value less than 3V is considered 0, and the

Security and Communication Networks

TaBLE 2: Comparison of results of 4 groups in experiment 1.

Parameter Expl1Value Exp2Value

Exp3Value Exp4Value

Logic gate And, or, not

Values provided Logic values

And, or, not
Logic values

Voltage values

And, or, not
Logic values
Voltage values
Current values

And, or, not
Logic values

Current values

Fitness function F=F, F=08-F +02-F, F=08-F +02-F, F=06-F +02-F,+02-F,
Exercise count 100
Trojan discovered count 0 0 72 67

voltage value greater than 3V is considered 1.
Therefore, there is no difference between the logic
value and voltage value.

4. Algorithm 2: Multioutput Circuit

4.1. GEP Representation. One circuit n input/m output can
be described as a forest composed of m trees, each with 1~n
leaf nodes. The 6-input/2-output circuit in Figure 5 can be
decomposed into two tree structured multi-input/single-
output circuits.

The circuits shown in Figure 6 can be divided into two
independent multi-input/single-output.

The corresponding effective genes are

And, And, And, A, Not, And, And, B, C,Not, E,F,D. (19)

Or, And, And, And, And, And, F,C,Not, E,F,E,F,D. (20)

The combination of the two genes represents a 6-input/
2-output circuit.

4.2. Algorithm of Ordered Mixed Feature GEP. The GEP
should be modified as the following to be able to represent
this kind of circuit.

4.2.1. Remove the Link Function and Number the Gene.
The GEP data structure has its own multigene structure. In
formula mining, the basic idea of GEP is to use a polynomial
approximation method, so that each independent gene can
evolve a part of the final polynomial and then use a con-
nection function (usually “+”) to form a complete poly-
nomial. Of course, if the test data are error-free and the cost
is sufficient, GEP final expression does not need to be ap-
proximated, and it is the expression from which the test data
themself come.

The operator such as “+” has a characteristic that there is
no sequential difference between the operators. If such an
operator is used, it can be considered that there is no se-
quential difference between the genes in GEP chromosome.

We can also see that GEP can solve a problem similar to
y = f(x},%,,...,x,) function problem; that is, it can deal with
the problem of multi-input and single-output. However, circuit
combinations are often a multi-input/multi-output problem,
that is, a problemas (¥, ¥5, ... ¥,,) = f (%1, %5, ..., x,). This
is a situation GEP cannot handle by its own algorithm.

.

EO—_:[>__

F o———

—>

D —{O—
FIGURE 5: A 6-input/2-output circuit.

For solving the multioutput situation of combinational
circuits, the GEP data structure is changed as follows:

(1) The connection function used to connect GEP to
multiple genes is removed, so that a gene represents
an output, and there is no association between genes;
then, a chromosome with k genes represents a circuit
with k outputs.

(2) According to the position number of the gene in the
chromosome and the position of the gene in the
chromosome, the corresponding output pin is rep-
resented; that is, the input value in the GEP is the test
value of each input pin. The decoding result repre-
sents the circuit structure of an output pin. Each gene
within a chromosome evolves independently.

4.2.2. Record the Fitness of Each Gene. The fitness is set for
each individual in the GEP, which is the basis for the cal-
culation of various evolutionary variations. The fitness
represents the approximate degree of the target on the whole
of an individual. This fitness is calculated based on the
expression tree decoded by an individual.

In the work of this paper, because each gene in an indi-
vidual is independent of each other, the whole individual
decodes not an expression tree, but an expression forest, and
the trees in this forest are still orderly. The fitness of an in-
dividual depends on each gene. To solve this problem, the
fitness is set for each gene of the individual in the work of this
paper. The fitness represents the similarity of the gene to the
circuit structure of the corresponding pin. Combined with the
fitness of all genes, an individual’s fitness is formed, indicating
the approximation of the individual to the whole circuit
structure. Therefore, this paper not only sets the fitness for each
individual but also sets the fitness for each gene.

Security and Communication Networks

— —
—1

FIGURE 6: Two circuits divided by the circuit shown in Figure 5.

4.3. Materials and Methods. The relationship between
chromosome fitness and gene fitness can be described as

fitness (chromosome) = (21)

(3 Fitness (gene)n)

n b

which is Expression 7: individual fitness of multigene GEP.

This algorithm is Ordered Mixed Feature GEP (OMEF-
GEP).

4.4. Experiment Setup. The setting of experiment 2 is most
consistent with that of experiment 1. The difference is that
the number of genes is increased to 2, corresponding to the
operation of gene recombination (the probability is 0.01),
and the termination condition of the algorithm is changed to
100,000 times.

The fitness of each gene is calculated in the same way as
experiment 1. Expression 5 is used to calculate the fitness of
the whole chromosome, in which # is 2.

4.5. Experiment. Use the circuit of Figure 5. In this circuit,
Boolean expression is

X = AB'CD'EF,Y = EF. (22)

Among them,

{ 1, (ABCDEF)<(101011),,

(23)

0, else.

During the experiment, we deliberately hide the test
cases that allow X to take a value of 1. The setup of the 4
groups of experiments is completely consistent with that of
experiment 1. Table 3 shows the results.

It can be seen from the experimental results that no
matter what combination of features is used, after evolution
begins, the fitness cannot continue to grow after reaching a
very low value, and evolution has actually stopped. The
overall trend is shown in Figure 7.

5. Algorithm 3: Superchromosome

In experiment 2, it is impossible to evolve continuously when
the fitness is not high in the early stage of evolution. By an-
alyzing the reasons, the fitness of the individual represents the
approximate degree of the individual to the whole circuit, but
in the design of the modified algorithm, each gene evolves

alone. That is, the approximation of the circuit is divided into
different parts. In the process of evolutionary calculation, such
individuals will be considered poor individuals, with less
chance of heredity in the next evolution, resulting in the loss of
local genes already leading in evolution. This situation will lead
to the efficiency of the algorithm evolution being very inefhi-
cient, or even unable to converge, because the evolution has
entered a situation of almost random evolution.

5.1. Algorithm Description. To solve this situation, this
paper introduces the concept of “superchromosome” in its
work. Each individual in the population is obtained by
genetic variation after initialization, but the superindi-
vidual is artificially constructed. Using the fitness of each
gene that has been recorded, a superindividual is con-
structed after an evolution. The method is that the
structure of the superindividual and the ordinary chro-
mosome is the same, but the gene at each position is the
best one in the same position in the whole population, as
shown below. In this way, the superindividual concen-
trates the last evolutionary optimal gene at each gene
location, and there is no doubt that the superindividual is
the optimal individual in the population. Then, replacing
the worst individuals in the population with such
superchromosome to continue the later evolution can
effectively avoid the elimination of local excellent genes.
Figure 8 shows how to compose the superchromosome.

The introduction of the superchromosome was intended to
avoid the elimination of excellent genes in the same individual
due to the existence of “low quality” genes, but it brought an
additional benefit. Evolutionary individual fitness changes can
often reach a high level soon after evolution, as Figure 9 shows.
The reason is that the superindividual concentrates the optimal
genes in each gene position, so that the whole individual can
achieve very high fitness.

5.2. Experimental Setup. The setting of experiment 3 is the
same as that of experiment 2, but it increases the generation of
superindividuals when each generation evolves. The fitness
function designed is exactly as the same as experiment 2.

5.3. Experiment. The content of the experiment is the same
as that of experiment 2. Table 4 shows the results.
The experimental results show the following:

Security and Communication Networks 7

TaBLE 3: Comparison of results of 4 groups in experiment 2.

Parameter ExplValue Exp2Value Exp3Value Exp4Value
Logic gate And, or, not And, or, not And, or, not And, or, not
Logic values Logic values Logic values
Values provided Logic values Voltage values Current values Voltage values
Current values
Gene fitness function F=F, F=08-F +02-F, F=08-F +02-F; F=0.6-F +02-F,+0.2-F;
Chromosome fitness Foprom = (Fgenel * Foene2)/2
Evolution number 100000
Max chrom-fitness 0.42 0.46 0.44 0.44
Max evolution no. when fitness stopped 9 134 112 137

advance

1 -
0.9 4
0.8 A
0.7 A
0.6
0.5 A
0.4
0.3 4
0.2
0.1 4

Fitness

Evolution number

FIGURe 7: The algorithm cannot converge.

Best of gene (m)s

T

Chrom (2) | Gene (1) | Gene (2) |

Chrom (n) | Gene (1) | Gene (2) |

Figure 8: Composition of superchromosome.

Super-chrom Best of gene (1)s Bestof gene (2)s | ...

1

Chrom (1) | Gene (1) | Gene (2) |

1 -
0.9 4
0.8 4
0.7 4
0.6 4
0.5 4
0.4 4
0.3
0.2 4
0.1 4

Fitness

0+

Evolution number

FIGURE 9: Superchromosome makes the fitness rise rapidly.

8 Security and Communication Networks
TaBLE 4: Comparison of results of 4 groups in experiment 3.

Parameter ExplValue Exp2Value Exp3Value Exp4Value

Logic gate And, or, not And, or, not And, or, not And, or, not

Values provided Logic values

Logic values

Voltage values

Logic values
Voltage values
Current values

Logic values

Current values

Gene fitness function F=F, F=08F +02F, F=08F +02F; F=0.6F +02F,+02F,
Chromosome fitness Fiprom = (Fgenet + Fgene2)/2
Evolution number 100000
Max chrom-fitness 0.72 0.76 0.94 0.87
Max evolution no. when fitness stopped advance 324 276 809 1365
(1) After using superindividuals, the evolution can reach References

a very high level in a very short time, and then the
speed of evolution will be significantly reduced.

(2) Using only a single feature or feature with direct
correlation, the algorithm is difficult to obtain sat-
isfactory fitness, and the reason has been analyzed in
the results of experimental 1.

(3) The use of multiple features that lack direct corre-
lation between each other helps to achieve higher
fitness.

6. Conclusion

GEP algorithm based on the mixed features is proposed in
this paper, when multiple features with no direct corre-
lation between each other are used, even if some im-
portant parameters are missing in the test case, and the
abnormal structure in the circuit can be found. For
multioutput circuits, if it only simply decomposed into
multiple single-output circuits to evolve separately, the
algorithm will fall into a complete random search and
cannot converge. In this paper, the concept of superin-
dividual is proposed to solve this problem, so that the
algorithm can converge smoothly in the circuit structure
facing multi-input.

Data Availability

The data used to support the findings of this study can be
obtained from https://pan.baidu.com/s/1z29JUVHv8Qx4-
uasESnKMw (pwd: 55vd).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the University Research Start-
Up Funds of Chengdu University of Information Tech-
nology (KYTZ201720), the Open Project of Center for In-
formation in Biomedicine of School of Life Sciences and
Technology, University of Electronic Science and Technol-
ogy of China (SYFDO061902K), and Sichuan Science and
Technology Program (2019YFG0196).

[1] F. Courbon, P. Loubet-Moundi, J. J. A. Fournier, and A. Tria,
“SEMBA, a SEM based acquisition technique for fast invasive
hardware Trojan detection,” in Proceedings of the 2015 Eu-
ropean Conference on Circuit Theory and Design (ECCTD),
pp. 1-4, Trondheim, Norway, August 2015.

[2] C.X. Bao, D. Forte, and A. Srivastava, “On the application of
one-class SVM to reverse engineering-based hardware Trojan
detection,” in Proceedings of the 15th International Sympo-
sium on Quality Electronic Design (ISQED), pp. 47-54, Santa
Clara, CA, USA, March 2014.

[3] C. X. Bao, D. Forte, and A. Srivastava, “On reverse engi-
neering-based hardware Trojan detection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 1, pp. 49-57, 2015.

[4] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and

B. Sunar, “Trojan detection using IC fingerprinting,” in

Proceedings of the 2007 IEEE Symposium on Security and

Piracy (SP’07), pp. 296-310, Berkeley, CA, USA, May 2007.

K. Xiao, X. Zhang, and M. Tehranipoor, “A clock sweeping

technique for detecting hardware Trojans impacting circuits

delay,” IEEE Design & Test, vol. 30, no. 2, pp. 26-34, 2013.

[6] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic, “Detecting
Trojans through leakage current analysis using multiple
supply pad Ippqs,” IEEE Transactions on Information Fo-
rensics and Security, vol. 5, no. 4, pp. 893-904, 2010.

[7] A. N. Nowroz, K. Hu, F. Koushanfar, and S. Reda, “Novel
techniques for high-sensitivity hardware Trojan detection
using thermal and power maps,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 33, no. 12, pp. 1792-1805, 2014.

[8] B.Y.Zhou, R. Adato, M. Zangeneh et al,, “Detecting hardware
Trojans using backside optical imaging of embedded water-
marks,” in Proceedings of the 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC’15), pp. 1-6, San
Francisco, CA, USA, June 2015.

[9] J.He, Y. Zhao, X. Guo, and Y. Jin, “Hardware Trojan detection
through chip-free electromagnetic side-channel statistical
analysis,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 10, pp. 2939-2948, 2017.

[10] D. Li, C. Shen, X. Dai et al., “Research on data fusion of

adaptive weighted multi-source sensor,” Computers, Materials

& Continua, vol. 61, no. 3, pp. 1217-1231, 2019.

Y. Jiang, W. Jiang, J. Chen et al., “A new method based on

evolutionary algorithm for symbolic network weak unbal-

ance,” Journal on Internet of Things, vol. 1, no. 2, pp. 41-53,

2019.

[5

(11

https://pan.baidu.com/s/1z29JUVHv8Qx4-uasESnKMw (pwd: 55vd)
https://pan.baidu.com/s/1z29JUVHv8Qx4-uasESnKMw (pwd: 55vd)

Security and Communication Networks

[12] A.Y. Hamed, M. H. Alkinani, and M. R. Hassan, “A genetic
algorithm optimization for multi-objective multicast rout-
ing,” Intelligent Automation ¢ Soft Computing, vol. 26, no. 6,
pp. 1201-1216, 2020.

[13] F.-I. Chou, W.-H. Ho, and C.-H. Chen, “Niche genetic al-
gorithm for solving multiplicity problems in genetic associ-
ation studies,” Intelligent Automation & Soft Computing,
vol. 26, no. 3, pp. 501-512, 2020.

[14] H. Zhi and S. Liua, “A hybrid GABC-GA algorithm for
mechanical design optimization problems,” Intelligent Au-
tomation and Soft Computing, vol. 25, no. 4, pp. 815-825,
2019.

[15] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” Complex Systems, vol. 13,
no. 2, pp. 87-129, 2001.

[16] T. Higuchi, M. Murakawa, M. Iwata et al., “Evolvable
hardware at function level,” in Proceedings of 1997 IEEE
International Conference on Evolutionary Computation (ICEC
97), pp- 187-192, Indianapolis, IN, USA, April 1997.

[17] T. Higuchi, M. Iwata, I. Kajitani et al., “Evolvable hardware

and its application to pattern recognition and fault-tolerant

systems,” in Towards Evolvable Hardware, pp. 118-135,

Springer, Berlin, Germany, 1996.

V. Vassilev, D. Job, and J. Miller, “Towards the automatic

design of more efficient digital circuits,” in Proceedings of the

2nd NASA/DOD Workshop on Evolvable Hardware,

pp. 151-160, Palo Alto, CA, USA, July 2000.

[19] G. W. Timothy and J. B. Peter, “Towards development in

evolvable hardware,” in Proceedings of the 3rd NASA/DOD

Workshop on Evolvable Hardware Pasadena, pp. 241-250,

Alexandria, VA, USA, July 2002.

M. Erbo, R. Rossi, V. Liberali, and A. G. B. Tettamanzi,

“Digital filter design through simulated evolution,” in Pro-

ceedings of the European Conference on Circuit Theory and

Design, pp. 389-393, Espoo, Finland, August 2001.

[21] H. Hemmi, J. Mizoguchi, and K. Shimohara, “Development

and evolution of hard ware behaviors,” in Proceedings of the

Artificial Life IV, pp. 250-265, Cambridge, MA, USA, July

1994.

B. Hounsell and T. Arslan, “A novel evolvable hardware

framework for the evolution of high performance digital

circuits,” in Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 00), pp. 525-529, Las

Vegas, NV, USA, July 2000.

(18

[20

[22

