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Tag deduplication is an emerging technique to eliminate redundancy in cloud storage, which works by signing integrity tags with a
content-associated key instead of user-associated secret key. To achieve public auditability in this scenario, the linkage between
cloud users and their integrity tags is firstly re-established in current solutions, which provides a potential side channel to
malicious third-party auditor to steal the existence privacy of a certain target file. Such kind of attack, which is also possible among
classic public auditing schemes, still cannot be well resisted and is now becoming a big obstacle in using this technique. In this
paper, we propose a secure aggregation-based tag deduplication scheme (ATDS), which takes the lead to consider resistance
against side channel attack during the process of public verification. To deal with this problem, we define a user-associated
integrity tag based on the defined content-associated polynomial and devise a Lagrangian interpolation-based aggregation strategy
to achieve tag deduplication. With the help of this technique, content-associated public key is able to be utilized instead of a user-
associated one to achieve auditing. Once the verification is passed, the TPA is just only able to make sure that the verified data are
correctly corresponding to at least a group of users in cloud storage, rather than determining specific owners.(e security analysis
and experiment results show that the proposed scheme is able to resist side channel attack and is more efficient compared with the
state of the art.

1. Introduction

With the rapid development of cloud storage, efficiency has
gradually become an important issue since growing amount
of redundant data are generated and outsourced to cloud in
the big data era. Considering the privacy, most of them are
encrypted before outsourcing, which brings a huge challenge
to cloud data deduplication. To achieve ciphertext dedu-
plication, convergent encryption (CE) [1] is proposed as an
effective manner. It works by encrypting data with a content-
associated key, such as hash value of the plaintext, to ensure
that the same plaintext corresponds to the identical ci-
phertext. However, taking the requirement of integrity audit
into account in this scenario, deduplication of verification
tags which are generated using user-associated signing key
remains a big challenge.

Motivated by convergent encryption, in order to achieve
tag deduplication, content-associated key could be used

instead of user-associated signing key in the process of tag
generation. In this way, ciphertext chunks with the same
content, nomatter signed by which owner, correspond to the
same tag. However, this naı̈ve solutionmay break the linkage
between tags and its owners during the process of integrity
auditing performed by the third party auditor (TPA) [2]. In
order to enable the public auditability for cloud data, users
have to generate their public keys and leave them to the TPA
for bilinear pairing-based verification, which makes the
aforementioned solution infeasible since in this case veri-
fication tags should still be signed by secret keys of users.
Moreover, such kind of public verification actually creates a
side channel for TPA, which is able to steal data existence
privacy of a specific user according to the result of integrity
auditing.

In the literature, the existing work for tag deduplication
relies on proxy re-signature technique to establish the linkage
between data owners and their tags during the auditing
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process [2]. In [2], verification tags are able to be deduplicated
in cloud storage since universal content-associated key is
utilized in the process of tag generation instead of user-as-
sociated signing key. To keep the linkage of users and their
tags during the process of integrity auditing, the verification
tag is transformed to the one signed by user-associated key
using the re-signature key generated by the data owner before
integrity verification is performed by the TPA. However, re-
signature keys still bring about a huge amount of storage and
management overhead to the CSP. And the possible side
channel attack launched by the TPA is not considered. As a
potential way to achieve secure deduplication, in [3], a
threshold tag aggregation scheme is proposed. In their design,
verification tags are firstly generated with the defined user-
associated key and then aggregated into a uniform one with
the help of Lagrangian interpolation [4] if the number reaches
a certain threshold. According to their scheme, the verifi-
cation is performed utilizing aggregated public key. (us,
even though TPA knows existence of the verified data
according to the verification result, it still cannot determine
the ownership since the data have already been a popular one.
(is work is able to achieve tag deduplication and side
channel attack resistance simultaneously. However, to facil-
itate signature aggregation and public key generation, specific
parameters need to be transmitted among a constant group of
users, and thus, it does not work for the open deduplication
system.

(erefore, in this paper, we are going to tackle how to
enable an efficient tag deduplication scheme in an open
cloud storage system with security guaranteed. To the best of
our knowledge, ATDS is the first threshold tag deduplication
scheme that allows resistance to side channel attack. With
the same level of security guaranteed, our scheme surpasses
existing ones in feasibility during the process of dedupli-
cation. Specifically, we utilize the technique of Lagrangian
interpolation, which requires every one of the cloud users to
generate a verification tag for their data chunk based on the
newly defined secret key which is associated with both
content and unique index of the user before outsourcing to
cloud storage.With the help of Lagrangian interpolation, the
CSP is able to aggregate any group of tags for identical data
chunk once the number involved reaches the threshold
value, which in turn makes threshold deduplication for
verification tags in an open deduplication system possible.
Moreover, to resist side channel attack during the integrity
auditing process, we use content-associated public key in-
stead of user-associated one to achieve auditing. Once the
verification is passed, the TPA is just only able to make sure
that the verified data are correctly corresponding to at least a
group of users in cloud storage, rather than determining
specific owners. In addition, we also provide an integrity
checking mechanism for data owners once the number of
tags in cloud storage does not reach the threshold value. (e
main contributions for this paper are summarized as follows:

(1) We put forward a side channel attack-resistant
public auditing framework based on aggregation
strategy with tag deduplication supported. Under the
proposed framework, for a certain data chunk, tags

generated by different owners can be aggregated into
a uniform one, which makes deduplication possible.
In terms of security, side channel attack launched by
the TPA is able to be resisted since public auditability
is achieved by utilizing the content-associated public
key instead of user-associated one.

(2) Next, we focus on designing an aggregation scheme
for tags under the proposed framework. Specifically,
we devise a novel secret key for users with the help of
the defined polynomial and present a Lagrangian
interpolation-based scheme to aggregate tags for
identical chunk once the number reaches a pre-
defined threshold value. Moreover, a corresponding
content-associated public key, which is only able to
be generated by data owners, is defined to achieve
public auditability.

(3) We perform security analysis for the proposed
scheme and take experiments to evaluate the per-
formance. Both theoretical and experimental results
show that the proposed scheme is able to resist side
channel attack launched by the TPA, with just only
limited overhead required.

2. Related Work

As an effective way to check the correctness of data in cloud
storage, integrity auditing [5, 6] has already attracted a lot of
attention from a growing number of researchers. Ateniese
et al. [5] proposed the first integrity auditing scheme defined
as “provable data possession (PDP).” In their scheme, RSA-
based homomorphic tags are generated for each one of the
data chunks at first and then outsourced to the cloud to
relieve local storage of the data owner, which can be used to
check the correctness of corresponding chunks in cloud
storage. However, due to the property of RSA signature, the
length of a tag in this scheme is at least 1024 bits long
considering the security, which occupies a large amount of
cloud storage. Moreover, once the verifier is a third-party
entity, the privacy of data would be leaked during the process
of auditing. As an improvement, BLS signature [7] is
employed instead of RSA signature to restrict the length of
integrity tags to 160 bits. Based on this work, Wang et al. [6]
proposed the first privacy-preserving public auditing scheme
for secure cloud storage. In their design, once a verifier wants
to check the correctness of the corresponding chunks, it
generates a challenge and receives a proof returned from the
CSP, which consists of combined chunks masked with
randomness, and aggregated homomorphic verifiable tags.
From the received proof, the TPA is no longer able to derive
the content of challenged chunks; thus, data privacy is
considered to be protected. As a follow-up work, Wang et al.
[8] extended the classic PDPmodel to support verification of
dynamic updates to the stored data by presenting a Merkle
hash tree- (MHT-) based construction. Tian et al. [9] im-
proved the scheme by presenting a new data structure
named dynamic hash table, which is maintained by the TPA
to achieve efficient data dynamic verification. Moreover,
Yang et al. [10] considered this problem in the scenario of
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multiple owners. Zhu et al. [11] extended provable data
possession to multicloud storage. And Shen et al. [12] de-
veloped the similar scheme to achieve verification taking
data sharing into account. However, the schemes introduced
above only focused on the problem of data verification in
cloud storage, rather than the storage efficiency. For integrity
tags, even though they correspond to the same chunk, they
cannot be simply deduplicated since they are actually signed
by secret keys of different owners, respectively. Moreover,
according to the principle of integrity verification intro-
duced above, the process of public verification actually
creates a side channel for TPA to steal data existence privacy
of a specific user according to the result of integrity auditing,
which is a big security threat that has not been resolved until
now. Once the returned proof is verified to be correct based
on the public key of a user, the TPA is able to infer that the
user is the owner of challenged data instantly.

(e two problemsmentioned above suffer from the same
dilemma as ciphertext deduplication as well as its corre-
sponding side channel attack resistance strategy, which have
been well studied in recent years. For either integrity tags or
ciphertext chunks, even though they correspond to the same
plaintext chunk, their content may be divergent since they
are signed or encrypted with different keys. To achieve ci-
phertext deduplication, Douceur et al. [1] proposed a novel
convergent encryption (CE) scheme, which is able to encrypt
data in a deterministic way, thus ensuring users with the
same plaintext to generate the identical ciphertext. A
straightforward way to realize CE scheme is to employ hash
value as the encryption key. (us, every one of the data
owners could easily work out the convergent encryption key.
A lot of successive works [13–17] focused on how to resist
possible side channel attack in this scenario. Among them,
some works [14, 18] relied on an independent key server
(KS) to introduce randomness into the generation of con-
vergent key, where inefficient interactive blind signature
protocol is usually needed. To improve efficiency, Liu et al.
[13], Yu et al. [19], and Tang et al. [20] eliminated the need of
KS and achieved the same level of security meanwhile. Even
though randomness is introduced, these works are still
confronted with side channel attack since attackers are
completely able to forge legal identities to acquire such
randomness, such as by launching Sybil attack.

As another way to deal with side channel attack, Harnik
et al. [16] proposed a threshold deduplication scheme. It
works by setting a random threshold value for every file and
performing cloud side deduplication only if the number of
replicas corresponding to the same file reaches the value.
However, the scheme is designed for unencrypted file, and it
relies on an independent server to keep and maintain
threshold values for different files, which suffers from the
problem of single point failure. As an improvement, Stanek
et al. [17] developed the work to ensure the security of ci-
phertext deduplication. Specifically, they presented a novel
framework, in which deduplication is triggered only when
the corresponding file has already been a popular one; thus,
there is no risk of privacy leakage. As a follow-up work,
Zhang et al. [15] resorted to the k-anonymity technique to
achieve a concrete deduplication strategy. In their design,

the cloud user firstly generates a convergent ciphertext based
on CE scheme. (en, it re-encrypts the ciphertext to obtain
identity-associated convergent ciphertext, which is out-
sourced to the cloud storage together with auxiliary infor-
mation for further verification. Once the number of
ciphertext replicas for a certain file in cloud storage reaches
k, convergent ciphertext is recovered instantly to trigger
cloud side deduplication.

Such design provides a potential effective means to solve
the similar problem in tag deduplication. Liu et al. [2]
proposed the principle of tag deduplication, which is mo-
tivated by convergent encryption in ciphertext deduplica-
tion. In their design, integrity tags for data chunks are
generated based on convergent key, which can be obtained
by calculating the hash value of corresponding chunks.
However, just only deduplication of integrity tags is not
enough since during the process of integrity verification, the
linkage between users and their tags must be established. To
solve this problem, they employed the proxy re-signature
technique to transform the signature of tags in cloud storage
before proof generation, which in turn still suffers from side
channel attack during the process of public verification. As a
follow-up work, Huang et al. [3] presented a threshold
aggregation scheme for integrity tags. In order to achieve
aggregation, they replaced convergent encryption key with
the cumulative values of user-associated random polyno-
mials in the process of tag generation. As a result, the defined
tags corresponding to the same chunk could be aggregated
by employing Lagrangian interpolation once its number
reaches the predefined threshold value t; thus, successive
deduplication is enabled. Such design is similar to threshold
deduplication of ciphertext, which is able to keep the linkage
of verified tags and its owners to some extent. Even though
the aggregated tag is verified to be correct during the process
of public verification, TPA still cannot determine ownership
of the corresponding file since it has been a popular one;
thus, side channel attack is successively resisted. However,
the design is not suitable for open deduplication system
since parameters transmission among a fixed group of users
is always necessary during the process of signature key
generation for each user.

3. System Description and Design Goals

3.1. System Model. We consider a cloud storage system
consists of three entities: cloud user, cloud service provider
(CSP), and third-party auditor (TPA). Considering the
existence of requested data during the process of dedupli-
cation checking, and whether tag aggregation has been
triggered by the CSP, the system model is divided into three
cases, as illustrated in Figures 1(a), 1(b), and 1(c),
respectively.

(e cloud user is an entity who has large amounts of data
to be outsourced to the cloud for storage. In order to protect
the privacy, it usually encrypts data before outsourcing.
Considering the communication and cloud-side storage
efficiency, the user first checks existence of the target data.
According to the checking result, it determines whether to
perform a complete upload, as is shown in Figures 1(a) and
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1(b), respectively. Specifically, when UID is exposed, the
adversary could then calculate the user-associated secret key,
which is able to be utilized to check the user-associated proof
returned from the CSP. (erefore, secondary tags are
necessary to deal with such a potential side channel attack. If
the uploaded data are unique, the cloud user has to upload
complete data, including ciphertext chunks, auxiliary in-
formation, integrity tags, and secondary tags as well. Oth-
erwise, once the data are already existed in cloud storage, the
user only needs to outsource integrity tags for proof of
ownership (POW) verification and secondary tags for pri-
vate verification. Specifically, if the number of corresponding
tags in cloud storage does not reach the predefined threshold
value, the user has to upload integrity tags and secondary
tags for each one of the ciphertext chunks. Otherwise, as is
shown in Figure 1(c), once the threshold value has been
reached, there is no need to upload secondary tags, and the
user only needs to outsource an aggregated verification tag
for the target file, which is utilized in proof of ownership and
then deleted from the storage. (e difference is that once the
ownership is proved in this case, tags are deleted instantly to
achieve tag deduplication. However, in former cases,
qualified integrity tags are stored in the cloud storage to
participate in subsequent tag aggregation.

CSP is an entity who manages a great amount of cloud
servers to provide significant storage space and computation
resources. Once it receives a deduplication request from a
cloud user, it searches for the requested data in local storage
and queries whether tags have been aggregated before

generating a deduplication response. It is worth mentioning
that the CSP maintains a tag counter for each one of the
ciphertext chunks. Once the number of integrity tags of each
chunk reaches the predefined threshold value, they are
aggregated instantly before being deleted from the cloud
storage. As is shown in Figures 1(a) and 1(b), if tag ag-
gregation is not triggered, the cloud user has to check the
integrity of his/her data by interacting with the CSP. Oth-
erwise, it is able to delegate the auditing task to a third-party
auditor, as is shown in Figure 1(c). During the checking
process, the CSP is obligated to generate a proof based on the
challenge received.

TPA is an entity who has expertise and capabilities to
help users check the integrity of their data stored in the CSP.
According to our design, integrity auditing is only appointed
to the TPA once tags in the CSP have been aggregated.
Together with auditing delegation, the cloud user has to
outsource a corresponding content-associated public key for
the specific file to the TPA simultaneously, which is utilized
in subsequent integrity verification. Finally, TPA returns the
verification result to the user as response.

3.2. ,reat Model. According to the system model intro-
duced above, data confidentiality and integrity are most
essential security requirements for the scenario of data
outsourcing. Under public auditing, our primary security
goal is to protect the existence privacy of data. We consider
both inside and outside adversaries in the threat model. (e
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Figure 1: System model of cloud storage service: (a) the process of unique data outsourcing; (b) the process of duplicate data outsourcing
before tag aggregation; (c) integrity auditing after tag aggregation.
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inside one is the CSP, who is curious about the content of
user’s data, even though it provides storage and computation
service for most of the time.More seriously, it may tamper or
corrupt user’s data for its own benefits. (e outside one is an
adversary who is able to establish a side channel to the CSP.
It firstly predicts the content of predictable data in cloud
storage by launching brute-force dictionary attack and then
learns the ownership of predicted data by performing in-
tegrity verification with the public key of corresponding
user. Specifically, the outside adversary may be a malicious
user or the TPAwho is curious about the existence privacy of
a certain cloud user, both of which are in possession of
public key of the target user.

3.3. Design Goals. To enable secure and efficient cloud
storage as well as side channel attack resistant public
auditing under the aforementioned systemmodel and threat
model, the design of our protocol should achieve the fol-
lowing security and performance goals:

(1) Data confidentiality: to ensure the inside adversary
cannot derive the content of plaintext from the data
stored in cloud storage.

(2) Private and public auditability: to ensure the data
owner or his/her delegated TPA to verify the cor-
rectness of his/her data by running the challenge-
response protocol. During the process of verification,
data download is not necessary.

(3) Side channel attack resistance: to ensure the outside
adversary cannot acquire existence privacy for spe-
cific data from a certain cloud user by launching side
channel attack during the process of public verifi-
cation. To achieve such a security goal, the user-
associated public key should be eliminated from the
process of verification.

(4) Lightweight: to allow cloud users to generate veri-
fication information with minimum computation
and communication overhead. And to ensure the
overhead of public verification is also minimized.

4. Proposed Scheme

4.1. Preliminaries

4.1.1. Convergent Encryption. CE [18] is an encryption
scheme to achieve cross-user deduplication of cloud data. It
generates an encryption key based on the content of data and
encrypts the plaintext with the key in the form of symmetric
encryption. A standard CE algorithm contains the following
three basic algorithms.

(1) KeyGen(F, 1λ)⟶ CEK : a deterministic key gen-
eration algorithm takes as input a file F ∈ 0, 1{ }∗ and
a security parameter λ ∈ N. (e algorithm outputs a
convergent key CEK, which is obtained by calcu-
lating CEK←h(F), where h(·) is a cryptographic
hash function.

(2) CEEnc(F, CEK)⟶ C: a deterministic symmetric
encryption algorithm takes as input a file F as well as

the corresponding convergent key CEK and outputs
a ciphertext C, which is independent of the user to
perform encryption.

(3) CEDec(C, CEK)⟶F: a deterministic decryption
algorithm takes as input ciphertext C as well as the
corresponding convergent key CEK and generates
the plaintext F as output.

4.1.2. Bilinear Map. Let G1 and G2 be two multiplicative
cyclic groups of the same prime order p and g be a generator
of group G1. A bilinear map is defined as e: G1 × G1⟶ G2
with the following properties:

(1) Bilinearity: for allg1, g2 ∈ G1 and any a, b ∈ Zp,
e(ga

1 , gb
2) � e(g1, g2)

ab;
(2) Nondegeneracy: e(g, g)≠ 1;
(3) Computability: for every g1, g2 ∈ G1, e(g1, g2) can

be calculated efficiently.

4.1.3. Lagrangian Interpolation. (e basic principle of
Lagrange interpolation is to obtain a certain polynomial
whose curve passes through a set of given points. Suppose
there are k points (x1, y1), (x2, y2), . . . , (xk, yk), each of
which is different from the others. (e Lagrange interpo-
lation polynomial can be defined as L(x) � 􏽐

k
i�1 yi · λi(x),

where λi(x) is the interpolation coefficient, which is
expressed as

λi(x) � 􏽙

k

i�1,i≠j

x − xj

xi − xj

. (1)

4.2. Scheme Overview. (e design of ATDS includes both
efficiency and security considerations. Our protocol supports
deduplication of ciphertext chunks and their integrity tags
simultaneously and is able to resist side channel attacks
launched by the outside adversary during the process of in-
tegrity auditing. Specifically, to achieve tag aggregation, the
CSP has to maintain a threshold value t, together with a
counter for integrity tags in storage. Once the number of
integrity tags for a certain chunk reaches t, tag aggregation is
triggered instantly, followed by deduplication. In our design,
each user is assigned a unique indexUID, which is only known
to the user himself/herself and the CSP. When a cloud user
attempts to outsource ciphertext chunks of file F together with
the corresponding tags, he/she first sends a unique index fid
(usually a hash value of the file) of file F as an uploading request
to the CSP. If the ciphertext of file F has not been uploaded, the
user needs to upload the ciphertext chunks, integrity tags,
secondary tags, as well as the auxiliary information. Otherwise,
it only needs to upload integrity tags, secondary tags for ci-
phertext chunks, or aggregated verification tag for file F
depending on whether tag aggregation has been triggered in
cloud storage. In a word, the CSP only keeps one copy of
ciphertext chunks and auxiliary information for a certain file.

(e overall process is shown in Figure 2. Consider user u1
as the first uploader for the ciphertext of file F. It first derives

Security and Communication Networks 5



the content-associated key CEK from file F, which is utilized as
the encryption key to generate ciphertext C. (en, the user
divides C into n chunks and CEK into t pieces of the same size.
Each one of the pieces is employed as coefficients of the
defined polynomial to generate the user-associated private key
sku1F, which is utilized to generate tags σ1,u1

, σ2,u1
, . . . , σn,u1

􏽮 􏽯

for ciphertext chunks C1, C2, . . . , Cn􏼈 􏼉 of file F. Specifically,
UID1 of user u1 is also combined in the process of key gen-
eration. Moreover, the user also generates a set of secondary
tags {T1,u1

, T2,u1
, . . . , Tn,u1

} with the help of his/her own secret
key, which are utilized in further private verification before tag
aggregation is triggered. In addition, a series of auxiliary in-
formation is also generated correspondingly. Note that to
generate the public content-associated key, only cek1 is needed.
Finally, user u1 uploads his/her ciphertext chunks, integrity
tags, secondary tags, and auxiliary information to CSP.

On receiving the uploaded information from u1, CSP
first needs to verify the correctness of integrity tags to ensure
that only qualified tags would be stored in cloud storage and
participate in the subsequent aggregation. For each one of
these tags, its corresponding counter is also increased by 1.
Similarly, integrity tags uploaded by subsequent users (u2,
u3, . . ., ut) also need to be verified for correctness, and once
the number for a specific tag indicated by the counter
reaches the predefined threshold value t, tag aggregation
would be triggered instantly. In this case, the subsequent
user uk only needs to upload aggregated verification tag for
file F to prove his/her ownership.

According to the procedure described above, we consider
two different situations to achieve integrity auditing. For the

first one, the integrity tags in cloud storage have not been
aggregated. So integrity of the target file is only able to be
verified by the cloud user with the help of secondary tags and
existence privacy would not be exposed to others. For the
second one, the aggregated tag has been generated. In this case,
the task of integrity auditing is delegated to the TPA. Take user
uk, for example, it needs to send the public content-associated
key pku,F to TPA together with integrity auditing delegation,
which is utilized in the following verification to achieve side
channel attack resistance.

4.3. Algorithm Formulation. In this subsection, we provide
the formal definitions of basic algorithms in our con-
struction as follows:

(i) CEKGen (F)⟶(CEK, aux[i]{ }): a deterministic
algorithm is run by a cloud user. It takes as input
file F and outputs a content-associated key CEK as
well as a set of auxiliary information
aux[1], aux[2], . . . ,{ aux[t]},where aux[i] ∈ G1
for i ∈ [1, t]. Specifically, CEK can be further di-
vided into cek1, cek2, . . . , cekt􏼈 􏼉, where ceki ∈ Zp

for i ∈ [1, t].
(ii) Encrypt(F, CEK)⟶ Ci􏼈 􏼉: a deterministic algo-

rithm is run by a cloud user. (e algorithm takes
as input a file F as well as the corresponding
convergent key CEK and generates a ciphertext
C, which can be divided into a set of ciphertext
chunks C1, C2, . . . , Cn􏼈 􏼉 of the same length as
output, where Ci ∈ Zp for i ∈ [1, n].
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Figure 2: (e architecture of our proposed scheme.
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(iii) KeyGen( ceki􏼈 􏼉, UID)⟶(skuF, pkuF) : a determin-
istic algorithm is run by a cloud user. It takes as
input the CEK set ceki􏼈 􏼉, i ∈ [1, t] of file F and the
indexUID of user u and outputs an user-associated
private key skuF and a content-associated public
key pkuF for file F.

(iv) SEKGen(1k)⟶(sku): a probabilistic algorithm run
by cloud user u takes the security parameter k as
input and outputs a secret key sku of the user.

(v) TagGen( Ci􏼈 􏼉, skuF) ⟶( σi,u􏽮 􏽯): a deterministic
algorithm is run by a cloud user. It takes as input
ciphertext chunks Ci􏼈 􏼉i ∈ [1, n], and user-associ-
ated private key skuF for file F.(en, the algorithm
outputs the signature set σi,u􏽮 􏽯, i ∈ [1, n], which is
an ordered collection of tags on Ci􏼈 􏼉, i ∈ [1, n].

(vi) SeTagGen( Ci􏼈 􏼉, sku) ⟶( Ti,u􏽮 􏽯): a deterministic
algorithm is run by a cloud user. It takes as input
ciphertext chunks Ci􏼈 􏼉i ∈ [1, n] and secret key sku
of cloud user u.(en, the algorithm outputs a set of
secondary tags Ti,u􏽮 􏽯, i ∈ [1, n], each of which is
signed by sku.

(vii) TagVerify( σi,u􏽮 􏽯/σC,u, Ci􏼈 􏼉, UID,
aux[i]{ })⟶( TRUE,{ FALSE}): a deterministic
algorithm is run by the CSP to check correctness of
the received integrity tags σi,u􏽮 􏽯, i ∈ [1, n] or their
aggregated version σC,u for the ciphertext C. (e
algorithm takes as input {σi,u} or σC,u generated by
user u, their corresponding ciphertext chunks Ci􏼈 􏼉,
the unique index UID of the user and auxiliary
information set aux[i]{ }, i ∈ [1, t], and outputs
TRUE if tags σi,u􏽮 􏽯, i ∈ [1, n] or σC,u are verified as
correct or FALSE otherwise.

(viii) TagAggre( σi,uj
􏼚 􏼛, λj􏽮 􏽯)⟶(σi,S): an aggregation

algorithm run by CSP takes as input t tags

σi,uj
􏼚 􏼛, j ∈ [1, t], for a certain ciphertext chunk Ci

as well as a Lagrangian interpolation coefficient set
λj􏽮 􏽯, j ∈ [1, t], and outputs an aggregated signa-
ture σi,S for Ci.

(ix) ProofGen(C,Φ, chal)⟶ (P): this algorithm is
run by the CSP. It takes as input the ciphertext C

for a certain target file, its signatures Φ, and a
challenge chal. It outputs an integrity proof P for
the chunks specified by chal.

(x) ProofVerify(key, chal, P)⟶( TRUE, FALSE{ }): a
verification algorithm is run by either the cloud
user or the TPA to check the correctness of proof P.
It takes as input the challenge chal, the proof P
returned from the CSP, and the verification key
key, and outputs TRUE or FALSE according to the
verification result. Specifically, once the aggregated
tags for a certain file are existed in the cloud, the
algorithm is performed by the TPA, and in this
case, the input verification key is pkuF. Otherwise,
this algorithm is performed by the cloud user and
the verification key is sku.

4.4. Construction of ATDS. Let G1 and G2 be multiplicative
cyclic groups of prime order p, which is a sufficient large
prime number, and g be the generator of G1. Let e: G1 ×

G1⟶ G2 denote a bilinear map. H(·): 0, 1{ }∗ ⟶ G1 is
defined as a secure map-to-point hash function and
h(·): 0, 1{ }∗ ⟶ Zp a cryptographic one, both of which are
chosen and published by cloud users. (e system public
parameter set is S � (p,G1,G2, e, g, H, h).

4.4.1. Setup Phase. Consider a cloud user u wants to out-
source a file F, and it firstly chooses a random number
sku ∈ Zp as secret key by running SEKGen. Next, the user
runs CEKGen to generate the content-associated key by
calculating CEK � h(F). (en, further divide CEK into a set
cek1, cek2, . . . , cekt􏼈 􏼉 and generate a corresponding auxiliary
information aux[i] � gceki∈∈G1, i ∈ [1, t], for each one of the
ceki ∈ Zp, i ∈ [1, t], involved in the set. As a follow-up work,
the user runs Encrypt to generate a ciphertext C for file F,
using CEK as the convergent key. It divides the ciphertext C

into a set of ciphertext chunks C1, C2, . . . , Cn􏼈 􏼉 of the same
length, where Ci ∈ Zp for i ∈ [1, n].

(e last part of setup phase is to generate a user-as-
sociated private key and a content-associated public key for
the given file F, together with a random element xu ∈ Zp as
secret key sku by running KeyGen and SEKGen, respec-
tively. Based on the CEK set cek1, cek2, . . . , cekt􏼈 􏼉, the cloud
user generates a polynomial f(x) � cek1 + cek2x+

cek3x
2 + · · · + cektx

t− 1(modp), by defining ceki, i ∈ [1, t] as
coefficients. It is worth mentioning that, in IPANM [3],
owners of file F generate random coefficients of the
polynomial independently. However, in ATDS, different
owners share the same coefficients ceki. Moreover, in order
to ensure the correctness, integrity tags are verified by the
CSP before aggregation instead of the user himself/herself,
both of which eliminate the expensive interaction between
data owners in an open deduplication system. Subse-
quently, a specific user uj with user id UIDj calculates his/
her user-associated secret key skujF by

f UIDj􏼐 􏼑 � cek1 + cek2UIDj + cek3UID
2
j

+ · · · + cektUID
t− 1
j (modp).

(2)

(en, it defines the content-associated public key as

pkujF � g
cek1 . (3)

4.4.2. Tag Deduplication Phase. (e cloud user u first runs
TagGen to generate the tag set σi,u􏽮 􏽯, i ∈ [1, n], for ciphertext
chunks Ci􏼈 􏼉, i ∈ [1, n], corresponding to a specific file F. (e
key point of this procedure is that the user-associated private
key defined in the setup phase is utilized instead of the
traditional private key of the cloud user. Given a certain
ciphertext chunk Ci ∈ Zp, i ∈ [1, n], the corresponding tag is
calculated by

σi,u � H(i) · g
Ci􏼐 􏼑

skuF
. (4)

Security and Communication Networks 7



In the definition above, H(i) denotes the hash value of
the index for a certain ciphertext chunk Ci, which ensures
the distinguishability of tags even though the corresponding
content of chunks is identical. (en, the user runs SeTagGen
to generate secondary tags for ciphertext chunks
Ci􏼈 􏼉, i ∈ [1, n], as

Ti,u � H(i) · g
Ci􏼐 􏼑

sku
. (5)

Finally, the cloud user generates a set of integrity au-
thenticators σi,u􏽮 􏽯, i ∈ [1, n], and a set of secondary tags
Ti,u􏽮 􏽯, i ∈ [1, n], and outsources them as well as the auxiliary
information to the CSP together with the deduplication

checking request for the ciphertext of file F. On receiving
them, the CSP first runs TagVerify to check the correctness of
σi,u􏽮 􏽯, i ∈ [1, n]. In order to reduce the computational
overhead during verification, the CSP aggregates n integrity
tags from the specific user u to generate a verification tag
σC,u, which is defined as σC,u def

�

􏽑
n
i�1 σi,u �

􏽑
n
i�1 (H(i) · gCi )skuF , and calculates μ � 􏽐

n
i�1 Ci. It is worth

mentioning that once tag aggregation has been triggered in
cloud storage, σC,u is generated by user u himself/herself.(e
correctness of σC,u and μ can be verified by checking

e σC,u, g􏼐 􏼑 � e 􏽙
n

i�1
H(i) · g

μ
, aux[1] · aux[2]

UID
· aux[3]

UID2
. . . aux[t]

UID(t− 1)
⎛⎝ ⎞⎠. (6)

If so, the outsourced tags σi,u􏽮 􏽯, i ∈ [1, n] are considered
to be correct. (en, the user u is deemed as a qualified one.
Denote the group of qualified users by the set SG. Once at least
t different users in SG outsourced correct tags for the same
target file, chunk-level tag aggregation would be triggered by
running TagAggre. Specifically, for a certain ciphertext chunk
Ci, once t correct tags from different users in SG are collected,
CSP generates the aggregated tag by calculating

σi,S � 􏽙
uj∈SG,j≠i

σλj

i,uj
� 􏽙

t

j�1
σλj

i,uj
� 􏽙

t

j�1
H(i) · g

Ci􏼐 􏼑
skujF·λj

, (7)

where λj � 􏽑uj∈SG,j≠ i(− UIDj)/(UIDi − UIDj) is a La-
grangian interpolation coefficient and UIDj is the unique
user ID of the participated signer uj. Finally, the aggregated
tags σ1,S, σ2,S, . . . , σn,S􏽮 􏽯 for each one of the ciphertext
chunks Ci, i ∈ [1, n] are stored in the CSP, instead of more
than t pieces of original tags. We present the formal de-
scription of ATDS algorithm in Algorithm 1.

4.4.3. Integrity Auditing Phase. When a cloud user attempts
to check the integrity of his/her outsourced ciphertext C
corresponding to file F, he/she first needs to send a query
request to the CSP to check whether the corresponding tags
in the CSP have been aggregated or not. If yes, in order to
reduce the computational overhead of the client side, the
user delegates the integrity auditing task to the TPA. Oth-
erwise, the user has to perform integrity verification by
themselves to protect the existence privacy of his/her files in
cloud storage.

For the first case, suppose user u tries to check the in-
tegrity of ciphertext C, he/she first sends an integrity
auditing delegation together with his/her content-associated
public key pkuF to the TPA. On receiving the request, the
TPA picks a random c-element subset I � s1, s2, · · · , sc􏼈 􏼉 and
chooses a random value vi for each element i ∈ I. (en, it
sends the challenge chal� (i, vi)􏼈 􏼉i∈I to the CSP. Upon re-
ceiving the challenge, the CSP runs ProofGen to generate a

corresponding proof P � σ, ρ􏼈 􏼉 and returns to the TPA,
where σ � 􏽑

sc

i�s1
σvi

i,S ∈ G1 and ρ � 􏽐
sc

i�s1
viCi ∈ Zp.

(e proof P can be verified by running ProofVerify in the
way as follows:

e(σ, g) � e 􏽙

sc

i�s1

H(i)
vi · g

ρ
, pkuF

⎛⎝ ⎞⎠. (8)

For the second case, the cloud user generates the chal-
lenge chal � (i, vi)􏼈 􏼉i∈I in the same way as which is men-
tioned above and sends it to the CSP. Similarly, the CSP
generates a proof P � Tuj

, ρ􏼚 􏼛 and returns to the user, where
Tuj

� 􏽑
sc

i�s1
T

vi

i,uj
∈ G1 and ρ � 􏽐

sc

i�s1
viCi ∈ Zp. (e user runs

ProofVerify to check the correctness of the proof as follows:

e Tuj
, g􏼒 􏼓 � e 􏽙

sc

i�s1

H(i)
vi · g

ρ
, g

skuj⎛⎝ ⎞⎠. (9)

We present the formal description of aggregation of ATDS,
as shown in Algorithm 1.

5. Security Analysis

In this section, we analyze the security of ATDS against both
inside and outside adversaries under the threat model de-
fined in Section 3. Specifically, our analysis starts from the
effectiveness of integrity auditing and then focuses on se-
curity against side channel attack during the process of
public auditing.

Theorem 1. After receiving all integrity tags of target file F
outsourced by user u, CSP is able to generate a verification tag
σC,u that passes the verification if all the integrity tags are correct.

Proof. For a target file F, user u generates his/her CE ci-
phertext C � C1, C2, . . . , Cn􏼈 􏼉 and then uploads them to-
gether with corresponding integrity tags σ1,u, σ2,u, . . . , σn,u􏽮 􏽯

to the cloud storage. Specifically, a certain integrity tag σi,u

for chunk Ci is defined as (H(i) · gCi )skuF , and the user-
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associated secret key skuF is denoted as f(UID). (e CSP
first generates a verification tag
σC,u � 􏽑

n
i�1 σi,u � 􏽑

n
i�1 (H(i) · gCi )skuF and then verifies its

correctness by checking the bilinear equation (6). A special

case is that once tag aggregation has been triggered by the
CSP, σC,u is generated by user u himself/herself. Based on the
properties of bilinear maps, the correctness can be deduced
from the following:

e σC,u, g􏼐 􏼑 � e 􏽙
n

i�1
σi,u, g⎛⎝ ⎞⎠ � e 􏽙

n

i�1
H(i) · g

Ci􏼐 􏼑
skuF

, g⎛⎝ ⎞⎠,

� e 􏽙
n

i�1
H(i) · g

Ci􏼐 􏼑
cek1+cek2UID+cek3UID2+···+cektUIDt− 1

, g⎛⎝ ⎞⎠,

� e 􏽙
n

i�1
H(i) · g

􏽘

n

i�1
Ci

, g
cek1+cek2UID+cek3UID2+···+cektUIDt− 1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

� e 􏽙
n

i�1
H(i) · g

μ
, aux[1] · aux[2]

UID
· aux[3]

UID2
, . . . , aux[t]

UID(t− 1)
⎛⎝ ⎞⎠.

(10)

Theorem 2. For a target file F, if the number of integrity tags
for each chunk does not reach the threshold value t, each valid
user is able to correctly check the integrity of file F by
launching a challenge-response protocol.

Proof. According to (eorem 1, the CSP only keeps correct
tags in storage, the number of which is identical for each chunk
involved in a certain file. For a certain target file, if the tag
counter does not reach the predefined threshold value t, the
cloud user has to verify the proof generated by CSP. Specifi-
cally, cloud user sends a random challenge chal � (i, vi)􏼈 􏼉i∈I to

CSP and receives a proofP � Tuj
, ρ􏼚 􏼛, which can be verified by

checking the bilinear equation (9). Similar to the previous
verification, the correctness can be deduced from the following:

e Tuj
, g􏼒 􏼓 � e 􏽙

sc

i�s1

T
vi

i,uj
, g⎛⎝ ⎞⎠,

� e 􏽙

sc

i�s1

H(i) · g
Ci􏼐 􏼑

skuj
vi

, g⎛⎝ ⎞⎠

� e 􏽙

sc

i�s1

H(i)
vi · g

􏽘

sc

i�s1

viCi

, g
skuj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� e 􏽙

sc

i�s1

H(i)
vi · g

ρ
, g

skuj⎛⎝ ⎞⎠.

(11)

Input: tags σi,uj
� (H(i) · gCi )

skujF(i ∈ [1, n], j ∈ [1, m]).
Output: aggregated tags σi,S;

(1) SG � ∅;
(2) μ � 􏽐

n
i�1 Ci;

(3) forj � 1 tom do
(4) σc,uj

� 􏽐
n
i�1 σi,uj

;
(5) if e(σc,uj

, g) �� e(􏽑
n
i�1 H(i) · gμ, aux[1] · aux[2]UID, . . . , aux[t]UID(t− 1)

) then
(6) store integrity tags σi,uj

;
(7) store secondary tags Ti,uj

(8) SG � SG∪ uj􏽮 􏽯;

(9) else
(10) return error
(11) endif
(12) endfor
(13) if |SG|> � t then
(14) for i � 1 to n do
(15) σi,S � 􏽑

t
uj ∈ SG,j�1,j≠ i σ

λj

i,uj
;

(16) endfor
(17) endif

ALGORITHM 1: Aggregation algorithm of ATDS.
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Theorem 3. TPA is able to verify integrity of the target file F
by checking proof P returned from the CSP if the aggregated
tags have been generated.

Proof. Once the number of the tags for a certain chunk
reaches the threshold value t, tag aggregation would be
triggered instantly and the aggregated tag is obtained based
on equation (6). It is worth mentioning that, in this case,
aggregated tags for each chunk of the target file are generated
simultaneously. (erefore, the cloud user is able to delegate
the auditing task to TPA. During the verification, TPA picks
a random c-element subset I � s1, s2, . . . , sc􏼈 􏼉 and chooses a
random value vi for each element i ∈ I to generate a chal-
lenge chal � (i, vi)􏼈 􏼉i∈I before sending to CSP. (en, TPA
receives proof P � σ, ρ􏼈 􏼉, where σ � 􏽑

sc

i�s1
σvi

i,S and
ρ � 􏽑

sc

i�s1
viCi. (e proof P generated based on aggregated

tags can be verified by checking the bilinear equation (8).
According to the principle of Lagrangian interpolation, the
aggregated tag in equation (8) can be denoted as
σi,S � (H(i) · gCi )cek1 . (erefore, the correctness of the bi-
linear equation can be deduced as follows:

e(σ, g) � e 􏽙

sc

i�s1

σvi

i,S, g⎛⎝ ⎞⎠,

� e 􏽙

sc

i�s1

H(i) · g
Ci􏼐 􏼑

cek1vi
, g⎛⎝ ⎞⎠

� e 􏽙

sc

i�s1

H(i)
vi · g

􏽘

sc

i�s1

Civi

, g
cek1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� e 􏽙

sc

i�s1

H(i)
vi · g

ρ
, pkuF

⎛⎝ ⎞⎠.

(12)

Theorem 4. ,e TPA cannot steal the existence privacy of a
specific cloud user by launching side channel attack during the
process of public auditing.

Proof. Based on the threat model defined in Section 3, once
the TPA is interested in the existence privacy of a specific
cloud user, it first predicts the content of data by launching
brute-force dictionary attack. It is worth mentioning that
such kind of attack is always feasible for predictable data in
cloud storage. For a predicted file F, the TPA encrypts it by
convergent encryption and then divides the ciphertext into
n chunks C1, C2, . . . , Cn􏼈 􏼉 of the same length, where
Ci ∈ Zp for i ∈ [1, n]. To determine existence of the ci-
phertext in cloud storage, the TPA has to generate a
challenge chal � (si, vi)􏼈 􏼉i∈I and send to the CSP. According
to our proposed scheme, the CSP generates a proof P �

σ, ρ􏼈 􏼉 based on the challenge and returns to the TPA, where
σ � 􏽑

sc

i�s1
σvi

i,S ∈ G1 and ρ � 􏽐
sc

i�s1
viCi ∈ Zp. Based on

equation (7), each one of σi,S in σ corresponds to t correct

tags from different users. Moreover, the public key pkuF

utilized in bilinear equation (8) is a content-associated key,
rather than a user-associated one. (erefore, once the
correctness of the proof is verified by checking the bilinear
equation (8), the TPA is only able to know that the ci-
phertext is in possession of at least t users but cannot
determine which specific user owns the target file. By
setting the threshold value elaborately, once existence is
known to the TPA, the target file has been a popular one.
(us, there is no risk of privacy leakage.

Theorem 5. ,e existence privacy for a certain target user is
secure even though his/her UID is exposed to an outside
adversary.

Proof. Suppose the UID of an ordinary user is exposed to an
outside adversary, who generates a correct version of file F
owned by this user by launching dictionary attack. (e
adversary is able to calculate the user-associated secret key
skuF according to formula (2). (en, the adversary attempts
to verify the linkage between F and the user through
challenge-response protocol with the help of the key.

Firstly, the outside adversary needs to check whether
integrity tags for each chunk of F have been aggregated. If
yes, the existence privacy of the user would not be com-
promised according to (eorem 4. Otherwise, if secondary
tags are not employed, the adversary has to generate a
random challenge chal � (i, vi)􏼈 􏼉i∈I and verify the returned

proof P � σuj
, ρ􏼚 􏼛 by checking whether e(σuj

, g) �

e(􏽑
sc

i�s1
H(i)vi · gρ, gskuF ), where σuj

� 􏽑
sc

i�s1
σvi

i,uj
∈ G1 and

ρ � 􏽐
sc

i�s1
viCi ∈ Zp. Once the verification is passed, the

existence privacy is exposed instantly. To deal with this
problem, we introduce the secondary tag to ATDS, which is
able to achieve integrity verification before tag aggregation is
triggered according to (eorem 2. As a result, the adversary
cannot obtain the existence privacy of the certain target user
during the process of verification any more.

6. Performance Analysis and Evaluation

In order to evaluate the performance, we take experiments in
this section to compare the storage overhead, computation
overhead, and communication overhead of proposed ATDS
with the other two state-of-the-art schemes: one-tag checker
[2] and IPANM [3]. Specifically, we employ Amazon Elastic
Computing Cloud (EC2) instances to implement the process
of CSP, which is dedicated to provide storage and tag
deduplication service to clients. Moreover, we implement
both the client and TPA side processes using pairing-based
cryptography (PBC) library version 0.5.14 on workstations
with Intel Core i7-6700 CPU@3.40GHz, 4GB RAM, and a
7200 RPM 1TB hard drive in Ubuntu 15.5 operating system.
(e security level is chosen to be 160 bits, and all results are
on the average of 20 tries.

6.1. Storage Overhead. In this part, we compare ATDS with
one-tag checker [2] in cloud side storage overhead in the
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scenario of tag deduplication. Specifically, the overhead is
evaluated in the form of deduplication rate. For simplicity,
we assume convergent ciphertext chunks of the target file
have been stored in the cloud, and the number of which is
denoted as n. Suppose the predefined deduplication
threshold value for integrity tags is t. In our evaluation, we
denote the length of an element in multiplicative cyclic
group G1 with prime order p as |G1| and that in Zp as |Zp|.

For a certain target file, in our proposed ATDS, the first
uploader of integrity tags needs to outsource secondary tags
and auxiliary information for n chunks, as well as the storage
overhead of which is 2n|G1| + t|Zp| in total. For successive
uploaders of integrity tags, they outsource integrity tags,
secondary tags, or just only integrity tags depending on the
situation. It is worth mentioning that if the number of tags
for a certain chunk does not reach the threshold value, the
integrity tags are used for correctness verification before
storing in cloud storage. At the same time, secondary tags are
needed for further private verification. Otherwise, once the
threshold value is reached, only aggregated verification tag
for the target file is needed, which is utilized in proof of
ownership and then deleted from the storage. Meanwhile,
tag deduplication is triggered so that the storage overhead
drops down from (2n · t)|G1| + t|Zp| to n|G1| + t|Zp|. In this
case, the number of uploaded tags just reaches the threshold
value t. Even though the following users continue to upload
tags for the same chunk, the storage overhead remains
constant since they would not be stored at all. (us, a
deduplication rate of 1 − ((n|G1| + t|Zp|)/(2nt|G1| + t|Zp|))

is obtained.
As for one-tag checker [2], the first uploader of a certain

target file needs to outsource n integrity tags as well as a
rekey, each of which with a storage overhead of n|G1| and
2|Zp|, respectively. Even though the concept of threshold
value is absent in one-tag checker, we define the number of
uploaders to be t in order to keep the comparison in the same
level. For t uploaders, the overhead can be denoted as
nt|G1| + 2t|Zp|. (anks to the deduplication scheme
employed, subsequent uploaders only need to upload the
rekey. (us, the storage cost drops to n|G1| + 2t|Zp|, and a
deduplication rate of 1 − ((n|G1| + 2t|Zp|)/(nt|G1| +

2t|Zp|)) is achieved.
In order to verify the above analysis, we compare both

schemes in deduplication rate. Specifically, we set the
threshold value t to be 20 and 40 and divide the target file
into equal-sized chunks with number from 300 to 1100. (e
results are presented in Figures 3(a) and 3(b), respectively.
Take Figure 3(a), for example, the threshold value t is set to
be 20.When the number of ciphertext chunks increases from
300 to 1100, the deduplication rate of our proposed scheme
is always higher than 0.97, which is obviously better than
that of one-tag checker since the cost of rekey is not needed
in our scheme. (e similar result is shown in Figure 3(b).

Moreover, we present the storage overhead of our
proposed scheme in Figure 4, in which Y axis is drawn as
the logarithmic coordinate. In this figure, the target
convergent ciphertext is divided into 300 and 500 chunks,
and the threshold value t is set to be 20 and 40, respec-
tively. Consider the case of n � 300 and t � 20, when the

number of users increases from 0 to 20, the overhead of
our proposed scheme increases from 3200 to 1,923,200,
which drops rapidly to 51,200 once the number continues
to increase since tag aggregation has been triggered. To
achieve side channel attack resistance in an open dedu-
plication system, we introduce secondary tags to ATDS,
which bring about 48,000 bits extra storage overhead for
each user before the number of users reaches the threshold
value t. Similar results are obtained for other parameter
combinations.

6.2. Computational Overhead. We consider the computa-
tional overhead during the process of public verification in
this section and still compare our ATDS with one-tag
checker [2]. Specifically, the running time during both
processes of proof generation and proof verification is
evaluated. For simplicity, we use ExpZp

, MulZp
, ExpG1

, and
MulG1

to denote exponential operation and multiplication
operation in Zp and G1, respectively. Similarly, AddZp

is
employed to represent additional operation in Zp. In ad-
dition, Pair denotes bilinear pairing operation on
e: G1 × G1⟶ G2, and HashG1

represents hash operation
H(·): 0, 1{ }∗ ⟶ G1.

In the process of proof generation, on receiving the
challenge from the TPA, the CSP generates a proof P � σ, ρ􏼈 􏼉

accordingly. Denote the number of challenged chunks to be
c. As is shown in Table 1, for the proposed scheme, the
computational overhead of proof generation is
cExpG1

+ (c − 1)MulG1
+ cMulZp

+ (c − 1)AddZp
, which is

obviously less than 2cExpG1
+ 2(c − 1)MulG1

+ (2c + s)

MulZp
+ s(c − 1)AddZp

in one-tag checker. (e reason is
that, in Liu et al.’s scheme, the CSP has to execute the
procedure of proxy re-signature to maintain the linkage
between integrity tags and their owners during the process of
public auditing. While for computational overhead of proof
verification, our proposed scheme still has a better perfor-
mance since expensive interaction with the data owner is
also eliminated.

Moreover, we implement both schemes based on a
certain target file and compare the computational overhead
in terms of running time. It is worth mentioning that if the
file stored in the CSP is maliciously tampered or deleted,
TPA is able to detect it with a probability greater than 95% or
99% by setting the number c to be 300 or 460 [5]. As is shown
in Table 2, when the value of c is 300, the running time of our
scheme is 1.262 s, which is about 55.7% lower than that of
one-tag checker. Similarly, when the number c is set to be
460, our scheme still shows better performance.

6.3. Communication Overhead. In the evaluation of com-
munication overhead, we compare ATDS with IPANM [3],
in which the similar aggregation strategy is also employed
even though it is not suitable for open deduplication system.
(e communication overhead consists of two parts: the
overhead of tag generation and that of tag aggregation. In
ATDS, tag generation is executed by the cloud user himself/
herself, and thus, no communication is needed. However,
for IPANM, the process entails communication of key
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segments as well as verification parameters. Consider a
system contains k users, IPANM first needs to select d
qualified users based on validity verification. In this process,
the communication overhead is k(k − 1)|Zp| + kt|G1|.
Moreover, in order to verify the correctness of generated
integrity tags, each user in the group needs to receive ver-
ification parameters from others in the qualified user group
to produce his/her public key sharing. (e communication
cost in this case is td|G1|. On the contrary, it has to send the
public key sharing to each one of the users in the group with
communication overhead of td|G1|.

As for the process of tag aggregation, in our proposed
scheme, the first uploader needs to outsource auxiliary in-
formation, integrity tags, as well as secondary tags, the
communication overhead of which is t|G1| + 2nt|G1|. If tag
aggregation is not triggered, only integrity tags and

secondary tags are needed for successive uploaders, and the
cost is 2nt|G1| in this case. Otherwise, the user only needs to
upload an aggregated verification tag, with communication
overhead of |G1|. (us, the total cost for k (k> t) users is
t|G1| + 2nt|G1| + (k − t)|G1|. In IPANM, the cost is nt|G1|

since t selected users need to send integrity tags to an
aggregator, who carries out the process of aggregation. (e
results are shown in Table 3.

To verify the correctness of the above analysis, we also
consider two target files and compare the total communi-
cation overhead of ATDS with IPANM [3]. Similar as the
comparison in storage overhead, we also divide each one of
the target files into 300 and 500 chunks of the same size and
set the threshold value t to be 20 and 40, respectively. (e
communication overhead for both schemes is presented in
Figures 5(a)–5(d). In these figures, the cost of our scheme
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Figure 3: (e relationship between deduplication rate and the number of chunks: (a) t� 20; (b) t� 40.
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Table 1: Comparison of computational overhead.

Computational overhead
ATDS One-tag checker [2]

Proof generation cExpG1
+ (c − 1)MulG1

+ cMulZp
+ (c − 1)AddZp

2cExpG1
+ 2(c − 1)MulG1

+ (2c + s)MulZp
+ s(c − 1)AddZp

Proof verification 2Pair + cHashG1
+ (c − 1)MulG1

+ (c + 1)ExpG1
2Pair + cHashG1

+ (c + s)MulG1
+ (c + s)ExpG1

Table 2: Comparison of time required to perform public verification between ATDS and one-tag checker.

Number of challenged chunks
Computational overhead (s)

ATDS One-tag checker [2]
c� 300 1.262 2.850
c� 460 1.955 4.032

Table 3: Comparison of communication overhead.

Communication overhead
ATDS IPANM [3]

Tag generation phase 0 k(k − 1)|Zp| + kt|G1| + td|G1| + k|G1|

Tag aggregation phase t|G1| + 2nt|G1| + (k − t)|G1| nt|G1|

Total communication overhead t|G1| + 2nt|G1| + (k − t)|G1| k(k − 1)|Zp| + (kt + td + k + nt)|G1|
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Figure 5: Continued.
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rises slightly with the number of users, while that of IPANM
grows much faster. As shown in Figure 5(a), when the
number of users increases from 0 to 66, the communication
overhead of our proposed scheme is slightly larger than
IPANM. (e reason lies in that, before tag aggregation is
triggered, users in our scheme need to upload both integrity
tags and secondary tags. However, subsequent users only
need to upload an aggregated verification tag, and the ex-
pensive interaction between the group of users in IPANM is
completely eliminated in our scheme. (us, the overall
increment of communication overhead is just only 9.75 B for
our proposed scheme, obviously lower than 5073.01 B for
IPANM. (e similar results are shown in Figures 5(b)–5(d).

7. Conclusion

(is paper proposes a lightweight yet secure tag deduplication
scheme called ATDS to address the potential side channel
attack launched by a malicious TPA, which is able to steal the
existence privacy of a certain target user during the process of
public verification.With the help of the defined user-associated
private key, the integrity tags for a certain ciphertext chunk
could be aggregated via Lagrangian interpolation, which in
turn achieves aggregation-based tag deduplication. With the
help of this design, even though public verification is passed,
the TPA is only able to judge that the verified data are correctly
corresponding to at least a group of users in cloud storage,
rather than determining specific owners. (us, the potential
side channel attack is well resisted. (e results obtained from
the experiment demonstrate that the cost of ATDS is con-
trollable with security guaranteed.
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