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In this paper, a construction of a fuzzy identity-based ring signature scheme (LFIBRS) is proposed. Our LFIBRS combines the
characteristics of both the fuzzy identity-based signature (FIBS) and the ring signature. On the one hand, a signature issued under
an identity ID can be verified by any identity ID′ that is “close enough” to the identity ID. Since biometric identification is the well-
known most popular and reliable identification method, our LFIBRS can be applied in such a situation whenever it is required for
official audit or supervision that the signer’s real identity is needed to be authenticated. On the other hand, LFIBRS provides
anonymity under the random oracle model. In addition, LFIBRS provides unforgeability under the small integer solution (SIS)
lattice hardness assumption which can resist large-scale quantum computer attacks in the future.

1. Introduction

Ring signatures, which were first suggested by Rivest,
Shamir, and Tauman [1], allow signing a message on behalf
of a spontaneous set of signers, without breaking the ano-
nymity of the signatory. Recently, many versions of ring
signature schemes based on this concept have been
constructed.

Nevertheless, numerous ring signature schemes concern
classical number theory or algebraic mathematical as-
sumptions, such as large integer factoring problem [1, 2],
discrete logarithm problem [3–5], and bilinear pairing
problems [6–10]. None of the schemes are secure with the
onset of powerful quantum computers. Among the current
postquantum cryptographic candidates, lattice-based cryp-
tography has attracted significant attention of cryptogra-
phers recently. In 2008, the first ring signature scheme on
lattice was constructed by Gentry et al. [11] and then a lot of
ring signature schemes have been constructed [12–14].
Shamir [15] introduced an identity-based cryptosystem.
Later, Sahai and Waters [16] put forward the concept of
fuzzy identity-based encryption (FIBE), and they regarded
identities as a set of biometric attributes rather than any
string. Since then, many kinds of fuzzy identity-based sig-
nature schemes have been constructed [17–21]. As one of the

most promising research alternatives of postquantum
cryptography, lattice-based cryptography has attracted great
attention due to its several potential advantages: asymptotic
efficiency, the worst-case hardness hypothesis, and the se-
curity against quantum computing.

How to design a secure and efficient lattice-based
cryptosystem is a very interesting and challenging problem.
In this manuscript, based on the work of [21, 22], a fuzzy
identity ring signature scheme based on the computational
difficulty problem on lattices is constructed by combining
the characteristics of fuzzy identity signature and ring
signature.

1.1. RelatedWork. Wang et al. [23] proposed a lattice-based
ring signature scheme in the Bonsai tree model, which was
based on the hard assumption of SIS problem; meanwhile,
unforgeability had been proved in both the random oracle
and standard model. Wang [24] and Jia et al. [22] proposed
identity-based ring signature scheme from lattice which was
based on the hard assumption of SIS problem. As we know,
Yao and Li [19] constructed the first FIBS scheme based on
the hard assumption of SIS problem. By using the Bonsai
tree techniques, they proved that their scheme was secure in
the random oracle model. Recently, Zhang et al. [21]
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proposed an extended version of Yao and Li’s FIBS scheme
and claimed that it could capture more expressive attributes
in a large universe. Besides, their version was proved to be
strongly unforgeable against selective chosen-identity and
adaptive chosen-message attacks (SU-sID-CMA) secure in
the standard model.

1.2. Contributions. In this paper, we propose a fuzzy
identity-based ring signature scheme (LFIBRS) based on the
hard assumption of SIS problem and prove that it is
unforgeable in the random oracle model. In this work, we
focus on combining the characteristics of ring signature and
the fuzzy identity-based signature from lattices, and it makes
our scheme be able to provide biometric authentication and
maintain anonymity at the same time.

1.3. Structure of the Paper. In Section 2, some mathematical
symbols, integer lattices, and statistical distance are defined.
Section 3 gives the framework of the signature scheme. (e
construction of our signature scheme is described in Section
4. (e security of our LFIBRS is proved in Section 5. Finally,
some comparisons with some other referred works and
conclusion remarks are given.

2. Preliminaries

2.1. Notations. In this section, we make use of the following
notations:

[i]: (e set 1, 2, . . . , i{ }

x←S: x is sampled uniformly at random from the set S

‖z‖: (e Euclidean norm of z
‖A‖: (e norm of ‖A‖ as the norm of its longest column
‖A‖ � maxi‖Ai‖

􏽥A: (e matrix after Gram-Schmidt orthogonalization
of matrix A
f(n) � ω(g(n)): If limn⟶∞ � g(n)/f(n) � 0
f(n) � 􏽥O(g(n)): If f(n) � g(n) · poly(log n)

2.2. Integer Lattices

Definition 1. Let B � [b1|b2| · · · |bm] ∈ Rm×m be a matrix
with m linearly independent vectors. (e m-dimensional
lattice Λ generated by B is as follows:

Λ � L(B) � y ∈ Rm
: ∃s ∈ Zm

, y � Bs􏼈 􏼉. (1)

Definition 2. For prime q≥ 2 and matrix A ∈ Zn×m, define

Λ⊥q (A) � y ∈ Zm
: Ay � Omod q􏼈 􏼉. (2)

For s> 0, define the Gaussian function onRm with center
c: ∀e ∈ Rm, ρs,c(e) � exp(− π‖e − c‖2/s2). For m-dimen-
sional lattice Λ, define ρs,c(Λ) � 􏽐e∈Λρs,c(e). For c ∈ Rm and
s> 0, define the discrete Gaussian distribution over Λ as
follows: ∀e ∈ Λ,DΛ,s,c � ρs,c(e)/ρs,c(Λ). For convenience, if
c � O, we denote DΛ,s,c as DΛ,s.

2.3. Lattice-Related Algorithms. How to obtain a matrix A
with a low Gram-Schmidt norm basis for Λ⊥q (A) was in-
troduced by Ajtai [25], and two improved algorithms were
proposed by [26, 27], respectively.

Lemma 1 (see [26]). Let integers q≥ 3 be odd, n≥ 1, and
m � 2n􏼆log q􏼇. /ere exists a PPT algorithm
TrapGen(q, n, m) that outputs A and TA such that A is
statistically close to a uniform matrix in Zn×m

q and
TA ∈ Zm×m

q is a short basis for Λ⊥q (A), satisfying
‖􏽦TA‖≤O(

������
n log q

􏽰
) with all but a negligible probability in n.

In this subsection, we recall several useful facts on lattices
in the literatures [1, 28], in order to generate another short
basis for a lattice which contains a sublattice isomorphic to
the original.

Lemma 2 (Lemma 3.2 of [28]). On input A ∈ Zn×m
q , whose

columns generate the entire group Zn
q and an arbitrary

B ∈ Zn×m′
q , given a basis TA of Λ⊥q (A), there is a deterministic

polynomial-time algorithm ExtBasis(TA, A′ � [A|B]) that
outputs a basis TA′ for Λ⊥q (A′)⊆Zm+m′ such that
‖ 􏽦TA′‖ � ‖􏽦TA‖. Moreover, this statement holds even for any
given permutation of the columns of A′.

Lemma 3 (Lemma 3.3 of [28]). On input A ∈ Zn×m
q ,

s≥ ‖􏽦TA‖ · ω(
����
log n

􏽰
). Given a basis TA of Λ⊥q (A), there is a

PPT algorithm RandBasis(A,TA, s) that outputs a basis TA′
for Λ⊥q (A) such that ‖􏽦TA′‖≤ s

��
m

√
and no information specific

to TA is leaked.

We adopt the preimage sampling lemma from the dis-
crete Gaussian distribution over lattices, which is shown in
[11].

Lemma 4 (see [11]). Assume integer q≥ 2,A ∈ Zn×m
q , and

real 0< ϵ< 1. Let TA be a short basis for Λ⊥q (A); parameter
s≥ ‖􏽦TA‖ · ω(

����
log n

􏽰
). /en, for c ∈ Rm,u ∈ Zm

q ,

(1) Pr[x←DΛ,s,c: ‖x − c‖>s
��
m

√
]<((1+ ϵ)/(1 − ϵ)) ·2− m

(2) A PPT algorithm SampleGau(A,TA, s, c) returns
e ∈ Λ⊥q (A) drawn from a distribution statistically
close to DΛ⊥q (A),s,c

(3) A PPT algorithm SamplePre(A,TA, s, c) returns
e ∈ Λuq(A) sampled from a distribution statistically
close to DΛuq (A),s

In [22], Lemma 4 is extended to the matrix sampling
algorithm, which is repeated as follows.

Lemma 5 (see [22]). On input A ∈ Zn×m
q ,

s≥ ‖􏽥T‖ · ω(
����
log n

􏽰
). Given a short basis T for Λ⊥q (A) and

arbitrary matrix V ∈ Zn×k
q , there is a polynomial-time al-

gorithm SampleMatPre(A,T, s,V), which outputs a matrix
S ∈ Zm×k

q , so thatAS � V,V and DΛ⊥(A) are statistically close,
and ‖V‖≤ s

��
m

√
holds with overwhelming probability.

Rejection sampling is an important technology of lattice-
based signature scheme, which is proposed by Lyubashevsky
in [29]. In the signing process, we output the candidate
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signature in a certain probability without using a preimage
sampling algorithm; hence, the distribution of the output
signature is independent of the private key of the signer.
With regard to the technique of rejecting sampling, we use
the two following results.

Lemma 6 (Lemma 4.4 of [29]). For any σ > 0 and integer m,
the following inequalities hold:

(1) Pr[x←Dσ : ‖x‖ >w(σ
�����
logm

􏽰
)]< 2− ω(logm)

(2) For any z ∈ Zm and σ >
������
log 3m

􏽰
, Dm

σ < 2− m+1 holds
(3) Pr[x←Dm

σ : ‖x‖ > 2σ
�����
logm

􏽰
]< 2− m

Theorem 1 (Theorem 4.6 of [29]). LetV be a subset ofZm in
which all elements have norms less than T, let σ be some
element inR such that σ � ω(T

�����
logm

􏽰
), and let h: V⟶ R

be a probability distribution./en there exists a constant M �

O(1) such that the distribution of the following algorithmA,

(1) v←h

(2) z←Dm
v,σ

(3) output (z, v) with probability
min((Dm

σ (z)/MDm
v,σ(z)), 1)

is within the statistical distance 2− ω(logm)/M of the dis-
tribution of the following algorithm F:

(1) v←h

(2) z←Dm
σ

(3) output (z, v) with probability 1/M

Moreover, the probability that A outputs something is at
least (1 − 2− ω(logm))/M.

2.4. Statistical Distance. (e statistical distance measures
how different two probability distributions are. In order to
be employed in the anonymity of our scheme, we recall it as
follows.

Definition 3 (Definition 8.5 of [30]). Let X and X′ be two
random variables over a countable set S. (e statistical
distance between X and X′ is defined by

Δ X, X′( 􏼁 �
1
2

􏽘
x∈S

Pr[X � x] − Pr X′ � x􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (3)

(e following lemmas show that the statistical distance
cannot be increased by a randomized algorithm.

Lemma 7 (Proposition 8.9 of [30]). Let X1, X2, . . . , Xk and
Y1, Y2, . . . , Yk be two lists of totally independent random
variables. /en,

Δ X1, X2, . . . , Xk( 􏼁, Y1, Y2, . . . , Yk( 􏼁( 􏼁≤ 􏽘
k

i�1
Δ Xi, Yi( 􏼁.

(4)

Lemma 8 (Proposition 8.10 of [30]). Assume that X and X′
are two random variables over set S. For any (possibly

randomized) function f with domain S, the statistical dis-
tance between f(X) and f(X′) is at most

Δ f(X), f X′( 􏼁( 􏼁≤Δ X, X′( 􏼁. (5)

2.5. /e SIS Problem. (e SIS problem is as hard as the
worst-case lattice problem; it was proved by Ajtai [25] for the
first time,and then by Micciancio and Regev [31] and Gentry
et al. [11]. We recall it as follows.

Definition 4. (e SIS problem in the Euclidean norm is that,
given an integer q, a matrix A ∈ Zn×m

q , and a positive real β,
the goal is to find a nonzero vector e ∈ Zm satisfying
Ae � Omodq, and ‖e‖≤ β.

Lemma 9 (Theorem 5.16 of [31]). For poly-bounded m,
β � poly(n), and prime q≥ β · ω(

������
n log n

􏽰
), the average-case

SISq,n,m,β problem is as hard as approximating the shortest
independent vector problem SIVPc to within certain c � β ·
􏽥O(

�
n

√
) factor.

3. System Framework and Security Model of
LFIBRS Scheme

A fuzzy identity-based ring signature scheme consists of the
following four probabilistic polynomial-time (PPT)
algorithms:

SetUp(q, n, m): (e Private Key Generator (PKG) runs
a PPT algorithm that takes the security parameter n as
input and generates the system parameters PP, an error
tolerance parameter k, andmaster keysMK.(e system
parameters PP are made public andmaster keysMK are
kept secret.
KeyExt(ID,PP,MK): It is a PPT algorithm that takes
an identity ID, the public parameters PP, and the
master keys MK as input and outputs secret keys SK
and public key AID associated with the ID.
Sign((μ, sk, PK,PP): It is a PPTalgorithm that takes the
public parameters PP, the public keys
PK � PKID〈i〉􏼈 􏼉i∈[l] corresponding to the identities of l

ring members, the secret keys SK associated with an
identity ID, and a message μ as input and outputs a
signature σ.
Verify(μ, σ, ID′, PP,PK): It is a deterministic algo-
rithm that takes the public parameters PP, an fuzzy
identity ID′ s, the message μ, the public keys PK, and
the corresponding signature σ as input and outputs “1”
or “0.”

(e correctness of a ring signature scheme with fuzzy
identity means that the verification algorithm always outputs
“1” for a legal signature and “0” for an illegal signature.

3.1. Security Properties. A security ring signature must
satisfy anonymity and unforgeability. (e formal definition
of the security model is given as follows.
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Definition 6 (anonymity). If there is no polynomial-time
adversary A to win the following games with an advantage
that cannot be ignored, the LFIBRS scheme is signer-
ambiguous.

(1) Setup: input system parameters n and C to generate
and send public parameter PP and the maximum
possible user set UN � ID〈1〉, ID〈2〉, . . . , ID〈N〉􏽮 􏽯 to
A.

(2) Query:A performs a polynomially bounded number
of queries.

(3) Challenge: C selects the message μ,
U∗ � ID〈i1∗〉, ID〈i2∗〉, . . . , ID〈il∗〉􏽮 􏽯⊆UN, and uses the
master key MK to generate the secret key SKi0

and
SKi1

which corresponds to IDi0
and IDi1

.C randomly
selects b ∈ 0, 1{ } and then calls the signature algo-
rithm to generate the signature σib

.
(4) Guess:A outputs bit b′ as a guess of b. If b′ � b, then

A wins the game.

(e advantage is defined as AdvA � |Pr[b′ � b] − (1/2)|.

Definition 7 (unforgeability). If there is no polynomial time
adversary A to win the following games with an advantage
that cannot be ignored, then the LFIBRS scheme is said to be
unforgeable.

(1) Setup:C exposes parameters PP and identity set UN

and sends them to A.
(2) Query: adversary A can perform polynomial query:

Private key query:C calls the private key extraction
algorithm, obtains the secret key SK corresponding
to the identity ID, and returns it to A

Signature query: C calls the signature algorithm to
get the signature σ of the message μ and returns it to
A

(3) Forgery: the adversary A submits (i∗, ID′∗,
PK, μ∗, σ∗), if the following conditions are true:

(1) σ∗ is a legal signature
(2) A did not query the private key of ID′∗

(3) A did not query ID′∗ and μ∗; then A won the
game

(e advantage is defined as
AdvA � Pr[LFIBRS − Verify(μ, σ∗, ID′∗,PP, PK) � 1].

4. Construction of LFIBRS

In this part, we present our construction of LFIBRS from
lattice. (e LFIBRS consists of four probability polynomial-
time algorithms Setup, KeyExt, Sign, and Verify. We have
incorporated different notations of the proposed LFIBRS
scheme in the following.

4.1. LFIBRS Setup. (is phase can be described as follows:

Step 1. For i ∈ [l], run Trapgen(q, n, m) to generate a
uniformly random matrix Ei ∈ Zn×m

q together with a

short basis TEi
for Λ⊥(Ei), such that

‖􏽦TEi
‖≤O(

������
n log q

􏽰
).

Step 2. Run Trapgen(q, n, m) to generate a uniformly
randommatrix B ∈ Zn×m

q together with a short basis TB
for Λ⊥(B), such that‖􏽦TB‖≤O(

������
n log q

􏽰
).

Step 3. For i ∈ [l], randomly choose matrix Fi in Zn×m
q .

Step 4. Randomly choose matrices B,C in Zn×m
q and D

in Zm×m
q .

Step 5. Select hash functions H1: Z
m
q ⟶ Zn×n

q ,
H2: (Zm

q )l × Zm
q ⟶ Zn×m

q , H3: 0, 1{ }∗ ⟶ Zn
q, and

H4: Z
2m
q × 0, 1{ }∗ ⟶ v ∈ Zm

q : ‖v‖≤ t􏽮 􏽯.
Step 6. Select an error tolerance parameter k such that
k≤ l − 1.
Step 7. Output public parameters PP and master keys
MK:

PP � ( Ei, Fi􏼈 􏼉i∈[l],B,C,D,H1,H2,H3,H4, k) and MK �

( TEi
􏽮 􏽯

i∈[l]
,TB). Public parameters are made public and

master keys are kept secret.

4.2. LFIBRS-KeyExt. Input a user whose identify
ID � (ID1, ID2, . . . , IDl); IDi ∈ Zm

q and i ∈ [l]. Let us do
the steps as follows:

Step 1. For i ∈ [l], compute Gi � [Ei|H1(IDi)Fi],
Gi ∈ Zn×2m

q .
Step 2. For i ∈ [l], compute matrix TGi

using algorithm
RandBasis(Gi,ExtBasis(TEi

,Ei), s0).
Step 3. Compute PKID � [B|H2(ID)D], PKID ∈
Zn×2m

q . We remark that PKID � [B|H2(ID)D] plays
the role of the associated public key.
Step 4. Compute the matrix TPKID

using algorithm
RandBasis(PKID,ExtBasis(TB,B), s0).
Step 5. Run SampleMatpre(PKID,TPKID

, s,C) to gen-
erate SID ∈ Z2m×m

q and PKIDSID � C, such that
‖SID‖≤ s

���
2m

√
.

Step 6. Output PKID and SK � ( TGi
,Gi􏽮 􏽯

i∈[l]
, SID).

PKID is the ID’s public key and
SK � ( TGi

,Gi􏽮 􏽯
i∈[l]

, SID) are the corresponding secret
keys.

4.3. LFIBRS-Sign. Input a message μ and the public keys
PK � PKID〈i〉􏼈 􏼉i∈[l] corresponding to the identities of l ring
members where the identity ID〈π〉 (π ∈ [l]) of the real signer
is related to the public key PKID〈π〉 and the secret keys
SKπ � ( TGi

,Gi􏽮 􏽯
i∈[l]

, SID〈π〉 ). (e signing process is as
follows:

Step 1. Compute v1 � H3(μ, PK).
Step 2. v1 � (v11, v12, . . . , v1m) ∈ Zm

q . (e Shamir’s se-
cret sharing scheme is applied to every coordinate va

1 of
v1, that is, when a ∈ [m], the polynomial with degree
k − 1 is constructed in Zm

q , such that pa(0) � v1a.
Step 3. Construct the a-th share vector, 􏽢va � (p1(a),

p2(a), . . . , pm(a)) ∈ Zm
q . (us, for J⊆[l] and
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k � |J|≤ l − 1, there are fractional Lagrangian coeffi-
cients La such that v1 � 􏽐a∈[J]La 􏽢vamodq.
Step 4. For i ∈ [l], call algorithm SamplePre(Gi,

TGi
, 􏽢va, s2) to calculate ei ∈ Z2m

q .
Step 5. Compute v � H4(􏽐i∈[l]PKID〈i〉ei, μ).
Step 6. Let zπ � SID〈π〉 · v + eπ, and call algorithm A in
(eorem 1; if there is output, output zπ ; otherwise,
reselect the public key and go to the first step.
Step 7. For i ∈ [l]\ π{ }, let zi � ei.
Step 8. Output σ � (z1, z2, . . . , zl, v).

4.4. LFIBRS-Verify. Input the fuzzy identity
ID′ � (ID1′, ID2′, . . . , IDl

′), public parameters PP, message μ,
the public keys PK � PKID〈i〉􏼈 􏼉i∈[l], and the signature σ. (e
verification process is given as follows:

Step 1. For i ∈ [l], verify ‖zi‖≤ 2s2
���
2m

√
. If it is true,

continue to the next step. Otherwise, stop.
Step 2. For i ∈ [l], calculate Gi

′ � [Ei|H1(IDi
′)Fi].

Step 3. Let E⊆ G1′,G2′, . . . ,Gl
′􏼈 􏼉 and |E| � k; if there is E

such that 􏽐Ga
′∈ELaGa
′za � H3(μ,PK),

(La � 􏽑a∈ a: Ga
′∈E{ },i≠ a(i/(i − a))), continue to the next

step. Otherwise, stop.
Step 4. If v � H4(􏽐i∈[l]PKID〈i〉zi − cv, μ), output “1.”
Otherwise, output “0.”

4.5. LFIBRS-Parameters. (e safety parameter of scheme
FIBRS is n, and other parameters are set as follows:

(1) Since TrapGen(q, n, m) is called, m � 2n􏼆log q􏼇 is set
by Lemma 1.

(2) To ensure the difficulty of SIS problem, set
q≥ βω(

������
n log n

􏽰
), β � 2s1

���
2m

√
, by Lemma 9

(3) Because RandBasis(PKID,ExtBasis(TB,B), s0) is
called, by Lemmas 2 and 3, set
s0 ≥O(log n) · ω(

����
log n

􏽰
)

(4) Because SampleMatpre(PKID,TAID
, s,C) is called,

by Lemma 5, set s≥ s0
���
2m

√
· ω(

����
log n

􏽰
)

(5) Because the signature algorithm needs Lemma 4 and
(eorem 1, set s1 � ω(T

������
log 2m

􏽰
)

(6) Due to call SamplePre(Gi,TGi
, 􏽢va, s2), set

s2 � s1
���
2m

√
· ω(

������
log 2m

􏽰
)

4.6. LFIBRS-Correctness. (e correctness analysis is briefly
described as follows:

(1) According to(eorem 1 and Lemma 6, the signature
will output zj with overwhelming probability.

(2) According to Lemma 4, when the real identity can
pass the verification in step 1 of the verification
process, the next step can be continued.

(3) (e following formula is established:

􏽘
i∈[l]

PKID〈i〉zi − Cv � 􏽘
i∈[l]\ π{ }

PKID〈i〉zi + PKID〈π〉zπ − Cv

� 􏽘
i∈[l]\ π{ }

PKID〈i〉 ei + PKID〈π〉 eπ

� 􏽘
i∈[l]

PKID〈i〉 ei.

(6)

5. Security Analysis

Next, we will prove that the above LFIBRS scheme satisfies
anonymity and unforgeability as required.

Theorem 2 (anonymity). For prime q≥ 3, m � 2n􏼆log q􏼇,
and b ∈ 0, 1{ }, σb,PP,IDib

,PK,SK ib
,μ are the outputs of the algorithm

LFIBRS-Sign(PP, ID,PK, SK ib
, μ), where PP is the public

parameter, IDib
is the identity, SK ib

is the secret key of the
corresponding signature, and μ is the message of the corre-
sponding signature. For any polynomial-time adversary, when
SK i0

and SK i1
are unknown, the following formula holds:

Δ σ0,PP,IDi0 ,SKi0 ,μ, σ1,PP,IDi1 ,SKi1 ,μ􏼒 􏼓≤ n
− ω(1)

. (7)

(erefore, the proposed LFIBRS scheme is computa-
tionally anonymous under the random oracle model.

Proof. (e adversary A is a probabilistic polynomial-time
Turing machine, which is allowed to make queries to the
following oracles:

Setup:C performs the following operations to generate
the public parameter PP and all user identities UN and
sends them to A.

(1) Determine the maximum possible user set
UN � ID〈1〉, ID〈2〉, . . . , ID〈N〉􏽮 􏽯

(2) Randomly select matrices B,C in Zn×m
q and D in

Zm×m
q

(3) Output public parameters PP � (B,C,D) and
UN � ID〈1〉, ID〈2〉, . . . , ID〈N〉􏽮 􏽯

Query: adversaryA can send the following query toC,
andC will return the query result toA. Without losing
generality, let A not repeat the query. C performs the
following operations:
Hash query:

(1) A submits a user ID〈i〉 � (ID〈i〉
1 , ID〈i〉

2 , . . . , ID〈i〉
l )

toC, and, for j ∈ [l],C selectsH1(ID
〈i〉
j ) ∈ Zn×n

q to
return it to A

(2) A submits the user ID〈i〉 to C, and C selects
H2(ID〈i〉) ∈ Zn×m

q to return it to A

(3) A submits a message μ and the public keys PK �

PKID〈i〉􏼈 􏼉i∈[l] corresponding to the identities of l

ring members, where the identity ID〈π〉 (π ∈ [l]) to
C and C selects v1 ∈∈ Zn

q to return it to A
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(4) A submits a message μ and the public keys PK �

PKID〈i〉􏼈 􏼉i∈[l] corresponding to the identities of l

ring members, and C selects v ∈ v ∈ Zm
q : ‖v‖≤ t􏽮 􏽯

to return it to A

Extract query: A adaptively selects a user
ID〈i〉 (i ∈ [N]) toC.C returns the secret key SKID〈i〉 of
the corresponding user ID〈i〉.
Sign query: A submits message μ, the identity subset
U � ID〈i1〉, ID〈i2〉, . . . , ID〈il〉􏽮 􏽯⊆UN, and the user
ID〈it〉 ∈ U to B. B operates as follows:

(1) C runs the algorithm LFIBRS − KeyExt to get the
corresponding public keys subring
PK � PKID〈it〉􏼈 􏼉t∈[l] corresponding to the identities
of l ring members, where the identity
ID〈it〉 (π ∈ [l])

(2) Input the message μ, public keys subring
PK � PKID〈it〉􏼈 􏼉t∈[l], and secret key SKID〈it〉 ; C runs
the algorithm LFIBRS − Sign and returns the
signature (z1, z2, . . . , zl, v) of the user ID〈it〉

Challenge: C selects μ∗ and the identity subset U∗ �

ID〈i1∗〉, ID〈i2∗〉, . . . , ID〈il∗〉􏽮 􏽯⊆UN and uses the master
key MK to generate the secret keys SKi0

and SKi1
corresponding to IDi0

, where IDi1
, IDi0
∈ U∗. C ran-

domly selects b ∈ 0, 1{ } and then calls the signature
algorithm to generate the signature σib

.
Guess: A outputs bit b′.

Suppose that the signature with secret key SKi0
outputs

σ0 � (σ10, z20, . . . , zl0, v0) and the signature with secret key
SKi1

outputs σ1 � (z11, z21, . . . , zl1, v1). σ0,PP,IDi0 ,PK,SKi0
is

abbreviated as σ0. σ1,PP,IDi1 ,PK,SKi1
is abbreviated as σ1.

To get anonymity, we just need to prove that the sig-
natures σ0 and σ1 are statistically indistinguishable. From
Lemmas 7 and 8 and trigonometric inequality, we can get

Δ σ0, σ1( 􏼁 � Δ z10, z20, . . . , zl0, v0( 􏼁, z11, z21, . . . , zl1, v1( 􏼁( 􏼁

≤Δ z10, z20, . . . , zl0( 􏼁, z11, z21, . . . , zl1( 􏼁( 􏼁

≤Δ z10, z20, . . . , zl0( 􏼁, D
2m
s1

􏼐 􏼑
l

􏼒 􏼓 + Δ z11, z21, . . . , zl1( 􏼁, D
2m
s1

􏼐 􏼑
l

􏼒 􏼓

≤ lΔ zi0, D
2m
s1

􏼐 􏼑 + lΔ zi1, D
2m
s1

􏼐 􏼑.

(8)

From (eorem 1, we can get Δ(zi0, D2m
s1

)≤
(2− ω(log 2m)/M) and Δ(zi1, D2m

s1
)≤ (2− ω(log 2m)/M), so

lΔ zi0, D
2m
s1

􏼐 􏼑 + lΔ zi1, D
2m
s1

􏼐 􏼑≤ 2l
2− ω(log 2m)

M
� n

− ω(1)
. (9)

(erefore, the proposed LFIBRS scheme is computa-
tionally anonymous under the random oracle model. □

Theorem 3 (Unforgeability). For prime q≥ 3 and
m � 2n􏼆log q􏼇 , in time T, if there is a polynomial-time
adversary A that can forge the effective signature of LFIBRS
scheme with the probability of ϵ, then there is a polynomial-
time algorithm B that can solve the SISq,n,m,β problem with
the probability of ϵ′ in time T′ ≈ T, where ϵ′ ≥ ϵ − n− ω(1)

and β � 2s1
���
2m

√
.

Proof. (e proof process is similar to literature [21, 22]. (e
analysis is as follows.

Suppose that there is a polynomial-time adversaryA that
forges the signature of LFIBRS scheme with the probability
of ϵ. Next, the polynomial-time algorithm B is constructed
to solve the SISq,n,m,β problem by using the ability of ad-
versary A to forge signature.

B gives an example of SISq,n,m,β problem and uses the
ability of A to give a solution.

(1) B selects randomly matrix B in Zn×m
q

(2) B finds a nonzero vector e ∈ Zm
q to make Be � O

mod q and ‖e‖≤ β

First of all, B creates three empty lists L1, L2, L3 to store
the queries of adversary A, H2 and H4, and secret key. (e
interaction between B and A is as follows:

Setup:B performs the following operations to generate
the public parameter PP and all user identities UN and
sends them to A.

(1) Determine the maximum possible user set UN �

ID〈1〉, ID〈2〉, . . . , ID〈N〉􏽮 􏽯 and a challenge user
ID〈i∗〉, i∗ ∈ [N]

(2) For i ∈ [N], run Trapgen(q, n, m) to output a
matrixH2(ID〈i〉) � Bi ∈ Zn×m

q together with a short
basis TBi

for Λ⊥(Bi)

(3) B calls SampleMatpre(Bi∗ ,TBi∗
, s,O) and outputs

D ∈ Zn×m
q and Bi∗D � O

(4) Randomly select matrices B,C in Zn×m
q . (e user’s

secret key is TBi∗
and his corresponding public key

is PKi∗ � [B|Bi∗D] ∈ Zn×2m
q

(5) Output public parameters PP � (B,C,D) and
UN � ID〈1〉, ID〈2〉, . . . , ID〈N〉􏽮 􏽯

Query: Adversary A can send the following query to
B, and B will return the query result to A. For the
identity subset U � ID〈i1〉, ID〈i2〉, . . . , ID〈il〉􏽮 􏽯⊆UN, B
performs the following operations:
Hash query 1:

(1) B queries the list L1 first. If ID〈i〉 has already been
queried, B returns H2(ID〈i〉)

(2) Otherwise, let H2(ID〈i〉) � Bi and Bi is sent to A.
B computes PKi � [B|BiD], and add
(ID〈i〉,PKi,TBi

) to the list L1

Hash query 2:

(1) A submits message μ to B. For i ∈ [l], B ran-
domly selects yi ∈ D2m

s1
. B queries the list L2 and

returns the same result if they already have been
checked

(2) Otherwise, B randomly selects
v ∈ v ∈ Zm

q : ‖v‖≤ t􏽮 􏽯 and sends v toA andB adds
(μ, U, (y1, y2, . . . , yl), v) to the list L2

Extract query: A adaptively selects a user
ID〈i〉 (i ∈ [N]) to B. B checks list L1 to find
(ID〈i〉,PKi,TBi

) and then uses (ID〈i〉,PKi,TBi
) to run

SampleMatpre(PKi,TBi
, s,C). Output Si ∈ Z2m×m

q ,
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satisfying PKiSi � C, and ‖Si‖≤ s
���
2m

√
. Add (ID〈i〉, Si)

to the list L3.
Sign query: A submits message μ, the identity subset
U � ID〈i1〉, ID〈i2〉, . . . , ID〈il〉􏽮 􏽯⊆UN, and the user
ID〈it〉 ∈ U to B. B operates as follows:

(1) B checks the list L2. If (μ, U, (y1, y2, . . . , yl), v) was
not recorded, go to hash query 2 and record
(μ, U, (y1, y2, . . . , yl), v) in the list L2

(2) B checks the list L3. If (ID〈i〉, Si) was not recorded,
go to extract query and record (ID〈i〉, Si) in the list
L3

(3) B checks the lists L2 and L3. B looks for the
corresponding record (μ, U, (y1, y2, . . . , yl), v) in L2
and the record (ID〈i〉, Si) in L3

(4) Let zj � yj (j≠ t) and zj � Siv + yj (j � t); B

returns the signature (z1, z2, . . . , zl, v) of the user
ID〈it〉

Forgery: A submits message μ∗, the identity subset
U∗ � ID〈i1∗〉, ID〈i2∗〉, . . . , ID〈il∗〉􏽮 􏽯⊆UN, and forged
signature (z∗1 , z∗2 , . . . , z∗l , v∗) by the user ID〈it∗〉 ∈ U∗ to
B, meeting the following conditions:

(1) A has not asked for the private key of the user
ID〈it∗〉

(2) A did not ask for (U∗, μ∗)’s signature

(e signature (z∗1 , z∗2 , . . . , z∗l , v∗) is used in the following,
which is an example of the identity subset U∗’s legal sig-
nature of message μ∗ to solve the SISq,n,m,β problem given at
the beginning. B first queries L2 to find
(μ∗, U∗, (y∗1 , y∗2 , . . . , y∗l ), v∗). If (μ∗, U∗, (y∗1 , y∗2 , . . . , y∗l ), v∗)
does not exist, then the game is terminated immediately.
Otherwise, since (z∗1 , z∗2 , . . . , z∗l , v∗) is a legal signature, we
obtain

PKit∗z
∗
it − Cv∗ � PKit∗y

∗
t . (10)

B extracts the key Sit∗ of ID〈it∗〉 in Table L3, and let
zi
′ � y∗i (if i≠ t ) and zit

′ � Sit∗v∗ + y∗it(if i � t ). It is easy to see
that (z1′, z2′, . . . , zl

′, v∗) is also a legal signature, so

PKit∗zit
′ − Cv∗ � PKit∗y

∗
t . (11)

From (10) and (11), we obtain PKit∗(z∗it − zit
′) � O.

If z∗it − zit
′ � O, then the game is terminated immediately.

If z∗it − zit
′ ≠O, let z∗it − zit

′ � (e, e′)⊤, where e, e′ ∈ Zm. If
e � O, then the game is terminated immediately. Otherwise,
Be � O. Because PKit∗ � [B|H1(ID〈it∗〉)D] and
H1(ID〈it∗〉)D � O, it follows that PKit∗(z∗it − zit

′) �

[Be|O] � O; namely, Be � O. Because ‖e‖≤ ‖z∗it − zit
′‖≤

‖z∗it‖ + ‖zit
′‖≤ 2s1

���
2m

√
, let β � 2s1

���
2m

√
; it is easy to check

that e is the solution of the SISq,n,m,β problem that is put
forward at the beginning.

In the following analysis, B can successfully find the
probability ϵ′ of e. B will give up the game in the three
following situations, which implies that the game fails.

(1) When (μ∗, U∗, (y∗1 , y∗2 , . . . , y∗l ), v∗) is not in L2, the
probability that v∗ � H2(􏽐i∈[l]PKizi − Cv∗, μ∗)
passing the signature verification is 1/(2t)2m

(2) When z∗it − zit
′ � O, due to Δ(z∗it, D2m

s1
)≤

(2− ω(log 2m)/M) and Δ(zit
′, D2m

s1
)≤ (2− ω(log 2m)/M),

Δ(z∗it, zit
′)≤Δ(z∗it, D2m

s1
) + Δ(zit

′, D2m
s1

)≤ 2(2− ω(log 2m)/
M)

(3) When e � O, namely, z∗it − zit
′ � [O, e′]⊤ and e′ ≠O,

the statistical distance between z∗it and zit
′ satisfying

Δ(z∗it, zit
′)≤ 8(2− ω(log 2m)/M)

From the above analysis, we can see that ε′ ≥ ϵ − (1/
(2t)2m) − 10(2− ω(log 2m)/M) � ϵ − n− ω(1). □

6. Efficiency Analysis

In Table 1, we set the following:

|PP|: public parameters size
|MK|: master key size
|sk|: secret key size
|σ|: signature size

From Table 1, we may conclude that the communication
and time cost of our scheme are larger than those of the

Table 1: Comparison of communication costs.

Scheme Reference [21], work-1 Reference [21], work-2 [22] (is work
|PP| (5lm + k′)n log q 2lmn log q 2mn log q (2l + 3)mn log q

|MK| 2lm2log q lm2log q m2log q (l + 1)m2log q

|sk| 4lm2log q 4lm2log q m2log q 2(l + 1)m2log q

|σ| 2lm log q 2lm log q (lm + 1)log q (2lm + 1)log q

Table 2: Comparison of time costs.

Scheme Reference [21], work-1 Reference [21], work-2 [22] (is work
Ext − Cost lT1 lT1 T3 + T5 + T8 (l + 1)T1 + T7
Sig − Cost nT2 + lT4 nT2 + lT4 m(l + 1)T6 mT1 + lT3
Ver − Cost k(nT5 + T6) k(nT5 + T6) (l + 1)T5 (Ck

l + l + 1)T5
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scheme in [22], and only the size of private key is smaller
than that of [21].

In Table 2, we set the following:

Ext − Cost: secret key extraction cost
Sig − Cost: signing cost
Ver − Cost: verification cost
T1: the cost of RandBasis(ExtBasis)
T2: the cost of Shamir’s secret sharing operation
T3: the cost of SampleMatpre
T4: the cost of SamplePre
T5: the cost of matrix product
T6: the cost of scalar multiplication
T7: the cost of BasisDel
T8: the cost of matrix inversion

From Table 2, we may conclude that our scheme has
higher verification cost than those in [21, 22].

7. Conclusions

In this paper, we construct a fuzzy identity ring signature
scheme based on SIS problem and prove its unforgeability
in random oracle model. In particular, this scheme re-
quires that the number of ring members be equal to the
number of fuzzy identity coordinates. When the number of
the components of the identity vector is greater than the
number of the ring members, a certain number of tem-
porary identities can be added as the ring members, so that
the number of the ring members is equal to the number of
the components of the identity vector. When the number
of the ring members is more than the number of the
components of the identity vector, a certain number of
vector components will be randomly selected from Zm

q to
expand the number of components of the identity vector.
A signature issued under an identity ID can be verified by
any identity ID′ that is “close enough” to the identity ID.
(is property allows our signature scheme to have an
application in biometric authentication. Compared with
the existing signature scheme of fuzzy identity, the scheme
has the anonymity of ring signature which fuzzy identity
signature does not have, so the efficiency of verification
operation is lower. As the third step in the verification
process, the worst case is to calculate Ck

l times, so when the
signature scheme is used and Ck

l is too large in this paper,
the verification efficiency will be very low. In the future, we
hope to improve the algorithm of FIBRS to improve the
efficiency of verification signature algorithm.
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