
Research Article
Distributed Functional Signature with Function Privacy and
Its Application

Muhua Liu , Lin Wang , Qingtao Wu , and Jianqiang Song

Control Science and Engineering Postdoctoral Mobile Station, Henan University of Science and Technology, Luoyang, China

Correspondence should be addressed to Qingtao Wu; wqt8921@haust.edu.cn

Received 27 December 2020; Revised 23 February 2021; Accepted 27 February 2021; Published 12 March 2021

Academic Editor: Liguo Zhang

Copyright © 2021 Muhua Liu et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a novel notion of distributed functional signature. In such a signature scheme, the signing key for function
f will be split into n shares ski

f and distributed to different parties. Given a message m and a share ski
f, one can compute

locally and obtain a pair signature (fi(m), σi). When given all of the signature pairs, everyone can recover the actual value
f(m) and corresponding signature σ. When the number signature pairs are not enough, nobody can recover the signature
(f(m), σ). We formalize the notion of function privacy in this new model which is not possible for the standard functional
signature and give a construction from standard functional signature and function secret sharing based on one-way
function and learning with error assumption. We then consider the problem of hosting services in multiple untrusted
clouds, in which the verifiability and program privacy are considered. -e verifiability requires that the returned results
from the cloud can be checked. -e program privacy requires that the evaluation procedure does not reveal the program
for the untrusted cloud. We give a verifiable distributed secure cloud service scheme from distributed functional signature
and prove the securities which include untrusted cloud security (program privacy and verifiability) and untrusted
client security.

1. Introduction

Digital signature schemes were introduced by Diffie and
Hellman [1]. In a digital signature scheme, it has a secret
signing key and a corresponding verification key. Only the
person who has the secret key can sign a message, and any
person can verify the signature with the verifiable key.
Goldwasser et al. [2] gave a standard secure definition. A
signature scheme is unforgeable against chosen message
attack if an adversary produces a valid signature of any
message with at most negligible probability in probabilistic
polynomial time. -e adversary is allowed to query signa-
tures for a polynomial number of messages of his choice.
Subsequently, it appeared to have many other forms of
signatures, such as blind signature [3], group signature [4],
ring signature [5], identity-based signature [6], homomor-
phic signature [7, 8], and so on.

Functional signatures (FSs) were proposed by Boyle et al.
[9]. In a functional signature scheme, in addition to a master

key which can sign any messages belonging to the message
space, it also has a signing key skf for any function f, which
are derived from the master key. Using the signing key skf,
one can sign any message in the range of f. -e security
requires that the probability of producing a valid signature
on message m does not exceed a negligible function for any
probability polynomial adversary which can query the
signing key for functions f1, f2, . . . , fℓ of his choice and
signatures of messages m1, m2, . . . , mn of his choice. A valid
signature on m means that m does not equal to one of the
queried messages m1, m2, . . . , mn or m does not belong to
range of one of the queried functions f1, f2, . . . , fℓ. For a
functional signature scheme, a desirable property is function
privacy which requires a signature should not reveal the
function. A typical application is the signed photo-pro-
cessing software [9]; the owner of photos want to remove red
eyes or color scale, but does not allow more significant
changes. At the same, the owner wishes the signed photos do
not reveal the original image.

Hindawi
Security and Communication Networks
Volume 2021, Article ID 6699974, 14 pages
https://doi.org/10.1155/2021/6699974

mailto:wqt8921@haust.edu.cn
https://orcid.org/0000-0002-4707-1354
https://orcid.org/0000-0003-1704-5144
https://orcid.org/0000-0003-1572-5293
https://orcid.org/0000-0002-9643-799X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6699974

Boyle et al. [9] firstly gave a construction based on the
existence of one-way functions, which does not satisfy the
property of function privacy. -en, they transformed it into
a construction that satisfied the function privacy by the
noninteractive zero-knowledge arguments of knowledge for
NP languages which is based on nonfalsifiable assumptions.
In their secure definition of function privacy, it requires that
the distribution of signatures on a message m generated via
different keys skf to be computationally indistinguishable.
While this model restricted the application of the scheme, it
is not clear how could this weakened notion be applied in the
general setting. For example, a software company develops
software and delegates the computation ability to a server.
-e company wishes it does not reveal the core function
during the computational procedure and the returned re-
sults can be verified. In a functional signature scheme,
standard function privacy cannot possibly satisfy this sce-
nario. Since the attacker who has a signing key skf can
generate the signature (σ, f(m)) for the message m on the
fly, the attacker can obtain the evaluations of f(m1), . . . ,

f(mn) for the messages m1, . . . , mn of its choices. It will
reveal some functions of the software by the evaluation pairs
(mi, f(mi))

n

i�1.
-erefore, we try to find a realistic model that allows us

to approach function privacy for functional signature based
on some standard assumption, such as the existing one-way
function and learning with error assumption.

1.1. Our Contributions. In this paper, we introduce the
definition of distributed functional signature scheme. In
such a model, the signing key for a function f will be split
into n shares ski

f and distributed to different parties. Given
a secret signing key ski

f, anyone can compute locally and
obtain a pair signature (fi(m), σi). When given n signa-
tures (fi(m), σi)

n
i�1 on the message m, everyone can re-

construct the function evaluation f(m) and the
corresponding signature σ. While given less than n sig-
natures (fi(m), σi) i∈S satisfying |S|< n, anyone cannot
reconstruct the evaluation f(m) and the corresponding
signature σ. In our secure definition of function privacy, we
require the attacker to not distinguish the distribution of
signing key ski

f
i∈S generated via different function f,

where |S|< n. -e attacker is allowed to query key gener-
ation oracle and evaluation oracle. -is new definition of
distributed functional signature generalizes the notion of
threshold signature to the setting of functional signature,
enables the participants to recover an evaluation of the
function f on input m, and verifies the result by the
corresponding signature together.

In our new model, it provides a possibility of function
privacy in the setting of functional signature. Specifically,
when given less than n signing key ski

f for function f, the
adversary can only know fi(m) corresponding to the share
functionfi which is not enough to determine f(m). We give
a construction for distributed functional signature by
transforming any functional signature which does not
support function privacy into a distributed version which
satisfies both unforgeability and function privacy via

function secret sharing [10]. Our scheme can be constructed
based on the one-way function and learning with error
assumption.

We remark here that our notion of function privacy is
different from the standard function privacy [9]. -e latter
mainly considers that single signature does not reveal the
function, while we consider that the signature process does
not reveal the function by splitting each function into secret
key shares. In our scheme, the attacker only gets at most
n − 1 secret key shares and thus obtains at most n − 1 sig-
natures (fi(m), σi) i∈S satisfying |S|< n. Anyone cannot
reconstruct the value f(m). -erefore, it satisfies the
function privacy.

Hosting services securely in multiple untrusted clouds.
In recent years, cloud computing has become a very hot
research area in cryptography. Boneh et al. [11] first
studied hosting service in the cloud. -ey considered the
security which includes protecting program information
and client’s inputs against untrusted cloud and protecting
program information and authorization procedure
against untrusted clients. It has wide applications to
protect program information against untrusted client and
cloud, such as software protected. Fan and Tang [12] gave
a construction from distributed functional encryption.
However, it requires that the cloud is semihonest.
Sometimes, the cloud may run a fast but incorrect
computation due to a financial incentive. -erefore, we
also consider another property of verifiability which re-
quires that the returned results from the cloud can be
checked in the untrusted cloud model.

In addition, the construction of Fan and Tang [12] is
based on the generic functional encryption. As far as we
know, most works have approached the problem of con-
structing generic functional encryption by proposing a
candidate under the existing of indistinguishability obfus-
cation [13]. Meanwhile, the construction of Boneh et al. [11]
is also based on the existing indistinguishability obfuscation.
However, indistinguishability obfuscation is not a particu-
larly appealing assumption since the security of construc-
tions relies on an exponential number of assumptions [14].
Recently, numerous attacks on multilinear maps [15] have
reduced the community’s confidence in the security of
existing construction of indistinguishability obfuscation. In
this work, we provide a construction of secure cloud service
scheme based on some more general assumptions, such as
the existing one-way function and learning with error
assumption.

A secure cloud service scheme satisfying the verifi-
ability can be constructed by a distributed functional
signature scheme and a standard signature scheme. -e
standard signature scheme is used to authenticate the
client. In order to achieve the verifiability, the service first
generates some signing key ski

P
for the program

P � x|P(x). When the client receives the returned results
from clouds, it can get the evaluation (y, σ) by the re-
construction algorithm of distributed signature scheme.
To prove that y � x|P(x), the client verifies the signature σ
of y, where the signature σ could only be obtained if y is in
the range of P.

2 Security and Communication Networks

1.2. Related Works. -e concept of identity-based signature
was proposed by Shamir in [16]. Bellare and Fuchsbauer [17]
introduced policy-based signatures, where a signer can only
sign messages satisfying some authority-specified policy.
Backes et al. [18] introduced delegatable functional signa-
tures which support the delegation of signing capabilities to
another party with respect to a functionality. -is new
notion unifies several signature primitives, such as policy-
based signature, functional signature, identity-based sig-
nature, and blind signature.

Homomorphic signature was first proposed by Johnson
et al. [19], which was initially designed to establish au-
thentication in network coding. In addition, it can also be
used to authenticate the stored data. In a homomorphic
signature scheme, a holder which has the signature pairs
(m0, σ0) and (m1, σ1) can construct a new signature σ on the
value f(m0, m1) for some function f without the signing
key. Freeman [20] gave a linearly homomorphic signature
scheme which allows authentication of linear functions on
signed data. Catalano et al. [21] constructed a homomorphic
signature scheme for polynomial functions.

-e concept of functional encryption comes from the
work of Sahai and Waters [22]. -e definition of simula-
tion-based security was firstly proposed by Boneh et al.
[23]. Garg et al. [13] firstly proposed a construction for
functional encryption which supported all polynomial size
circuits. Goldwasser et al. [24] constructed a succinct
functional encryption scheme based on reusable garbled
circuits and identity-based encryption for any polynomial-
time function. Subsequently, Goldwasser et al. [25] in-
troduced the notion of multi-input functional encryption,
which supported the multi-input functions, and gave a
construction based on indistinguishability obfuscation. In a
multi-input functional encryption, the decryption key skf

for a function f takes multiple ciphertexts as input and
outputs a function evaluation. Besides, there are many
other functional encryptions for inner-product functions
[26–28].

Boneh et al. [11] gave a construction of hosting service in
the cloud. -eir construction relied on indistinguishability
obfuscation iO and restricted the number of colluded clients
for the security. Fan and Tang [12] presented a new defi-
nition of distributed public key functional encryption. In
their scheme, the decryption key for a function f is split into
several sharing key skf

i . Given a ciphertext that encrypts a
message m and a sharing key skf

i , it can evaluate a shared
value yi which reveals nothing about the plaintext and the
value of f(m). One can recover the value of f(m) by adding
all the shared values yi. With this approach, it can achieve
function privacy which is not possible in the setting of
regular public key functional encryption. -en, they con-
sidered the problem of hosting services in the untrusted
cloud. Applying the function private distributed public key
functional encryption to the setting of hosting service in
multiple clouds, it can remove the restriction that the
number of corrupted clients has to be bounded and known
in the previous works.

Boyle et al. [9] firstly proposed functional signatures,
which allowed an authority to generate signing keys

corresponding to various functions such that a user with a
signing key skf can sign the image of function f on a
message m. Okamoto and Takashima [29] firstly introduced
the concept of a decentralised multiauthority functional
signatures, which supports nonmonotone access structures
combined with inner-product relations. Liang and Mitro-
kotsa [30] generalised the definition of decentralised mul-
tiauthority functional signature for more general policy
functions. Datta et al. [31] introduced the concept of
functional signcryption, which provided the functionalities
of both functional encryption and functional signature. Pan
et al. [32] introduced the notion of hierarchical functional
signcryption which expanded the scope of functional
signcryption in hierarchical access-control application. Li
et al. [33] introduced the notion of private functional sig-
natures, in which the signing key skf can be used to generate
a signature σf(x) on the ciphertext cx, where cx is a ciphertext
for message x.

Blockchains originate from Bitcoin and are essentially a
decentralised database that uses peer-to-peer network. It is a
new application mode of computer technology such as
distributed data storage, point-to-point transmission, and
consensus mechanism. -is makes blockchains potentially
suitable for recording events, medical records, and other
management activities. Although it can realize the function
of software protection, it does not possess computing ca-
pabilities. In this work, our goal is to achieve software
protection while ensuring software availability.

Notation. In what follows, we will denote with λ ∈N a
security parameter. We say negl(λ) is negligible if
|negl(λ)|< (1/poly(λ)) holds for all polynomials poly(λ)

and all sufficiently large λ. Denote [n] as the set 1, 2, . . . , n{ }.
We abbreviate probabilistic polynomial time as PPT. Denote
|S| as the number of elements in the set S.

2. Preliminaries

In this section, we present definition for various crypto-
graphic primitives that we will use in our construction of
distributed functional signature. We assume familiarity with
standard signature satisfying unforgeability against adap-
tively chosen message attack. Below, we first recall the
notions of function secret sharing and functional signature.

2.1. Function Secret Sharing. We give the formal definition
following the syntax of [10]. An (n, n)−function secret
sharing scheme for a function family F is a tuple of algo-
rithms (FSS.Setup, FSS.ShareGen, FSS.Recon) described as
follows:

(i) FSS.Setup(1λ, n,F)⟶ FSS.pp: on inputting the
security parameter λ, the number of sharers n, and
the description of function familyF, this algorithm
outputs the public parameters FSS.pp.

(ii) FSS.ShareGen(FSS.pp, f)⟶ fi
n
i�1: on inputting

the parameters FSS.pp and a function f ∈ F, this
algorithm outputs n shares fi

n

i�1 for function f.

Security and Communication Networks 3

(iii) FSS.Recon(FSS.pp, fi(x)
n

i�1)⟶ fi(x): on in-
putting n values fi(x)

n

i�1 which evaluated each
function share fi on x, this algorithm reconstructs
all the share values fi(x)

n

i�1 and outputs f(x).

Definition 1. Correctness: an (n, n)−function secret sharing
scheme for the function family F is correct, if for any
function f ∈F, x ∈ Df, FSS.pp⟵ FSS.Setup(1λ, n,F),
and fi

n
i�1⟵ FSS.ShareGen(FSS.pp, f), we have

Pr f(x) � FSS.Recon FSS.pp, fi(x)
n
i�1(≥ 1 − negl(λ).

(1)

Definition 2. Security: we say an (n, n)−function secret
sharing scheme is secure if for any PPT adversary A, the
advantage in the following game is negligible:

(i) -e challenger generates FSS.PP⟵ FSS.Setup
(1λ, n,F) and sends FSS.pp to the adversary A.

(ii) -e adversary outputs
(S, f0, f1)⟵ A(FSS.pp, λ), where f0, f1 ∈F,
Df0 � Df1 , and S ∈ [n], |S| � n − 1.

(iii) -e challenger randomly chooses a bit b⟵ 0, 1{ },
computes fb

i
n

i�1⟵FSS.ShareGen(FSS.pp, fb),
and sends fb

i i∈S to the adversary A.
(iv) A outputs a guess b ′⟵A(FSS.pp, fb

i i∈S). -e
advantage of A is defined as Adv �

(Pr[b′ � b] − 1/2).

2.2. Functional Signatures. We describe the definition of a
functional signature scheme, which is proposed by Boyle
et al. in [9]. A functional signature scheme for a message
space M and a function family F � f: Df⟶M

consists of four algorithms (FS.Setup,
FS.KeyGen, FS.Sign, FS.Very):

(i) FS.Setup(1λ)⟶ (FS.mvk, FS.msk): on inputting
the security parameter, the setup algorithm outputs
the master verification key FS.mvk and the master
signing key FS.msk.

(ii) FS.KeyGen(FS.msk, f)⟶ skf: on inputting the
master signing key FS.msk and a function f ∈F,
the key generation algorithm outputs a constrained
signing key skf, which just signs the message f(m)

for any m ∈ Df.
(iii) FS.Sign(f, skf, m)⟶ (f(m), σ): on inputting the

function f, constrained signing key skf, and a
message m ∈ Df, the signing algorithm outputs a
pair signature (f(m), σ).

(iv) FS.Very(FS.mvk, m∗, σ)⟶ 0, 1{ }: on inputting the
verification algorithm FS.mvk, a message m∗, and a
signature σ, the verifiable algorithm outputs “1” or
“0,” where 1 indicates that the signature is valid.

Definition 3. Correctness: for any f ∈F and m ∈ Df,
(FS.msk, FS.mvk)⟵FS.Setup(1λ), skf⟵FS.KeyGen
(FS.msk, f), (m∗, σ)⟵FS.Sign(f, skf, m), it holds that

FS.Very FS.mvk, m
∗
, σ(� 1. (2)

Definition 4. Unforgeability: the scheme is unforgeable if the
successful probability of any PPT algorithm A in the fol-
lowing game is negligible:

(i) -e challenger runs (FS.mvk, FS.msk)⟵
FS.Setup(1λ) and sends FS.mvk to the adversaryA.

(ii) -e adversary A can query a key generation oracle
and a signing oracle. -e challenger initializes a
dictionary indexed by tuples (f, j) ∈F × N, which
contains the signing keys: skf⟵FS. KeyGen
(FS.msk, f).

(iii) Key generation oracle: on inputting (f, j), the
challenger runs as follows:

(1) If there is an entry for (f, j) in the dictionary,
then output the corresponding key skfj .

(2) Otherwise, sample a fresh key
skfj⟵FS.KeyGen (FS.msk, f), update the
dictionary (f, j) ⟶ skfj , and output skfj .

(iv) Signing oracle: on inputting (f, j, m), the chal-
lenger runs as follows:

(1) If there is an entry for the key (f, j) in the
dictionary, then output the signature
σ⟵FS.Sign(f, skfj , m).

(2) Otherwise, sample a fresh key
skfj⟵FS.KeyGen(FS.msk, f), update the
dictionary (f, j)⟶ skfj , and output the sig-
nature σ⟵FS.Sign(f, skfj , m).

(v) -e adversary succeeds if it outputs a signature
(m∗, σ) such that

(1) FS.Very(FS.mvk, m∗, σ) � 1.
(2) -ere does not exist m such that m∗ � f(m) for

any f which was sent as a query to the key
generation oracle.

(3) -ere does not exist a (f, m) such that (f, m)

was queried to the signing oracle and
m∗ � f(m).

Lemma 1 (see [9]). A functional signature scheme can be
constructed based on any one-way function that supports
signing keys for any function f which is computed by a
polynomial-sized circuit. 3is scheme satisfies the property of
unforgeability, but not function privacy.

2.3. General Aggregate Signatures. A general aggregate sig-
nature scheme [34] consists of four algorithms (AS.KeyGen,
AS.Sign, AS.Agg, AS.Very). -e key generation algorithm
and signing algorithm are the same as a standard digital

4 Security and Communication Networks

signature. In the aggregate algorithm, it produce a new
signature by σ⟵Agg((pk1, m1, σ1), (pkn, mn, σn)). Given a
sequence of public key, message, and signature triples,
anyone can yield an aggregate signature σ. -rough
Very((pk1, m1), . . . , (pkn, mn), σ), anyone can verify the
correctness of generation aggregate signature.

In addition to satisfying unforgeability under chosen
message attack of the standard signature, it needs to satisfy
aggregate unforgeability. -e security requires that it is
computationally infeasible to produce an aggregate forgery
for a PPTadversary which can corrupt at most n − 1 players.
-e detailed description of security is given as follows.

Definition 5. Aggregate security: a general aggregate sig-
nature scheme is aggregate unforgeable, if it holds that

Pr Very pk1, m1(, . . . , pkn, mn(, σ(� 1 < negl(λ), (3)

where the probability is over the experiment
(pk, sk)⟵AS.KeyGen(1λ), ((pk1, m1), . . . , (pkn, mn), σ)

⟵AAS.Sign(sk,·)(pk).

Lemma 2 (see [34]). A general aggregate signature scheme
can be constructed based on the difficulty of coCDH problem.

3. Distributed Functional Signature with
Function Privacy

In this section, we give a detailed study of distributed
functional signature (DFS), n-out-of-n threshold functional
signature. In an (n, n) − DFS scheme, during the key gen-
eration algorithm, the secret key corresponding to the
function is split into n secret key shares (ski

f, fi)
n

i�1. -en,
we can obtain a pair shared signature (fi(m), σi) by running
partial signature algorithm on the secret key share ski

f

corresponding to the shared function fi and a message m.
-ere is also a reconstruction algorithm that outputs a pair
signature (f(m), σ) on n shared signatures (fi(m), σi)

n

i�1.

3.1. Syntax and Security Definition. We present a formal
definition of a distributed functional signature, specifying
the properties of unforgeability and function privacy. A
distributed functional signature scheme for a message space
M and function family F � f: Df⟶M consists of
algorithms (DFS.Setup,DFS.KeyGen,DFS.Sign,DFS.Con,

DFS.Very).

(i) DFS.Setup(1λ, n)⟶ (msk,mvk): on inputting the
secure parameter λ and threshold parameter n, the
setup algorithm outputs the master verifiable key
mvk and the secret key msk.

(ii) DFS.KeyGen(msk, f)⟶ (ski
f, fi)

n

i�1: on input-
ting the master secret key msk and a function
f ∈ F, the key generation algorithm outputs n

secret key shares (ski
f, fi)

n

i�1 for the function f.
(iii) DFS.Sign(fi, sk

i
f, m)⟶ (fi(m), σi): on inputting

the signing key ski
f for a function fi and an input

m ∈ Df, the signature algorithm outputs a value
fi(m) and a signature σi.

(iv) DFS.Con(mvk, (fi(m), σi)
n

i�1)⟶ (f(m), σ): on
inputting the master verifiable key mvk and signing
pairs (fi(m), σi)

n

i�1 for the same function f, the
reconstruction algorithm outputs a signing pair
(f(m), σ).

(v) DFS.Very(mvk, m∗, σ)⟶ 0, 1{ }: on inputting the
master verifiable key mvk, a message m∗, and a
signature σ, the verifiable algorithm outputs “1” or
“0,” where 1 implies that the signature is valid.

Definition 6. Correctness: an (n, n) − DFS scheme is correct
if for any DFS.Setup(1λ, n)⟶ (msk,mvk), any f ∈ F, and
any m ∈ Df, (ski

f, fi)
n

i�1⟵DFS.KeyGen(msk, f), it
holds that

Pr f(m) � f′(m) ≥ 1 − negl(λ),

Pr DFS.Very mvk, f′(m), σ(� 1 ≥ 1 − negl(λ),

(4)

where (fi(m), σi)⟵DFS.Sign(fi, sk
i
f, m), DFS.Con(mvk,

(fi(m), σi)
n

i�1) � (f′(m), σ), and the probability is taken
over the coins in algorithms DFS.Setup(1λ, n) and
DFS.KeyGen(msk, f).

Definition 7. Unforgeability: the scheme is unforgeable if the
successful probability of any PPT adversary A in the fol-
lowing game is negligible:

(i) -e challenger generates DFS.Setup(1λ, n)⟶
(msk,mvk) and sends mvk to A.

(ii) -e adversary is allowed to query a key generation
oracle and a signing oracle.-e challenger initializes
a dictionary indexed by tuples (f, j) ∈ F × N,
which contains signing keys
(ski

f, fi)
n

i�1⟵DFS.KeyGen(msk, f).
(iii) Key generation oracle: on inputting (f, j), the

challenger runs as follows:

(1) If there exists an entry for the key (f, j) in the
dictionary, then output the corresponding value
(ski

fj , f
j
i)

n

i�1.
(2) Else, run the key generation algorithm

(ski
fj , f

j

i)
n

i�1⟵DFS.KeyGen(msk, fj), add

an entry (f, j)⟶ (f
j
i , sk

i
fj)

n

i�1 to the dic-

tionary, and output (f
j
i , sk

i
fj)

n

i�1.

(iv) Signing oracle: on inputting (f, j, m), the chal-
lenger runs as follows:

(1) If there exists an entry for the key (f, j) in the
dictionary, then run DFS.Sign(f

j

i ,

ski
fj , m)⟶ (f

j
i (m), σj

i)
n

i�1} and DFS.Con

(mvk, (f
j

i (m), σj

i)
n

i�1)⟶ (fj(m), σj) and
output (fj(m), σj).

(2) Else, run the key generation algorithm
(ski

fj , f
j
i)

n

i�1⟵DFS.KeyGen(msk, fj), add

Security and Communication Networks 5

an entry (f, j)⟶ (ski
fj

n

i�1, f
j
i) to the dic-

tionary, and generate a signature σj onfj(m) by
the following steps: DFS.Sign (f

j
i , sk

i
fj ,

m)⟶ (f
j
i (m), σj

i)}
n
i�1, DFS.Con(mvk, (f

j
i

(m), σj
i)}

n
i�1)⟶ (fj(m), σj).

(v) -e adversaryA succeeds if it can produce (m∗, σ∗)
such that

(1) DFS.Very(mvk, m∗, σ∗) � 1.
(2) -ere does not exist m such that fj(m) � m∗

and f
j
i (m) � m∗ for any f

j
i which was con-

tained in the dictionary.
(3) -ere does not exist a (f, m) pair such that

(f, m) was queried to the signing oracle and
m∗ � f(m).

Definition 8. Ind-based function privacy: intuitively, we
require that the successful advantage of any PPTadversaryA
in the following game is negligible:

(i) Setup: the challenger generates a key pair
(msk,mvk)⟵DFS.Setup(1λ, n) and sends the
verifiable key mvk to the adversary A.

(ii) Key query: proceeding adaptively, the adversary A

submits fj ∈ F to the challenger. -e challenger
computes (ski

fj , f
j

i)
n

i�1⟵DFS.KeyGen(msk, fj)

and sends (ski
fj , f

j
i)

n

i�1 to the adversary A.
(iii) Challenge phase: A sends the challenge function

pair (f0, f1, S) which is not queried in the key query
phase. -e challenger computes (ski

fb ,

fb
i)}n

i�1⟵DFS.KeyGen(msk, fb) and sends
(ski

fb , fb
i)

n

i�1
to the adversaryA, where b⟵ 0, 1{ }

and S is chosen randomly from [n] such that
|S| � n − 1.

(iv) Proceeding adaptively, the adversary can query the
key generation oracle and evaluation oracle.

(1) Key query: A sends a function fj ∈ F with a
restriction that fj ≠f0 and fj ≠f1. -e chal-
lenger answers the same as previous key query.

(2) Evaluation query: A sends an input xk with a
restriction that f0(xk) � f1(xk). For
i ∈ ([n]/S), challenger returns (fi(xk),

σi)⟵DFS.Sign(fb
i , ski

fb , xk).

(v) Guess: finally, the adversary A outputs a bit b′. -e
successful advantage of A is defined as
Adv � (Pr[b′ � b] − 1/2).

4. The Construction of DFS

We are now ready to describe a construction of distributed
functional signature scheme. Informally, our scheme works as
follows. In the setup algorithm, themaster verifiable key contains
a public parameter of function secret sharing scheme and a
verifiable key of functional signature. It sets the master signing

key of functional signature scheme to the master secret key.-e
key generation algorithm consists of sharing function algorithm
and key generation algorithm of functional signature, which
generates n constrained signature keys ski

f corresponding to the
shadow function fi. In the signing algorithm, it computes
signing pairs (fi(m), σi) on inputting a message m. When
enough signatures had been collected, anyone can reconstruct
the function value and verify its correctness by the verifiable
algorithm. We give a detailed description below. Let
FSS � (FSS.Setup, FSS.ShareGen, FSS.Recon) be a function
secret sharing scheme for function ensembleF and (FS.Setup,

FS.KeyGen, FS.Sign, FS.Very) be a functional signature scheme.
-e construction of DFS � (DFS.Setup, DFS.KeyGen,

DFS.Sign,DFS.Con, DFS.Very) is given as follows.

(i) DFS.Setup(1λ, n)⟶ (msk,mvk):

(1) Run the setup algorithm of FS and generate a
key pair (FS.mvk, FS.msk)⟵FS.Setup(1λ).

(2) Run the setup algorithm of FSS and generate a
public parameter FSS.pp⟵FS.Setup(1λ, n,F).

(3) Set the master verifiable key to be
mvk � (FS.mvk,FSS.pp) and the master secret
key to be msk � FS.msk.

(ii) DFS.KeyGen(msk, f)⟶ (ski
f, fi)

n

i�1:

(1) Run the function sharing algorithm of FSS and
get n sharing functions fi

n
i�1⟵

FSS.ShareGen(FSS.pp, f).
(2) Run the key generation algorithm of FS and

generate n constrained signature keys ski
f⟵

FS.KeyGen(FS.msk, fi) for i � 1, . . . , n.
(3) Output the signature pairs (ski

f, fi)
n

i�1.

(iii) DFS.Sign(fi, sk
i
f, m)⟶ (fi(m), σi): given the

i−th secret key (fi, sk
i
f), it computes and outputs

(fi(m), σi) � FS.Sign(fi, sk
i
f, m).

(iv) DFS.Con(mvk, (fi(m), σi)
n

i�1)⟶ (f(m), σ): it
computes f(m) � FSS.Recon(FSS.pp, fi(m)

n

i�1)

and σ � (fi(m), σi)
n

i�1.
(v) DFS.Very(mvk, m∗, σ)⟶ 0, 1{ }:

(1) If σ � (fi(m), σi)
n

i�1, then it runs
FS.Very(FS.mvk, fi(m), σi) for i � 1, . . . , n. If
all of the verifiable algorithms output “1” and
m∗ � FSS.Recon(FSS.pp fi(m)

n
i�1), it outputs

“1”; else, it outputs “0.”
(2) If not, it runs FS.Very(FS.mvk, m∗, σ) and

outputs the corresponding result.

Remark 1. In our verifiable algorithm, it can verify two
forms of signature. One is generated by the reconstruction
algorithm. -e another is generated by the signing
algorithm.

Correctness. -e correctness of our DFS construction follows
from the correctness of FS and FSS. Firstly, the outputs
fi(m) of signature algorithm satisfy f(m) � FSS.

Recon(FSS.pp, fi(m)
n

i�1) by the reconstruction algorithm

6 Security and Communication Networks

of FSS. Secondly, the verifiable algorithm will output “1” if
the signature is generated correctly by the FS scheme.

Theorem 1. Let FS be an unforgeability functional signature
scheme; then, our construction of DFS described above is
secure (c.f. Definition 7).

Proof. We now prove that if there exists a PPT adversary A
that can break the unforgeable security of DFS with non-
negligible probability, then another adversary B can be
constructed to break the unforgeable security of FS with the
same probability.

Let C be the challenger for the FS scheme. We construct
the adversary B by A as follows:

(i) B first honestly runs the secure experiment of FS
and gets FS.mvk of functional signature. -en, it
generates FSS.pp⟵FSS.Setup(1λ, n). -e adver-
sary B returns mvk � (FS.mvk,FSS.pp) to A.

(ii) B initializes a dictionary indexed by tuples
(f, j) ∈F × N, which contains signing keys
(ski

fj , f
j
i)

n

i�1.
(iii) Key generation oracle: on inputting (f, j), A

operates as follows:

(1) If there exists an entry for the key (f, j) in the
dictionary, then output the corresponding pair
(ski

fj , f
j
i)

n

i�1.
(2) Else, compute f

j
i

n

i�1⟵FSS.ShareGen
(FSS.pp, fj). For i � 1, . . . , n,B queries the key
generation oracle of FS and gets n secret keys
ski

fj
n

i�1. Add an entry (f, j)⟶ (ski
fj ,

f
j
i)}

n
i�1 to the dictionary and output

(ski
fj , f

j
i)

n

i�1.

(iv) Signing oracle: on inputting (f, j, m),A operates as
follows:

(1) If there exists an entry for the key (f, j) in the
dictionary, then run DFS.Sign (f

j

i , sk
i
fj ,

m)⟶ (f
j
i (m), σj

i)
n

i�1} and DFS.Con(mvk,

(f
j
i (m), σj

i)
n

i�1)⟶ (fj(m), σj) and output
(fj(m), σj).

(2) Else, compute f
j
i

n

i�1⟵FSS.ShareGen
(pp, fj). For i � 1, . . . , n, B queries the signing
oracle (f

j
i , m)

n

i�1 of FS and gets n signature
pairs (f

j
i (m), σi)

n

i�1. -en, it computes
DFS.Con(mvk, (f

j

i (m), σj

i)
n

i�1)⟶ (fj (m),

σj) and returns (fj(m), σj) to A.

(v) -e adversary A produces a forgeable signature
(m∗, σ∗). -en, B computes as follows:

(1) If σ∗ is the form of (f
j

i (m), σi)
n

i�1, then B

returns (f
j
1(m), σj

1) to the challenger.
(2) Else, B returns (m∗, σ∗) to the challenger.

We observe that B perfectly simulates the
unforgeable experiment of DFS. If A successfully
outputs a forgeable signature (m∗, σ∗), it must
satisfy the following:

(1) DFS.Very(mvk, m∗, σ∗) � 1.
(2) -ere does not exist m such that fj(m) � m∗

and f
j
i (m) � m∗ for any f

j
i which was con-

tained in the dictionary.
(3) -ere does not exist a (f, m) such that (f, m)

was a query to the signing oracle and
m∗ � f(m).

If the forgeable signature (m∗, σ∗) is the first form, then
FS.Very(FS.mvk, fi(m), σi) � 1 for any i � 1, . . . , n. Because
fi is not contained in the dictionary and (m∗, σ∗) is not
queried to the signature oracle, (f

j
1(m), σj

1) is a legally
forgeable signature for the functional signature scheme. If
the forgeable signature (m∗, σ∗) is the second form, then
(m∗, σ∗) is a distributive signature and FS.Very(FS.mvk,

m∗, σ∗) � 1. -ere does not exist m such that fi(m) � m∗

which is contained in the dictionary; it is also a legally
forgeable signature. -erefore, if A can break the unfor-
geability security of DFS with non-negligible probability,
then we can construct another adversaryBwhich breaks the
unforgeability security of FS with the same probability. □

Theorem 2. Assume FSS.Con is an invertible algorithm.
FSS.Con is an invertible algorithm if for any n − 1 inputs
fi(x)

n−1
i�1 and an output f(x), it can compute the n−th

input fn(x), where the functions fi(x)
n−1
i�1 share function of

f(x). For example, Fan and Tang [12] gave a function secret
sharing in which the reconstruction algorithm is
f(x) �

n
i�1 fi(x), and fn(x) � f(x) −

n−1
i�1 fi(x). Let FSS

be a secure function secret sharing scheme (c.f. Definition 2);
then, our construction of DFS described above satisfies
function privacy (c.f. Definition 8).

Proof. We now prove that if there exists a PPT adversary A
that can break the function privacy of DFS with non-neg-
ligible probability, then another adversary B can be con-
structed to break the security of FSS with the same
probability.

LetC be the challenger for the FSS scheme.We construct
the adversary B by A as follows:

(i) B first honestly runs the secure experiment of FSS
and gets FSS.pp of function secret sharing scheme.
-en, it generates
(FS.mvk, FS.msk)⟵FS.Setup(1λ). -e adversary
B returns mvk � (FSS.pp, FS.mvk) to A.

(ii) B initializes a dictionary indexed by tuples
(f, j) ∈ F × N, which contains signing keys
(ski

fj , f
j
i)

n

i�1.
(iii) Key query: on inputting (f, j), B operates as

follows:

(1) If there exists an entry for the key (f, j) in the
dictionary, then output (ski

fj , f
j
i)

n

i�1.

Security and Communication Networks 7

(2) Else, compute f
j
i

n

i�1⟵FSS.ShareGen
(FSS.pp, fj). For i � 1, . . . , n, B computes
(ski

fj , f
j
i) ⟵FS.KeyGen(FS.msk, f

j
i). Add an

entry (f, j)⟶ (ski
fj , f

j

i)
n

i�1 to the dictionary

and output (ski
fj , f

j
i)

n

i�1.

(iv) A sends the challenge function pair (f0, f1, S) to
the adversary B, where both f0 and f1 were not
queried in the previous phase, and Df0 �

Df1 , |S| � n − 1. -en, B queries the challenger of
FS on (f0, f1, S) and gets fb

i i∈S. For i ∈ S, B
computes (ski

fb , fb
i) ⟵FS.KeyGen (FS.msk, fb

i)

and returns (ski
fb , fb

i)
i∈S to the adversary A.

(v) Proceeding adaptively, A can query the key gen-
eration oracle and evaluation oracle.

(1) Key query: A sends a function fj ∈ F with a
restriction that fj ≠f0 and fj ≠f1. B answers
the same as previous key query.

(2) Evaluation query: A sends an input xk with a
restriction that f0(xk) � f1(xk). For
i ∈ ([n]/S), B first computes (fb

i (xk), σi) i∈S
and f0(xk). -en,B computes fi∈([n]/S)(xk) by
the invertible property of FSS.Con and a cor-
responding signature σi∈([n]/S) by the master
secret key FS.msk of functional signature. For a
functional signature scheme, it has a master
signing key FS.msk, which can be used to sign
any message. At the same time, it also has a
constrained key skf for the function f, which
only signs the message in the range of f. B
returns (fi∈([n]/S)(xk), σi∈([n]/S)) to A.

(vi) At last, the adversary B outputs the guess b′ of the
adversary A.

Although the generation way of the signature σi∈([n]/S) is
changed, it does not influence the view of A because this
signature can be verified by the verifiable algorithm of FS.
-erefore, B perfectly simulates function private experi-
ment. IfA can distinguish the function f0 and f1 with non-
negligible advantage, then B can break the security of FSS
with the same advantage.

In the above construction, the size of combined sig-
nature depends on the threshold, which will reduce the
verification efficiency. In order to improve the efficiency, it
can use aggregate signature to compress the final signature
size based on the construction of functional signature
proposed by Boyle et al. [9]. In their key generation al-
gorithm, it generates the secret key skf for the function f

by a standard signature scheme. -erefore, we can change
the standard signature into an aggregate signature. -e
generated signatures σ1, . . . , σn of functional signature
scheme can be aggregated into a single signature σ. -is
change does not affect the security of the construction
because the security of Boyle’s construction is reduced to
the unforgeability of a standard signature. On the one
hand, it does not use the aggregate property. On inputting

an aggregate signature, the verifiable algorithm of func-
tional signature will output one bit “0.” On the other hand,
if the adversary can produce a forgeable signature for
functional signature scheme by the aggregate signature,
then it can be used to break the aggregate security. Based
on the first construction, we modify the reconstruction
algorithm and verifiable algorithm. -e specific descrip-
tion is as follows.

(i) DFS.Setup(1λ, n)⟶ (msk,mvk): it runs the same
as before.

(ii) DFS.KeyGen(msk, f)⟶ (ski
f, fi)

n

i�1: it runs the
same as before.

(iii) DFS.Sign(fi, sk
i
f, m)⟶ (fi(m), σi): it runs the

same as before.
(iv) DFS.Con(mvk, (fi(m), σi)

n
i�1)⟶ (f(m), σ): it

computes f(m) � FSS.Recon(FSS.pp fi(m)
n
i�1)

and σ′ � AS.Agg((fi(m), σi)
n

i�1) and returns
(f(m), σ � (σ′, fi(m))

n

i�1).
(v) DFS.Very(mvk, m∗, σ)⟶ 0, 1{ }:

(1) If σ � (σ′, fi(m)
n
i�1), then it runs

AS.Very(σ′, fi(m)
n

i�1). If the verifiable algo-
rithms output ’1′ and m∗ � FSS.Recon
(FSS.pp, fi(m)

n

i�1), it outputs “1”; otherwise,
it outputs “0.”

(2) If not, it runs FS.Very(FS.mvk, m∗, σ) and
outputs the corresponding result.

-e secure proofs of the modified construction are
similar to the -eorems 1 and 2. In the proof of unforge-
ability, there are two forms of signature. -e first one is
(m∗, σ � (σ′, fi(m∗)

n
i�1)) which satisfies AS.Very(σ′,

fi(m∗)
n
i�1) � 1. Because the reconstruction algorithm is

run honestly, there exists an index i ∈ 1, . . . , n{ } such that
FS.Very(FS.mvk, fi(m∗), σ∗i) � 1. Meanwhile, it satisfies
that fi is not contained in the dictionary, and (m∗, σ∗) is not
queried to the signature oracle. So, (fi(m∗), σ∗i) is a legally
forgeable signature for the functional signature scheme. -e
second form of signature is the same as -eorem 1, which
can also be reduced to the security of functional signature.
-e proof of function privacy is exactly the same as-eorem
2. □

5. Hosting Services Securely in Multiple
Untrusted Clouds

We consider the setting of hosting service in untrusted
clouds which was first presented by Boneh [11]. In this
model, it has three parties: service provider, who owns a
program P, cloud server, who provides the computation
capability, and arbitrary many clients. -e service provider
wants to host the program P on a cloud server and au-
thenticate the clients who pay for the service provided by
program P. Only the authenticated clients can access the
program hosted on the cloud server and compute output on
inputs of their choice. Meanwhile, the program P may
contain proprietary information, and it needs to protect its

8 Security and Communication Networks

privacy. Moreover, the scheme should satisfy some prop-
erties [11]:

(i) Weak client: the total cost of the client should only
depend on the size of input and security parameter
and should be independent of the running time of
program P.

(ii) Delegation: the service provider only needs to run
one-time setup of the whole system and authenti-
cation clients. -e total cost should be bounded by a
fixed polynomial in the program size in the setup
phase and should only depend on the security pa-
rameter in the authentication phase.

(iii) Polynomial slowdown: the running time of the
cloud is bounded by a fixed polynomial in the
running time of the program P.

In our verifiable distributed secure cloud service scheme,
the service provider generates a set of encoded program
shares for program P and then hosts each encoded program
share on one cloud server. Any authenticated client can
access the encoded program shares hosted in multiple cloud
servers and compute output on inputs of his choice.
Meanwhile, we require the client to verify the correctness of
returned result from the cloud servers.

5.1. Syntax and Security Definitions. We recall the notion of
secure cloud service scheme proposed by Boneh et al. [11]
and make some changes based on [12]. -e verifiable dis-
tributed secure cloud service scheme consists of five algo-
rithms VDS � (VDS.Prog,VDS.Auth,VDS.Inp,VDS.

Eval,VDS.Very) which is described as follows:

(i) VDS.Prog(1λ, n, P)⟶ (Pi
n

i�1, sk) : on inputting
the security parameter λ, the threshold parameter n,
and a program P, the program generation algorithm
outputs encoded programs Pi

n
i�1 and a secret key

sk which is used in the authentication algorithm.
(ii) VDS.Auth(sk, id)⟶ tokenid: on inputting an

identity id of a client and the secret key sk, the
authentication algorithm outputs a token tokenid
for the client.

(iii) VDS.Inp(tokenid, x)⟶ (x, α): on inputting the
token tokenid and an input x, this algorithm outputs
an encoded input x and α which is used by client to
verify the evaluated value.

(iv) VDS.Eval(Pi, x)⟶ yi: on inputting the encoded
program Pi and input x, the evaluation algorithm
outputs a result yi � Pi(x).

(v) VDS.Very(α, y
n
i�1)⟶ P(x) or⊥: on inputting

the verifiable information α and the evaluated value
yi, the verifiable algorithm outputs the value P(m)

or ⊥, which implies that the client rejects the
evaluated result.

-e procedure runs as follows: the server provider first
runs the algorithm VDS.Prog(1λ, n, P) and obtains the

distributed encoded program Pi
n

i�1 and a secret key sk.
-en, it sends Pi to the ith cloud server. If a client wants to
access the program hosted on the cloud server, the service
provider would authenticate the client by the secret key sk.
An authenticated client with identity id can encode its inputs
by the algorithm VDS.Inp(tokenid, x) and send x to each
cloud servers, respectively. Every cloud server will evaluate
the sharing program Pi on encoded input x and return the
evaluation Pi(x). Finally, the client can reconstruct the value
P(x) by the algorithm VDS.Very(α, y

n

i�1) and verify its
correctness. In Figure 1, we give the algorithm flowchart for
the verifiable distributed secure cloud service scheme.

Two cases for security definition are considered in [11],
untrusted cloud security and untrusted client security. We
consider the case of untrusted cloud security into two
subcases, program privacy and verifiability.

Definition 9 (untrusted cloud security: program privacy)
(see [12], Definition 4.1). A VDS scheme is program privacy
in untrusted cloud security if the successful advantage of any
PPT adversary A in the following experiment is negligible:

(i) -e adversary A sends challenge program
(P0, P1, S) to challenger such that S ⊂ [n], and
|S| � n − 1. -e challenger samples a random bit
b⟵ 0, 1{ }, computes the encoded program
(Pb

i
n

i�1, sk)⟵VDS.Prog(1λ, n, Pb), and sends
Pb

i i∈S to adversary A.
(ii) Proceeding adaptively, the adversary A can make

the authentication query and input query:

(1) Authentication query: the challenger initializes a
dictionary indexed by (id, j)⟶ tokenidj

.
When A queries an identity idj, the challenger
returns tokenidj

to adversary A if there exists a
(id, j) in the dictionary. If not, the challenger
returns tokenidj

⟵VDS.Auth(sk, id) and up-
dates the dictionary (id, j)⟶ tokenidj

.
(2) Input query: A sends (id, j, x) to the challenger.

If there exists (id, j)⟶ tokenidj
in the dic-

tionary, challenger returns
(x, α)⟵VDS.Inp(tokenidj

, x). If not, chal-
lenger computes tokenidj

⟵VDS.Auth(sk, idj),
returns (x, α)⟵VDS.Inp(tokenidj

, x), and
updates the dictionary (id, j)⟶ tokenidj

.

(iii) Finally, the adversaryA outputs his guess b′ for the
bit b. -e adversary A succeeds if b′ � b. -e ad-
vantage of A’s success is defined as
(Pr[b′ � b] − 1/2).

Definition 10 (untrusted cloud security: verifiability). A
VDS scheme is verifiable in untrusted cloud security if the
successful probability of any PPT adversary A in the fol-
lowing experiment is negligible:

(i) -e adversary A sends challenge program P to
challenger. -e challenger samples the encoded

Security and Communication Networks 9

program (Pi
n

i�1, sk)⟵VDS.Prog(1λ, n, P) and
sends Pi

n

i�1 to adversary A.
(ii) Proceeding adaptively, the adversary A can make

the authentication query.-e challenger initializes a
dictionary indexed by (id, j)⟶ tokenidj

. WhenA

queries an identity idj, the challenger returns
tokenidj

to adversaryA if there exists a (id, j) in the
dictionary. If not, the challenger returns
tokenidj
⟵VDS.Auth(sk, id) and updates the dic-

tionary (id, j)⟶ tokenidj
.

(iii) Finally, A outputs (x, α, y
n
i�1). A succeeds if

P(x)≠VDS.Very(α, y
n
i�1).

For untrusted client security, we require that a collection
of corrupt clients with the help of a subset of corrupt servers
does not distinguish which program is encoded.

Definition 11 (untrusted client security) (see [12], Definition
4.4). -e VDS scheme is untrusted client security if the
successfully advantage of any PPT adversary A in the fol-
lowing experiment is negligible:

(i) -e adversary A sends challenge program
(P0, P1, S) to challenger such that S ⊂ [n],

|S| � n − 1. -e challenger samples a random bit
b⟵ 0, 1{ }, computes the encoded program
(Pb

i
n

i�1, sk)⟵VDS.Prog(1λ, n, Pb), and sends
Pb

i i∈S to adversary A.
(ii) Proceeding adaptively, the adversary A can make

the authentication query and evaluation query:

(1) Authentication query: the challenger initializes a
dictionary indexed by (id, j)⟶ tokenidj

.
When A queries an identity idj, the challenger
returns tokenidj

to adversary A if there exists a
(id, j) in the dictionary. If not, the challenger
returns tokenidj

⟵VDS.Auth(sk, id) and up-
dates the dictionary (id, j)⟶ tokenidj

.

(2) Evaluation query: A sends an encoding xk for
the input xk to the challenger such that
P0(xk) � P1(xk). For i ∈ ([n]/S), challenger
returns yi,k � Pb

i (xk).

(iii) Finally, the adversaryA outputs his guess b′ for the
bit b. -e adversary A succeeds if b′ � b. -e
successful advantage of A is defined as
(Pr[b′ � b] − 1/2).

5.2. Our VDS Construction. Let VDS � (VDS.Prog,

VDS.Auth,VDS.Inp,VDS.Eval, VDS.Very) be a distributed
functional signature scheme and Sig � (Sig.Setup, Sig.Sign,

Sig.Very) be an existential unforgeable signature scheme.
Now, we describe our construction as follows:

(i) VDS.Prog(1λ, n, P)⟶ (Pi
n

i�1, sk):

(1) Run (msk,mvk)⟵DFS.Setup(1λ, n) and
(Sig.sk, Sig.vk)⟵Sig.Setup(1λ).

(2) Construct a new program P, which is given in
Figure 2.

(3) Compute (ski

P
, Pi)

n

i�1
⟵DFS.KeyGen

(msk, P).
(4) Set Pi � (ski

P
, Pi) and sk � (Sig.sk,mvk).

(ii) VDS.Auth(sk, id)⟶ tokenid: parse sk � (Sig.sk,

mvk), compute the signature σid � Sig.Sign
(Sig.sk, id), and output tokenid � (mvk, σid, id).

(iii) VDS.Inp(tokenid, x)⟶ (x, α): parse
tokenid � (mvk, σid, id) and set x � (x, σid, id) and
α � (x,mvk).

(iv) VDS.Eval(Pi, x)⟶ yi: parse Pi � (ski

P
, Pi) and

compute yi � (Pi(x), σi)⟵DFS.Sign(Pi, sk
i

P
, x).

(v) VDS.Very(α, yi
n
i�1)⟶ P(x) or⊥: parse α �

(x,mvk). Compute DFS.Con(mvk, (Pi(x),

σi)}
n
i�1) � (P(x), σ). Parse P(x) � x′|P′(x). If

Prog

VeryInp

Eval

Authid

sk

Tokenid

x
ˆ

α

Server provider Client

Cloud server

P, n, λ

x

{Pi}i=1
n

{P
i, σ

i} i
=1n

P (x)

Figure 1: Algorithm flowchart for VDS.

10 Security and Communication Networks

DFS.Very(mvk, P(x), σ) � 1 and x′ � x, output
P′(x). Else, it rejects the returned results.

Correctness. -e correctness of our VDS construction fol-
lows from the correctness of underlying distributed func-
tional signature scheme DFS and the signature scheme Sig.
We can observe that it outputs ⊥ for an invalid signature in
the encoded program Pi. Otherwise, it outputs
yi � (Pi(x), σi). By the correctness of DFS, the output of
VDS.Very(α, yn

i�1) is P(x).

Efficiency. We do not consider the time cost of algorithm
VDS.Prog because the cost of encoding the program can be
amortized over many input computations. For each invo-
cation of VDS.Auth, the service provider generates a sig-
nature for the client id.-erefore, it is efficient for the service
provider. -e work of the client in handling his inputs only
depends polynomially on the size of inputs and a security
parameter. For the verifiable algorithm, the client needs to
reconstruct the function evaluation and verify a signature,
which is independent of the complexity of the program. In
the phase of reconstructing the function evaluation, the
client just needs to compute a summation operation by using
the function secret sharing proposed by Fan and Tang [12].

Security. We show that our DFS construction satisfies
untrusted cloud security (program privacy and verifiability)
and untrusted client security defined as above.

Theorem 3. Let DFS be a distributed functional signature
scheme against the security of function privacy (c.f. Definition
8); then, our construction of VDS described above has pro-
gram privacy in untrusted cloud security (c.f. Definition 9).

Proof. We prove that if there exists a PPT adversary A that
can break the program privacy of VDS with non-negligible
probability, then another adversaryB can be constructed to
break the function privacy of DFS with the same probability.

Let C be the challenger for the DFS scheme. We con-
struct the adversary B by A as follows:

(i) -e adversary A sends challenge program
(P0, P1, S) to B such that S ⊂ [n], |S| � n − 1. A
samples a signing key (Sig.vk, Sig.sk)⟵
Sig.Setup(1λ), constructs two new programs
(P0,

P1) as defined in Figure 2, and sends (P0,
P1, S)

to the challenger of DFS. -e challenger returns

((ski

P
b , P

b

i)
i∈S

,mvk). B returns (ski

P
b , P

b

i)
i∈S

to

A and sets sk � (Sig.sk,mvk).

(ii) Proceeding adaptively, the adversary A can make
the authentication query and input query:

(1) Authentication query: B initializes a dictionary
indexed by (id, j)⟶ tokenidj

. When A

queries an identity idj, B returns tokenidj
to A

if there exists a (id, j) in the dictionary. If not,B
computes σidj

⟵Sig.Sign(Sig.sk, idj), then
returns tokenidj

� (mvk, σidj
, id), and updates

the dictionary (id, j)⟶ tokenidj
.

(2) Input query:B sends (id, j, x) to the challenger.
If there exists (id, j)⟶ tokenidj

in the dic-
tionary, A returns x � (x, σid, id), α � (x,mvk)

to adversary. Else, A computes
tokenidj
⟵VDS.Auth(sk, id), returns

(x, α)⟵VDS.Inp(tokenidj
, x), and updates the

dictionary (id, j)⟶ tokenidj
.

(iii) Finally, the adversary A outputs the guess b′ of B.

We observe that B perfectly simulates program private
experiment of VDS. -erefore, if B could distinguish the
program P0 and P1 with non-negligible advantage in
untrusted cloud security, then A can break the security of
DFS with the same advantage. □

Theorem 4. Let DFS be a distributed functional signature
scheme against the security of unforgeability (c.f. Definition
7); then, our construction of VDS described above is verifiable
in untrusted cloud security (c.f. Definition 10).

Proof. We prove that if there exists a PPT adversary A that
can break verifiability of VDS with non-negligible proba-
bility, then another adversaryB can be constructed to break
unforgeability of DFS with the same probability.

Let C be the challenger for the DFS scheme. We con-
struct the adversary B by A as follows:

(i) B honestly runs the unforgeable experiment of DFS
and gets mvk of distributed functional signature.
-en, B samples a signing pair (Sig.sk, Sig.vk)⟵
Sig.Sign(1λ).

(ii) A sends challenge program P toB.B defines a new
function P which is described in Figure 2 and sends
P to the challengerC of DFS.-e challenger returns

(Pi, sk
i

P
)

n

i�1
, sets Pi � (Pi, sk

i

P
), and sends Pi

n

i�1

to adversary A.
(iii) Proceeding adaptively, A can make the authenti-

cation query. B initializes a dictionary indexed by
(id, j)⟶ tokenidj

. WhenA queries an identity idj,
the challenger returns tokenidj

to adversary A if
there exists a (id, j) in the dictionary. If not, the
challenger returns tokenidj

� (σidj
, idj,mvk) and

updates the dictionary (id, j)⟶ tokenidj
, where

σid � Sig.Sign(Sig.sk, idj).
(iv) Finally, A outputs (x, α, yi � (Pi(x), σi)

n

i�1).
-en, B computes (P(x), σ)⟵VDS.Very
(α, y

n

i�1) and outputs the forgeable signature
(x′|P′(x), σ), where P(x) � x′|P′(x).

Input: signature σ, input x and identity id.
Constants: sig.vk and program P.

(a) If sig.very (sig.vk, σ, id) = 0, output .
(b) Else, compute and output x|P (x).

Figure 2: Program P.

Security and Communication Networks 11

Assume that A succeeded in the experiment of verifi-
ability; then, it must satisfy that
DFS.Very(mvk, P(x), σ) � 1, x′ � x, and P′(x)≠P(x). For
i � 1, . . . , n, DFS.Very(mvk, Pi(x), σi) � 1; then, x|Pi(x)

must be contained in the range of program Pi. Because the
adversaryA can just sign the message belonging to the range
of encoded programs Pi, the evaluation x|Pi(x) must be
computed correctly. In addition, x|P′(x) is not contained in
the range of P because of P′(x)≠P(x). (x|P′(x), σ) is
validly forgeable signature for the DFS scheme. So, if there
exists an adversary that breaks the verifiability of VDS with
non-negligible probability, then there exists another ad-
versary that breaks the unforgeability of DFS with the same
probability. □

Theorem 5. Let DFS be a distributed functional signature
scheme against the security of function privacy (c.f. Definition
8) and Sig be an unforgeable signature scheme; then, our
construction of VDS described above is secure in untrusted
client security (c.f. Definition 11).

Proof. We prove that if there exists a PPT adversary A that
can break security in untrusted client security with non-
negligible probability, then another adversary B can be
constructed to break function privacy of DFS with the same
probability.

Let C be the challenger for the DFS scheme. We con-
struct the adversary B by A as follows:

(i) B runs the function private experiment of DFS and
gets a master verifiable key mvk of DFS. -en, B
samples a signing pair
(Sig.sk, Sig.vk)⟵Sig.Sign(1λ).

(ii) -e adversary A sends challenge program
(P0, P1, S) to B such that S ⊂ [n], |S| � n − 1. B
defines two new functions P0 and P1 which are
described in Figure 2 and sends (P0,

P1, S) to the
challenger C of DFS. -e challenger returns

(P
b

i , ski

Pb

)
i∈S
, sets Pi � (P

b

i , ski

Pb

) , and sends

Pi i∈S to adversary A.
(iii) Proceeding adaptively, the adversary A can make

the authentication query and evaluation query:

(1) Authentication query:B initializes a dictionary
indexed by (id, j)⟶ tokenidj

. When A

queries an identity idj, the challenger returns
tokenidj

to adversaryA if there exists a (id, j) in
the dictionary. If not, the challenger returns
tokenidj

� (σidj
, idj,mvk) and updates the dic-

tionary (id, j)⟶ tokenidj
, where

σid � Sig.Sign(Sig.sk, idj).
(2) Evaluation query: A sends an encoding xk for

the input xk to B. B first checks whether
P0(xk) is equal to P1(xk). If not, B stops the
experiment. Otherwise, B queries the evalua-
tion oracle of DFS and returns the output to A.

(iv) Finally, the adversary B outputs the result b′ of the
adversary A.

We observe that B perfectly simulates the secure ex-
periment in untrusted client model. -erefore, if A can
distinguish the program P0 and P1 with non-negligible
advantage, thenB can break the function private security of
DFS with the same advantage. □

6. Conclusion

In this work, we introduce the notion of distributed func-
tional signature. In such model, it provides a possibility of
function privacy in the setting of functional signature. We
give a construction from function secret sharing and
functional signature. -e function secret sharing can be
constructed based on learning with error assumption, and
the functional signature can be constructed based on the
existence of one-way function. -erefore, our construction
can be obtained from one-way function and learning with
error assumption. In addition, we apply it to the host service
in multiple untrusted clouds in which the clouds will be
dishonest. We require that the returned result from the
clouds can be verified.

Data Availability

No underlying data were used in the study.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is study was supported by the National Natural Science
Foundation of China (nos. 61871430 and 61971458) and the
Key Technologies R&D Program of Henan Province (nos.
212102210088 and 202102210169).

References

[1] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Transactions on Information 3eory, vol. 22, no. 6,
pp. 644–654, 1976.

[2] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature
scheme secure against adaptive chosen-message attacks,”
SIAM, vol. 17, no. 2, pp. 281–308, 1988.

[3] D. Chaum, “Blind signature system,” in Advances in Cryp-
tology, Proc. CRYPTO’83, D. Chaum, Ed., p. 153, Plenum
Press, New York, NY, USA, 1984.

[4] D. Chaum and E. van Heyst, “Group signatures,” in Pro-
ceedings of the Advances in Cryptology - EUROCRYPT ’91,
Workshop on the 3eory and Application of of Cryptographic
Techniques, pp. 257–265, Brighton, UK, April 1991.

[5] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,”
in Proceedings of the Advances in Cryptology-ASIACRYPT
2001, 7th International Conference on the 3eory and Ap-
plication of Cryptology and Information Security, pp. 552–565,
Gold Coast, Australia, December 2001.

[6] J. Chang, H. Wang, F. Wang, A. Zhang, and Y. Ji, “RKA
security for identity-based signature scheme,” IEEE Access,
vol. 8, pp. 17833–17841, 2020.

[7] J. Chang, Y. Ji, B. Shao, M. Xu, and R. Xue, “Certificateless
homomorphic signature scheme for network coding,” IEEE/

12 Security and Communication Networks

ACM Transactions on Networking, vol. 28, no. 6, pp. 2615–
2628, 2020.

[8] J. Chang, B. Shao, Y. Ji, M. Xu, and R. Xue, “Secure network
coding from secure proof of retrievability,” Science China
Information Sciences [Ol], Early Access, vol. 24, 2021.

[9] E. Boyle, S. Goldwasser, and I. Ivan, “Functional signatures
and pseudorandom functions,” in Proceedings of the Public-
Key Cryptography-PKC 2014-17th International Conference on
Practice and 3eory in Public-Key Cryptography, pp. 501–519,
Buenos Aires, Argentina, March 2014.

[10] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing:
improvements and extensions,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, pp. 1292–1303, Vienna, Austria, October 2016.

[11] D. Boneh, D. Gupta, I. Mironov, and A. Sahai, “Hosting
services on an untrusted cloud,” in Proceedings of the Ad-
vances in Cryptology-EUROCRYPT 2015-34th Annual Inter-
national Conference on the 3eory and Applications of
Cryptographic Techniques, pp. 404–436, Sofia, Bulgaria, April
2015.

[12] X. Fan and Q. Tang, “Making public key functional encryption
function private, distributively,” in Proceedings of the Public-
Key Cryptography-PKC 2018-21st IACR International Con-
ference on Practice and 3eory of Public-Key Cryptography,
pp. 218–244, Rio de Janeiro, Brazil, March 2018.

[13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and
B. Waters, “Candidate indistinguishability obfuscation and
functional encryption for all circuits,” in Proceedings of the
54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, pp. 40–49, Berkeley, CA, USA, October,
2013.

[14] Z. Brakerski and G. N. Rothblum, “Virtual black-box ob-
fuscation for all circuits via generic graded encoding,” in
3eory of Cryptography - 11th 3eory of Cryptography Con-
ference, TCC 2014 Lecture Notes in Computer Science,
Y. Lindell, Ed., Springer, San Diego, CA, USA, 2014.

[15] Y. Hu andH. Jia, “Cryptanalysis of GGHmap,” inAdvances in
Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the 3eory and Applications of Cryptographic
Techniques Lecture Notes in Computer Science, M. Fischlin and
J. Coron, Eds., Springer, Vienna, Austria, 2016.

[16] A. Shamir, “Identity-based cryptosystems and signature
schemes,” in Advances in Cryptology, Proc. CRYPTO’ 84,
LNCS 196, G. R. Blakley and D. C. Chaum, Eds., pp. 47–53,
Springer, Berlin, Germany, 1985.

[17] M. Bellare and G. Fuchsbauer, “Policy-based signatures,” in
Proceedings of the Public-Key Cryptography-PKC 2014-17th
International Conference on Practice and3eory in Public-Key
Cryptography, pp. 520–537, Buenos Aires, Argentina, March
2014.

[18] M. Backes, S. Meiser, and D. Schröder, “Delegatable func-
tional signatures,” in Proceedings of the Public-Key Cryptog-
raphy-PKC 2016-19th IACR International Conference on
Practice and 3eory in Public-Key Cryptography, pp. 357–386,
Taipei, Taiwan, March 2016.

[19] R. Johnson, D. Molnar, D. X. Song, and D. A. Wagner,
“Homomorphic signature schemes,” in Proceedings of the
Topics in Cryptology-CT-RSA 2002, the Cryptographer’s Track
at the RSA Conference, 2002, pp. 244–262, San Jose, CA, USA,
February 2002.

[20] D. M. Freeman, “Improved security for linearly homomor-
phic signatures: a generic framework,” in Proceedings of the
Public Key Cryptography-PKC 2012-15th International

Conference on Practice and 3eory in Public Key Cryptogra-
phy, pp. 697–714, Darmstadt, Germany, May 2012.

[21] D. Catalano, D. Fiore, and B. Warinschi, “Homomorphic
signatures with efficient verification for polynomial func-
tions,” in Proceedings of the Advances in Cryptology-CRYPTO
2014-34th Annual Cryptology Conference, pp. 371–389, Santa
Barbara, CA, USA, August 2014.

[22] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Proceedings of the Advances in Cryptology-EUROCRYPT 2005,
24th Annual International Conference on the 3eory and
Applications of Cryptographic Techniques, pp. 457–473,
Aarhus, Denmark, May 2005.

[23] D. Boneh, A. Sahai, and B. Waters, “Functional encryption:
definitions and challenges,” in Proceedings of the 3eory of
Cryptography-8th 3eory of Cryptography Conference, TCC
2011, pp. 253–273, Providence, RI, USA, March 2011.

[24] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan,
and N. Zeldovich, “Reusable garbled circuits and succinct
functional encryption,” in Proceedings of the Symposium on
3eory of Computing Conference, STOC’13, pp. 555–564, Palo
Alto, CA, USA, June 2013.

[25] S. Goldwasser, S. D. Gordon, V. Goyal et al., “Multi-input
functional encryption,” in Proceedings of the Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the 3eory and Applications of Cryptographic
Techniques, pp. 578–602, Copenhagen, Denmark, May 2014.

[26] M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval,
“Simple functional encryption schemes for inner products,” in
Proceedings of the Public-Key Cryptography-PKC 2015-18th
IACR International Conference on Practice and 3eory in
Public-Key Cryptography, pp. 733–751, Gaithersburg, MD,
USA, April 2015.

[27] S. Agrawal, B. Libert, and D. Stehlé, “Fully secure functional
encryption for inner products, from standard assumptions,”
in Proceedings of the Advances in Cryptology-CRYPTO 2016-
36th Annual International Cryptology Conference, pp. 333–
362, Santa Barbara, CA, USA, August 2016.

[28] F. Benhamouda, F. Bourse, and H. Lipmaa, “Cca-secure in-
ner-product functional encryption from projective hash
functions,” in Proceedings of the Public-Key Cryptography-
PKC 2017-20th IACR International Conference on Practice
and 3eory in Public-Key Cryptography, pp. 36–66, Amster-
dam, -e Netherlands, March 2017.

[29] T. Okamoto and K. Takashima, “Decentralized attribute-
based signatures,” in Public-Key Cryptography-PKC 2013 -
16th International Conference on Practice and 3eory in
Public-Key Cryptography Lecture Notes in Computer Science,
K. Kurosawa and G. Hanaoka, Eds., pp. 125–142, Springer,
Nara, Japan, 2013.

[30] B. Liang and A. Mitrokotsa, “Decentralised functional sig-
natures,” Mobile Networks and Applications, vol. 24, no. 3,
pp. 934–946, 2019.

[31] P. Datta, R. Dutta, and S. Mukhopadhyay, “Functional
signcryption: notion, construction, and applications,” in
Provable Security-9th International Conference, ProvSec 2015,
Proceedings. Lecture Notes in Computer Science, M. H. Au and
A. Miyaji, Eds., Springer, Kanazawa, Japan, 2015.

[32] D. Pan, B. Liang, H. Li, and P. Ni, “Hierarchical functional
signcryption: notion and construction,” in Provable Security-
13th International Conference, ProvSec 2019 Lecture Notes in
Computer Science, R. Steinfeld and T. H. Yuen, Eds.,
pp. 167–185, Springer, Cairns, QLD, Australia, 2019.

[33] S. Li, B. Liang, and R. Xue, “Private functional signatures:
definition and construction,” in Information Security and

Security and Communication Networks 13

Privacy-23rd Australasian Conference, ACISP 2018 Lecture
Notes in Computer Science, W. Susilo and G. Yang, Eds.,
Springer, Wollongong, NSW, Australia, 2018.

[34] M. Bellare, C. Namprempre, and G. Neven, “Unrestricted
aggregate signatures,” in Automata, Languages and Pro-
gramming, 34th International Colloquium, ICALP 2007 Lec-
ture Notes in Computer Science, L. Arge, C. Cachin,
T. Jurdzinski, and A. Tarlecki, Eds., Springer, Wroclaw,
Poland, 2007.

14 Security and Communication Networks

