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Double random-phase encoding- (DRPE-) based compressive sensing (CS) systems support image authentication for noisy
images. When extending such systems to resource-constrained applications, how to ensure the authentication strength for noisy
images becomes challenging. To tackle the issue, an efficient and secure image authentication scheme is presented. (e phase
information of the plain image is generated using DRPE and quantized into a binary image as the authentication information.
Meanwhile, a sparser error matrix generated by the same plain image and vector quantization (VQ) image works as the input of
CS. (e authentication information and VQ indexes are self-hidden into the quantized measurements to construct the combined
image. (en, it is permutated and diffused with the chaotic sequences generated from a modified Henon map. After decryption at
the receiver side, the verifier can implement the blind authentication between the noisy decoded image and the reconstructed
image. Supported by the detailed numerical simulations and theoretical analyses, the DRPE-CSVQ exhibits more powerful
compression and authentication capability than its counterpart.

1. Introduction

As the primary form of information carrier and exchange,
digital images experience fast-growing storage and trans-
mission in communication media today, irrespective of
whether mobiles or individual electronic devices are avail-
able [1]. When different kinds of digital images are managed
and transmitted via open channels, illegal users may tamper,
redistribute, and even destroy them, which will bring tre-
mendous losses to legitimate terminal users [2]. It is a
nontrivial task to ensure the security of images that contains
user privacy or essential information. One viable solution is
to encrypt digital images into unrecognizable or noise-like
patterns [3, 4]. Image encryption schemes, especially cha-
otic-based ones, have been widely investigated as a means of
privacy protection [5]. However, most chaotic encryption
designs are not secure enough against unauthorized oper-
ations [6, 7]. Besides, some chaotic encryption schemes [3, 5]

encrypt plaintext into the ciphertext of the same size, which
is not conductive to resource-constrained applications.

As two kinds of classic lossy compression technologies,
vector quantization (VQ) and compressive sensing (CS)
have already exerted their strengths in their respective fields
[8–15]. VQ, a block-size compression coding method, has a
tremendous high compression ratio by transforming block
vector into codeword index. Some researchers used the
compression property of VQ technology to restore the
tampered contents [8–10]. In the recoverable scheme [10],
the main content in one carrier region is compressed into an
index by the VQ encoder and then embedded into the other
carrier regions. After detecting malicious manipulations, the
index extracted from the reserved regions can restore the
main content of the tampered area with the public codebook.
(e restoration precision strictly relates to the codebook. If
the plain content does not match the codebook closely
enough, the restored content will have noticeable block
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artifacts [11]. CS is another technique to fulfill the same
purpose using a different solution [12, 13, 15]. It has been
proven that CS-based cryptosystems are computationally
infeasible under brute-force attack and exhaustive searching
[13]. However, the security is built on the measurement
matrix as the key, which worsens key distribution and
transmission [14]. Yu et al. [15] theoretically proved that the
measurement matrix generated by chaotic map satisfies
restricted isometry property (RIP), which provided an al-
ternative construction of the CS measurement matrix. In
addition, since the sparseness of the signal was utilized to
reconstruct the original signal from the measurements,
directly assigning raw images as inputs of CS may lead to a
worse restoration and may not achieve the ideal compres-
sion effect due to the lower sparsity of raw images [16, 17].

Double random-phase encoding (DRPE) technology,
initially developed by Refregier et al. [18], has the distinct
advantages of processing 2D complex data with parallelism
and high speed. Many references have integrated DRPE with
other conventional signal processing techniques [19–23],
such as watermarking, encryption, and authentication by
Fourier domain expansion to Fresnel domain. In [23–25],
DRPE was mixed with photon-counting imaging to acquire
sparse complex information and secure image authentica-
tion based on a statistical nonlinear correlation approach.
Since phase information obtained by DRPE and photon-
counting imaging is sparse and requires less space to store, it
has been favored by other studies [22, 26–29]. To reduce
storage and provide higher security, the schemes [22, 26]
only reserved partial phase information for the authenti-
cation. Likewise, references [24, 26] used sparse complex
information resulting from 2D elemental images for final
authentication. In [23], Cho et al. proposed combining
DRPE and 3D integer imaging techniques for 3D image
authentication. In [28], Yi et al. noticed that most prelim-
inary DRPE-based image authentication designs implicitly
assumed that the receiver successfully received the encrypted
images and that there were no attacks during transmission.
(us, most of these would fail to authenticate even when the
transmitted images had been disturbed by noises, a common
occurrence in reality during Internet transmission.

(e schemes [29–32] combined DRPE and CS (DRPE-
CS) to cope with the security concerns of current crypto-
systems. In [30], Zhang et al. developed a joint orthogonal
encoding and CS method to implement DRPE-based mul-
tiple-image encryption. (e block reconstruction process
reestablished every single image perfectly. In [31], Huo et al.
proposed a similar multiple-image encryption scheme to
sample each plain data and integrate the sampled data into a
synthesized ciphertext by the orthogonal encoding process.
(e key storage is efficient and straightforward since the
pseudorandom sequences generated by chaotic systems are
employed to construct the CS measurement matrix and the
two random phases of DRPE. Besides, through applying
dimensionality reduction and random projection to CS
sampling, Lu et al. developed a DRPE-CS image encryption
scheme in [32], which achieved lower data volume for en-
cryption and higher security for information protection. To
upgrade the security level and realize blind authentication,

Zhou et al. presented a novel and secure DRPE-BCS method
[29]. However, the reconstructed image precision was not
ideal. Firstly, a lower sampling ratio would cause a poor-
quality reconstructed image because of the raw image as the
CS input. Secondly, performing different cropping regions
on the cipher images would cause severe distortion on the
reconstructed image since no remedy is provided when
attacked. Given these considerations, ensuring the quality of
the reconstructed image at lower sampling rates and loss
reduction after being attacked such that more robust au-
thentication strength can be available becomes a challenge.

To have more robust authentication between the noisy
decoded image and the reconstructed image, we detail a
secure image authentication scheme by integrating DRPE and
VQ with CS. (e plain image is encoded into authentication
information by DRPE and quantized into the VQ image by
the VQ encoder/decoder. (e sparse error matrix generated
by the same plain image and VQ image is as the CS input.(e
reconstructed error matrix by CS only fulfills information
compensation to the VQ reconstructed image. Consequently,
the final reconstructed image quality does not have high
requirements for the codebook, and it has no strict restriction
for CS compression. (e combined image consists of the VQ
indexes, the authentication bits, and the quantized mea-
surements, followed by the permutation and diffusion to
improve security. Experiments have confirmed that selecting
an error matrix for CS compression counteracts the inter-
action between reconstructed quality and compression ratio.
(erefore, the main contributions of this paper are as follows:
(1) CS and VQ are combined to achieve sampling at the fast
and efficient characteristics. (2) A self-embedding method
with authentication capability is implemented, which out-
performs conventional DRPE-CS methods. (3) (e restora-
tion precision of the reconstructed image at a lower sampling
ratio surpasses that of conventional CS where the nature
image is as CS input. (4) After being attacked, if replacing the
damaged indexes with the undamaged neighbor indexes, the
restoration quality of the final reconstructed image will be
much better than that of no operation; thus, the DRPE-CSVQ
vastly reduces the costs and losses after malicious attacks.
Finally, we want to emphasize that (3) and (4) play vital roles
in the final authentication effect.

(e rest of the paper is organized as follows. In Section 2,
related technologies are introduced. In Section 3, the
compression, encryption, and authentication method is
discussed in detail. Detailed experiment results and per-
formance analyses are given in Section 4. (e conclusion is
provided in Section 5.

2. Related Technologies

2.1. Double Random-Phase Encoding. DRPE involves the
operations of two random-phase marks, respectively, in the
input and the Fourier transform planes, which is shown in
Figure 1. For an input image I0 � I0(x, y)􏼈 􏼉

M,N

x�1,y�1, it is
encoded into an image E � E(ξ, η)􏼈 􏼉

M,N

x�1,y�1 of the same size
that satisfies stationary white noise using two random-phase
masks m1 � m1(x, y)􏼈 􏼉

M,N
x�1,y�1 and m2 � m2(μ, ])􏼈 􏼉

M,N
x�1,y�1,
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where n(x, y) and b(μ, ]) are distributed in the range [0, 1]

with uniform probability, (x, y) and (μ, ]) denote the co-
ordinates of the input image plane and the second mask
plane, respectively, j represents the imaginary unit,
m1(x, y) � e(j2πn(x,y)), and m2(μ, ]) � e(j2πb(μ,])). (e
encoding process can be expressed as [28]

E(ξ, η) � FT FT I0(x, y) · e
(j2πn(x,y))

􏼐 􏼑 · e
(j2πb(μ,]))

􏼐 􏼑, (1)

where (ξ, η) represents the coordinate in CCD plane, FT(·)

is the Fourier transform, and E(ξ, η) is a complex image that
contains an amplitude image and a phase image.

Similarly, DRPE decoding is the reverse process of
encoding.

D(x, y) � IFT IFT(E(ξ, η)) · e
(j2πb(μ,]))

􏼐 􏼑 · e
(j2πn(x,y))

,

(2)

where D � D(x, y)􏼈 􏼉
M,N

x�1,y�1 is the decoded image and IFT(·)

is the inverse Fourier transform.

2.2. Compressive Sensing. CS relies on properties of inco-
herence, signal sparsity, and compressibility. Suppose x is a
1D signal of length N, and then the signal can be represented
in a dictionary Ψ � [Ψ1,Ψ2, . . .ΨN] as follows:

x � 􏽘
N

i�1
siΨi, (3)

where si is the coefficients of the signal x. (e equivalent
form of x is

x � Ψs, (4)

whereΨ is a N × N matrix with Ψi􏼈 􏼉
N

i�1 as columns.(e core
is to find a dictionary so that the coefficient vector s is sparse;
namely, only K≪N coefficients are nonzero.

After sparsity to the signal, a condensed representation
with M<N linear measurements between x and a collection
of functions Φm􏼈 􏼉

M
m�1 can be written as ym � 〈x,Φm〉.

Stacking ym into M × 1 vector and ΦT
m as rows into a matrix

Φ of size M × N, we can obtain

y � Φx � ΦΨs, (5)

where y andΦ are the measurements and the measurement
matrix, respectively. Since the transformation from x to y is

a dimensionality reduction process, it is difficult to re-
construct the original signal faithfully with CS. Fortunately,
it has been proven that, only using M≥O(K log(N/K))

random measurements, x can be recovered approximately
as long as ΦΨ satisfies the restricted isometry property
(RIP) [33]. (us, by solving the ℓ1-norm optimization
problem, we can reconstruct x from the measurements
y [34].

s⌢ � arg, min ‖s′‖1, s.t.ΦΨs′ � y. (6)

(ere exist some widely used algorithms to deal with the
optimization problem: total variation, orthogonal matching
pursuit (OMP), and iterative threshold, and so on. In this
paper, a MATLAB-based modeling system for convex op-
timization (CVX) is used to reconstruct the original signal x.

2.3. Vector Quantization. As a lossy block-size data com-
pression way, VQ was first proposed by Linde et al. in 1980
[35]. (e compression coding mainly consists of three
components: codebook generation, VQ encoder, and VQ
decoder. (e codebook CB� Yi􏼈 􏼉

N
i�1 that contains N k-di-

mensional codewords Yi � yi,j􏽮 􏽯
k

j�1 should be trained and
preshared beforehand. (e original image is divided into
nonoverlapping sub-blocks V� vj􏽮 􏽯

j�k

j�1. For each sub-block,
the nearest codeword Yi is found based on a minimum
Euclidean distance by sequentially comparing V to the
codewords Yi of the codebook CB. (e Euclidean betweenV
and Yi is

D V,Yi( 􏼁 � 􏽘
k

j�1
vj − yi,j􏼐 􏼑

2
, (7)

where yi,j is the j-th component of the codeword Yi and vj is
the j-th component of the image sub-block V. When the
nearest codeword Yi is found, the corresponding index i is
used to encode vector V. After all sub-blocks of V are
encoded, the original image can be represented by indices of
these nearest codewords.

It is easy to reconstruct the original image from the VQ
indexes based on the preshared codebook CB when VQ
decoding is required. (e decoding must conduct on each
index to retrieve each sub-block of the original image.

E (ξ, η) E (ξ, η)I (x, y) D (x, y)

FT FT

m2

m1

IFT IFT

Conjugate

Conjugate

DecodingEncoding

Figure 1: (e simplified process of DRPE technology.
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3. The Proposed Encryption and
Authentication Scheme

Our DRPE-CSVQ can achieve encryption and authentica-
tion simultaneously and efficiently. Figure 2 presents the
flowchart of the encryption and hiding algorithm, from
which one can find the four stages from the plain image to
the final encrypted hidden image: DRPE, VQ, CS, and
permutation-diffusion. (e VQ encoder encodes the plain
image into VQ indexes and the error matrix, and the DRPE
transformation operates the same plain image into the bi-
nary image as authentication information. (e obtained
error matrix is permuted and compressed by CS to get the
measurements. (e combined image is constructed that
includes the index vector, the quantized measurements, and
the authentication information, followed by the encryption
to generate the final encrypted hidden image. (e following
subsections will describe more details about the four stages.

3.1. ErrorMatrixGeneration. Initially, the input plain image
I0 � I0(x, y)􏼈 􏼉

M,N

x�1,y�1 of M rows and N columns is parti-

tioned into small sub-blocks SΒ � sbi􏼈 􏼉
M×N/l/l
i�1 of length

M × N/l/l. (e element number l2 in each sub-block equates
to the dimension of a codeword. (en, we search for the
closest matching codeword for each sub-block and allocate
the corresponding index to the sub-block. All indexes
constitute an index vector z � zp􏽮 􏽯

M×N/l/l
p�1 according to

zp � argminD
j

sbp, yj􏼐 􏼑. (8)

To comply with the subsequent operations, we reshape the
resultant vector into 2D matrix z � z(x, y)􏼈 􏼉

M,N/l/l
x�1,y�1. After all

the encoded indexes are done VQ decoder, a reconstructed
image Ivq that is much close to the input plain image I0 can be
easily generated. (e error E1 between the reconstructed
image and the input plain is

E1 � I0 − Ivq. (9)

(e reconstructed sub-block by VQ index might not be the
same as the input sub-block as the preshared codebook CB
impacts the reconstruction effect. A larger codebook has a
higher chance of seeking the codeword that is precisely the best
matching to the input sub-block but meanwhile means more
time consumption for codebook training and vice versa.
Moreover, there usually exist block artifacts in the reconstructed
image Ivq. To lessen the intrinsic dependency for the codebook,
we fully leverage CS superiority to compress the error matrix.

3.2. Authentication Information Generation. (e same plain
image I0 � I0(x, y)􏼈 􏼉

M,N

x�1,y�1 of M rows and N columns is
encoded by the DRPE transformation to generate a complex
image composed of a phase image and an amplitude image.
(e amplitude image is discarded and only the phase image
P0 � P0(x, y)􏼈 􏼉

M,N
x�1,y�1 is reserved as the output. (e output

phase image P0 � P0(x, y)􏼈 􏼉
M,N
x�1,y�1 is then quantized as a

binary image B � B(x, y)􏼈 􏼉
M,N
x�1,y�1.

B(x, y) �
1, P0(x, y)> 0,

0, others.
􏼨 (10)

(en, every 8 bits of the binary image B �

B(x, y)􏼈 􏼉
M,N
x�1,y�1 are combined into one pixel of the au-

thentication information Bp � Bp(x, y)􏼈 􏼉
M,N/8
x�1,y�1.

3.3. ErrorMatrix Compression. Due to local regularities and
global symmetries of nature images, different regions of the
error matrix E1 have massive diversity in sparsities. To better
use the same measurement matrix Φ ∈ RM×N to compress
all sub-blocks of the error matrix E1, the element distri-
bution of the error matrix E1 must be uniform enough.(us,
we scramble the error matrix E1 with a pseudorandom
sequence generated by the following modified Henon map
function [36]:

xk+1 � 1 − α cos xk( 􏼁 − βyk,

yk+1 � −xk,
􏼨 (11)

where x0 and y0 are the initial values and α and β are the
control parameters. (e system is in a chaotic state when
α � 3.85 and β � 0.3. (e initial parameter set
(x

p1
0 , y

p1
0 , αp1 , βp1) as the permutation key iterates equation

(11) for M × N times to generate the pseudorandom se-
quence a � at􏼈 􏼉

M×C

t�1 . Let the 1D vector of the error E1

bee1 � e1(t)􏼈 􏼉
M×N
t�1 , and the scrambled error vector

e2 � e2(t)􏼈 􏼉
M×N

t�1 is

e2(t) � e1 at( 􏼁, (12)

where at represents the element of the sorted-indexed vector
a � at􏼈 􏼉

M×C

t�1 generated by sorting the pseudorandom se-
quence a � at􏼈 􏼉

M×C
t�1 in ascending order. And we can obtain

the 2D permuted error matrix E2 � E2(x, y)􏼈 􏼉
M,N

x�1,y�1 by
reshaping the vector e2 � e2(t)􏼈 􏼉

M×N

t�1 into M rows and N

columns.
After getting the much uniform error E2, we describe

how to compress it with the same measurement matrix Φ.
(e sparse error E2 is split into nonoverlapping sub-blocks
of size l′ × l′, and the elements of all sub-blocks are sepa-
rately stretched into vector sets Λ � Λt􏼈 􏼉

M×N/l′/l′
t�1 . If the

number of nonzero values of each block is saved in
ΝΖ � NZt􏼈 􏼉

M×N/lk
t�1 , we can use a measurement matrix of size

Mk × lk (lk >Mk >NZt and lk � l′ × l′) to compress each
vector in Λ as follows:

yt � ΦΛt. (13)

Since the newly generated low-dimensional measure-
ments yt are double-precision numeric type a uniform
quantization is leveraged to map the values to the range
[0, 255],
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yt
′ � floor

255 · yt − ymin
t􏼐 􏼑

ymax
t − ymin

t

⎡⎣ ⎤⎦, (14)

where ymin
t and ymax

t are the minimum and maximum values
in yt and floor(·) is the rounding down operation. After all of
the sub-blocks in E2 are compressed with the same mea-
surement matrix, the resulting values constitute a mea-
surement set Yt

′ � yt
′􏼈 􏼉

M×N/l′/l′
t�1 . Resizing it into a 2D matrix,

we can get the measurements Y′ � y′(x, y)􏼈 􏼉
M×N/l′/l′
x�1,y�1 .

3.4. Self-Embedding and Encryption. In the VQ process, we
use a codebook with 256 codewords of length l × l � 16;
thus, we can acquire the index vector of size Nvq � αvq ×

M × N from the plain image, where αvq � 1/16. In the DRPE
process, every 8 bits of the binary image are combined into
one pixel of authentication information; thus, we can
generate the authentication information of size
Ndrpe � αdrpe × M × N from the binary image, where
αdrpe � 1/8. In the CS process, let lk � l′ × l′ � 16 × 16 and
the sampling ratio be αcs, the number of the measurements
of each sub-block is then Mk � αcs × lk, and the number of
the whole error matrices is Ncs � Mk × M × N/lk �

αcs × M × N. (us, the total number of VQ indexes, au-
thentication information, and measurements is
Νtotal � M × N × (αvq + αdrpe + αcs). Since αvq and αdrpe are
two constants, the number Νtotal of all the data will be
consistent with the size of the plain image when the sampling
ratio is αcs � 13/16. (erefore, after obtaining the index
matrix z � z(x, y)􏼈 􏼉

M,N/l/l
x�1,y�1 by Section 3.1, the authentication

information Bp � Bp(x, y)􏼈 􏼉
M,N/8
x�1,y�1 by Section 3.2, and the

measurement values Y′ � y′(x, y)􏼈 􏼉
M,N/l′/l′
x�1,y�1 by Section 3.3, a

combined image Ev � ev(x, y)􏼈 􏼉
M,N

x�1,y�1 of the same size as
the plain image can be obtained by appending them orderly:

Ev � z, Y′, BP􏼂 􏼃. (15)

In the following, we will dedicate to the encryption based
on a permutation and diffusion architecture. Using the other
two sets of parameters (x

p2
0 , y

p2
0 , αp2 , βp2) and (xd

0 , yd
0 , αd, βd)

to iterate equation (11) M × N times, two pseudorandom
sequences b � bt􏼈 􏼉

M×N
t�1 and c � ct􏼈 􏼉

M×N
t�1 are generated,

where (x
p2
0 , y

p2
0 , αp2 , βp2) is as the permutation key and

(xd
0 , yd

0 , αd, βd) as the diffusion key. After sorting, we can get

their sort-indexed vectors b � bt􏽮 􏽯
M×N

t�1 and c � ct􏼈 􏼉
M×N

t�1 .
Reshaping the combined image Ev into a 1D vector
ev � ev(t)􏼈 􏼉

M×N

t�1 , we can perform permutation with
b � bt􏽮 􏽯

M×N

t�1 .

ep(t) � ev bt􏼐 􏼑. (16)
To facilitate subsequent diffusion, we convert each ele-

ment of the sort-indexed vector c � ct􏼈 􏼉
M×N

t�1 into an integer
range [0, 255].

c � mod floor c × 1014􏼐 􏼑, 256􏼐 􏼑. (17)

(e bitwise exclusive or diffusion is conducted according
to equation (18) [37]:

ed(t) � ep(t)+
·
ct􏼐 􏼑⊕ c⊕ ed(t − 1). (18)

After rearranging all the elements of the diffused vector
ed � ed(t)􏼈 􏼉

M×N

t�1 into a 2D matrix, the final encrypted and
hidden image Ed � ed(x, y)􏼈 􏼉

M,N

x�1,y�1 is yielded.

3.5. Decryption and Authentication. (e decryption and
authentication are shown in Figure 3. (e received image
_Ed� _ed(x, y)􏼈 􏼉

M,N

x�1,y�1 is restored into a combined image _Ev �

_ev(x, y)􏼈 􏼉
M,N

x�1,y�1 by the inverse permutation and inverse
diffusion with corresponding keys. If the predesignated
image size is 256 × 256, we can extract the index matrix _z �

_z(x, y)􏼈 􏼉
M,N/l/l
x�1,y�1 from the leftmost 16 columns of the com-

bined image _Ev and reconstruct the image _Ivq with the aid of
the preshared codebook CB. In addition, we can extract the

authentication information Bp
·

� Bp
·

(x, y)􏼚 􏼛
M,N/8

x�1,y�1
from

the rightmost 32 columns of the combined image _Ev and the
measurements _Y′ � _y′(x, y)􏼈 􏼉

M,N/l′/l′
x�1,y�1 from the rest part of

the image. To reconstruct the error matrix
_E2 � _E2(x, y)􏽮 􏽯

M,N

x�1,y�1 from the extracted measurements, we
divide the measurements into small nonoverlapping sub-
blocks _Y′ � yt

′􏼈 􏼉
M×N/l′×l′
t�1 and then inversely quantize each

sub-block by

_yt �
_yt
′ × ymax

t − ymin
t􏼐 􏼑

255
+ ymin

t . (19)

(en, we solve the ℓ1-norm optimization:

Plain
image

Codebook Permutation
Error E1 Error E2

Measurements

Encrypted
hidden image

Index
vector

Phase
image

Binary
image

Combined
image EncryptionDRPE

VQ CS

Figure 2: Flowchart of the encryption and hiding algorithm.
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s⌢t � argmin _st

����
����1, s.t.ΦΨ_st � _yt, (20)

where Ψ is a dictionary of size lk × lk and _st is the spare
coefficient. Based on the newly generated coefficients s⌢t, we
can reconstruct the elements of the sub-block _Λt from the
measurements _yt.

_Λt � Ψs⌢t. (21)

Following the elements of all sub-blocks
_Λ � _Λt􏽮 􏽯

M×N/l′/l′

t�1 which are generated, we reshape them into

a matrix _E2 � _E2(x, y)􏽮 􏽯
M,N

x�1,y�1 and perform an inverse
permutation on the matrix to generate the reconstructed
error _E1 � _E1(x, y)􏽮 􏽯

M,N

x�1,y�1. (e final reconstructed image

Ire � Ire(x, y)􏼈 􏼉
M,N

x�1,y�1 is

Ire � Ivq + _E1. (22)

In addition, the authentication information, namely, the
extracted Bp

·

, is transformed into a binary image and is
quantized inversely into a phase image _P0 �

_P0(x, y)􏽮 􏽯
M,N

x�1,y�1.

_P0(x, y) �
−π, _Bp(x, y) � 0,

π, _Bp(x, y) � 1.

⎧⎨

⎩ (23)

(e obtained phase image _P0 is sparse, and it can be
viewed as an input image and decrypted using the inverse
DRPE to generate the decoded image _I0 � _I0(x, y)􏽮 􏽯

M,N

x�1,y�1.

(e decoded image _I0 is not visually recognized, but we can
authenticate it with an advanced statistical nonlinear cross-
correlation. (e nonlinear cross-correlation transformation
coefficient cc � cc(x, y)􏼈 􏼉 between the decoded image _I0 and
the target image It � It(x, y)􏼈 􏼉

M,N

x�1,y�1 is calculated by

cc(x, y) � FT
− 1 It(μ, η)_I0(ξ, υ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
k
e

φIt(μ,η)−φ_I0
(ξ,υ)􏼐 􏼑

􏼠 􏼡,

(24)

where It(μ, η) and _I0(ξ, υ) are the 2D Fourier transforms of
the target image It and the decoded image _I0, φIt

(μ, η) and
φ_I0(ξ, υ) are the phase signals of It(μ, η) and _I0(ξ, υ) , FT−1 is
the inverse Fourier transform, and k denotes the strength of
the applied nonlinearity. (e value of k is often set to 0.3
[28]. To quantitatively measure the correlation between the
decoded image _I0 and the target image It, peak-to-corre-
lation energy (PCE) is calculated with

PCE �
max |cc(x, y)|

2
􏼐 􏼑

􏽐
M
x�1 􏽐

N
y�1 |cc(x, y)|

2, (25)

where max(·) is a maximum function. A higher PCE value
indicates a stronger correlation between the decoded image
_I0 and the target image It.

3.6.Discussion. Based on the above procedures, the proposed
method can achieve optical authentication for the noise-like
and unrecognizable images in resource-constrained envi-
ronments, and this will be detailedly analyzed in the next
Section 4.2.1. (e binary image generated by the DRPE
technology serves as the authentication information, and the
time complexity of this process is low due to the parallel
processing trait of optical DRPE. In addition, compensating
the reconstructed error information on the VQ image can
obtain a better final reconstructed image quality, making the
decrypted noise-like authentication information and the final
reconstructed image authenticated with a higher probability.

On the other hand, the purpose of generating encrypted
images containing authentication bits is to protect users’
copyright information in insecure cloud-based environ-
ments. For example, to use the resources in the cloud data
centers, the users needed to update the multimedia data onto
the cloud servers in advance. Upon updating to cloud
servers, the user can retrieve the data when needed from any
location, whereas transmitting the data to cloud servers
managed by third-party servers may lead to security and
privacy issues. It is vital to settle the security concerns in-
volved in cloud computing. Fortunately, the security of
stored content can be premanaged by application of the

Encrypted
hidden image Decryption

Extracted binary
image Phase image Inverse

DRPE

Measurements
Error E2 Inverse

Permutation
Error E1

VQ
reconstuctionIndex vector

Adder Reconstructed
plain image

Decoded
image

Nonliner cross
correlation Authentication

Codebook

CS
reconstruction

Figure 3: Flowchart of the decryption and authentication algorithm.

6 Security and Communication Networks



conventional encryption designs. However, if unwanted
processing occurs in an insecure cloud, ensuring users’
copyright is a real challenge. (us, it is necessary to embed
authentication information into the encrypted domain.

4. Experimental Results and
Performance Analyses

4.1. Experiment Results. We exploit multiple plain images
from the USC-SIPI image database [38] to verify the effec-
tiveness of the proposed method. All experiments are con-
ducted by MATLAB R2012b software on a 64-bit Windows 7
PC with 16.0GB random-access memory (RAM) and
Inter(R) Core(TM) i7-4770 CPU @ 3.40GHz. (e standard
test image “Camera” of size 256 × 256 is used to test the
effectiveness of the proposed method. Figure 4 shows the
detailed implementations on encryption and hiding, and
Figure 5 shows the implementations on decryption and au-
thentication. In our experiments, if the sampling ratio αcs is
smaller than 13/16, the final encrypted and hidden image will
be compressed; otherwise, it will not be compressed. In
Figures 4 and 5, the sampling ratio is fixed as αcs � 13/16.

(e input image, the phase image obtained by DRPE, the
binary image generated by the quantization, the VQ image
reconstructed by the preshared codebook, and the error
matrix between the plain image and the reconstructed VQ
image are shown in Figures 4(a)–4(e); and the permuted error
matrix, the measurements by CS, the combined image, the
permuted image, and the final encrypted and hidden image
diffused are shown in Figures 4(f)–4(j). It follows from
Figure 4(e) that smaller values or 0 values are full of the whole
error matrix; thus, the error matrix is much sparse than the
input image. In addition, the permutation process has made
the distribution of nonzero values of the error matrix more
uniform in Figure 4(f); thus, using the same measurement
matrix to compress all sub-blocks of the errormatrix will have
little or no impact on the error reconstruction. And, one can
find intuitively from Figure 4(h) that the VQ indexmatrix, the
measurements, and the authentication information have been
aligned orderly in the combined image. At last, the incom-
prehensible and noise-like image in Figure 4(j) indicates no
information leakage compared to the original input.

Figure 5 shows the detailed implementations of decryption
and authentication. We know that the VQ image reconstructed
from the extracted VQ indexes has noticeable block artifacts in
Figure 5(d), while no such issue appears in Figure 5(f).
Moreover, the PSNR value between the VQ image in
Figure 5(d) and the input image in Figure 4(a) is 24.8878dB, but
the value reaches 40.2863dB for the final reconstructed image in
Figure 5(f) and the input image in Figure 4(a). (us, the
reconstructed error in Figure 5(e) fulfills better information
compensation to the VQ image, facilitating subsequent au-
thentication based on a nonlinear cross-correlation coefficient
strategy. (e authentication information extracted from the
rightmost 32 columns of Figure 5(c) is converted into
Figure 5(g) and then inversely quantized to the phase image in
Figure 5(h).(e noisy decoded image in Figure 5(i) are difficult
to recognize with naked eyes virtually but have been successfully

authenticated in Figure 5(j) based on a nonlinear cross-cor-
relation between it and the reconstructed image in Figure 5(f),
the authentication of which is a blind process since it is needless
for the participation of the plain image in Figure 4(a).

4.2. Performance Analyses

4.2.1. Compressibility. (e compression ratio of our DRPE-
CSVQ is defined as the ratio of the final encrypted hidden
image to the plain image:

αcr �
Nvq + Ndrpe + Ncs􏼐 􏼑

(M × N)
� αvq + αdrpe + αcs, (26)

where Nvq, Ndrpe, and Ncs are the sizes, respectively, from the
index matrix, the authentication information, and the mea-
surements, αcs and αcr represent the sampling ratio and the
compression ratio, αdrpe � 1/8, and αvq � 1/16. If the sampling
ratio αcs is smaller than 13/16, our DRPE-CSVQ can imple-
ment three functions of compression, encryption, and au-
thentication simultaneously. Figure 6 shows the detailed
implementations at compression ratio αcs � 5/8 with multiple
test images “Camera,” “Lena,” and “Baboon” of sizes 256 × 256
as inputs. At first, the inputs “Camera,” “Lena,” and “Baboon”
are encoded using the encryption and hiding algorithm to
generate the corresponding compressed and encrypted images
shown in Figures 6(a1)–6(a3). (en these are decoded using
the decryption and authentication algorithm to obtain the
reconstructed images in Figures 6(e1)–6(e3) and the decoded
images in Figures 6(f1)–6(f3), thus achieving the authentica-
tions in Figures 6(g1)–6(g3). (e reconstruction quality is
evaluated with peak signal-to-noise ratio (PSNR) value, and the
authentication result is quantitatively testified by PCE value.
(e PSNR results of VQ images generated by extracted VQ
indexes (in Figures 6(c1)–6(c3)) are 24.7856dB, 26.0553dB,
and 24.8610dB while the PSNRs of final reconstruction images
(in Figures 6(e1)–6(e3)) reach 29.9680dB, 29.5055dB, and
26.3824dB, respectively. (e PSNRs of our DRPE-CSVQ re-
construction are all much larger than the PSNRs of VQ re-
construction for the same image, so the reconstructed error
matrices (in Figures 6(d1)–6(d3)) have freed up codebook
dependency for VQ reconstruction. Besides, the correlation
planes between the final reconstruction images (in
Figures 6(e1)–6(e3)) and the decoded images (in Figures 6(f1)–
6(f3)) have exhibited high peaks at the centers and possess the
PCE values of 0.0064, 0.0030, and 0.0033, respectively, which
indicate that the proposedmethod successfully authenticates all
images at compression ratio αcr � 5/8.

Besides, Figure 7 shows the correlation planes at dif-
ferent compression ratios. Figures 7(a)–7(d) show the
correlation planes at compression ratios αcs � 13/16,
αcs � 5/8, αcs � 7/16, and αcs � 1/4, respectively. From
Figure 7, we can easily find the high peak from the center of
each correlation plane; thus, the reconstruction image has a
strong correlation with the authentication information. To
make a more quantitative analysis of the authentication
result, we calculate the PCE values of all the correlation
planes, the values of which are 0.0067, 0.0064, 0.0055, and
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0.0048, respectively, thus again testifying the authentica-
tion ability of our DRPE-CSVQ. Meanwhile, we also ex-
ecute simulations of multiple plain images and compute the
average of PSNRs (APSNRs) to test the reconstructed
quality of our DRPE-CSVQ at different compression ratios.
Table 1 lists the comparison results among the proposed
method and the methods in BLP-CS [39], BCS-In [40], and
DRPE-BCS [29]. Table 2 presents all parameter settings of

these comparisons. We can find from Table 1 that our
DRPE-BCS is greater than the other three approaches at
least 1 dB at compression ratio 30%, and at least 2 dB when
compression ratio equals 20%. (us, our DRPE-CSVQ
provides a more powerful compression property while
keeping image quality.

Since we dedicate to the two concerns above [29], we give
detailed numerical comparisons. Figure 8 presents comparison

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

1

0.5

0

(j)

Figure 5: Detailed experimental results for the decryption and authentication. (a) Received image; (b) only-permuted image by inverse-
diffusion; (c) combined image by inverse permutation; (d) VQ image with preshared codebook (PSNR � 24.8878); (e) error matrix by CS
reconstruction and inverse permutation; (f ) reconstructed image with (d) and (e) (PSNR � 40.2863); (g) converted binary image by
extracted authentication from (c); (h) extracted phase image by inverse quantization (g); (i) decoded image by inverse DRPE; (j) au-
thentication with (f ) and (i) (k � 0.3, PCE � 0.0077).

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 4: Detailed experimental results for the encryption and hiding. (a) Input image; (b) phase image by DRPE; (c) binary image by
quantization; (d) VQ image reconstructed by preshared codebook; (e) error matrix between (a) and (d); (f ) permuted error matrix with
(x

p1
0 , y

p1
0 , αp1 , βp1 ); (g) measurements by CS; (h) combined image; (i) permuted image with (x

p2
0 , y

p2
0 , αp2 , βp2 ); (j) the final encrypted and

hidden image with (xd
0 , yd

0 , αd, βd).
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Figure 6: Continued.
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Figure 6: Continued.

10 Security and Communication Networks



results, where the standard image “Camera” is still the input
image. Figure 8(a) shows the PSNR value of the recon-
structed image, and Figure 8(b) shows the corresponding
PCE value of the authentication result. One can see that our
method is wholly better than [29] when the compression
ratio is smaller than 0.5 and comparable to [29] when the
compression ratio is larger than 0.5. Both PSNR and PCE
values in our method decline slowly and entirely outper-
form the values in [29] while the compression ratio is less
than 0.5. (e two processes in [29] have a quick decline
because the input image “Camera” in [29] was as direct
input of CS that makes the reconstructed image accordingly
decline with the reduction of the compression ratio. As a
contrast, we select a sparser error matrix as CS input. (e
reconstructed error matrix by CS exclusively achieves in-
formation compensation to the VQ reconstructed image;
thus, the reconstruction quality of our method was not
substantially affected by the descent of compression ratios.
In short, our approach can well ensure the restoration
precision of the reconstructed image, thereby equipped
with more robust authentication capability.

1
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(a)
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(b)
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Figure 7: Correlation planes at different compression ratios. (a) Correlation planes with compression ratio αcs � 13/16; (b) correlation
planes with compression ratio αcs � 5/8; (c)correlation planes with compression ratio αcs � 7/16; (d) correlation planes with compression
ratio αcs � 1/4.
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Figure 6: Compression and encryption with authentication ability when compression ratio is 5/8. (a, b, c, d, e, f, g-1, 2, 3) Standard images
“Camera,” “Lena,” and “Baboon” of sizes 256 × 256 used for testing; (a-1, 2, 3) final encrypted and hidden image (i.e., the received image); (b-
1, 2, 3) combined image by inverse permutation and inverse diffusion; (c-1, 2, 3) VQ image reconstructed by preshared codebook; (d-1, 2, 3)
error matrix by CS and inverse permutation; (e-1, 2, 3) reconstructed image with (c-1, 2, 3) and (d-1, 2, 3); (f-1, 2, 3) decoded image by
inverse DRPE; (g-1, 2, 3) authentication with (e-1, 2, 3) and (f-1, 2, 3).

Table 1: Comparisons on APSNRs of reconstructed images at
different sampling rates.

Image Algorithm 20% 30% 50% 70%

Camera

BLP-CS [39] 21.2134 24.8215 28.6241 32.9325
BCS-In [40] 18.0314 21.5327 27.4108 32.8574

BCS-DRPE [29] 17.0794 22.3241 26.9541 32.4573
VQCS-DRPE 25.4512 25.9545 28.3244 32.1575

Lena

BLP-CS [39] 23.6405 27.5214 31.4421 35.7324
BCS-In [40] 19.5241 23.3256 27.3125 32.1542

BCS-DRPE [29] 23.9345 27.4571 32.7794 37.9847
VQCS-DRPE 27.7841 29.3245 32.9394 37.4765

Baboon

BLP-CS [39] 18.8341 20.2345 22.6243 25.8341
BCS-In [40] 14.7214 17.6211 21.3098 25.2132

BCS-DRPE [29] 20.3842 21.9848 24.0153 27.3547
VQCS-DRPE 25.9657 25.1214 26.3254 27.3655

Peppers

BLP-CS [39] 23.9135 27.2187 30.9455 34.7241
BCS-In [40] 18.4241 22.6324 27.9357 32.5048

BCS-DRPE [29] 21.0541 26.3545 31.8258 37.1323
VQCS-DRPE 25.9616 27.3547 31.4575 36.7724

Bold values show that the results of our method are superior to the
compared results.
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4.2.2. Histogram Analysis. Figure 9 shows the histograms of
the plain image and the encrypted images at compression
ratios of αcr � 1, αcr � 13/16, αcr � 5/8, αcr � 7/16, and
αcr � 1/4, respectively. It is clear that as compression ratios
decrease, the total numbers of pixels in the cipher images
shrink accordingly. Still, all histograms of the cipher images
are uniformed, and none of the valuable information is
leaked to the adversary. Although the purpose of error
matrix permutation is to make the signal as evenly dis-
tributed as possible to be compressed by the same mea-
surement matrix and obtain a more efficient reconstruction
of the signal later, the permutation also makes the mea-
surements by CS have a similar distribution. Besides, the
subsequent permutation and diffusion render the pixel in-
tensities of the combined image uniformly distributed in the
range of [0,255]. (us, we can conclude that the proposed
scheme tackles the energy leakage issue.

4.2.3. Correlation Analysis. (e correlation among adjacent
pixels of an image is a vital criterion to assess encryption
security. Here, we randomly select 2000 adjacent pixel pairs
in horizontal, vertical, and diagonal directions from the
plain “Camera” and the corresponding encrypted image to
test the correlation results. Figure 10 shows the correlation

distributions of “Camera” and the corresponding encrypted
image in the three directions. Two adjacent pixels in the
input plain “Camera” are highly correlated. In contrast, the
correlation between two adjacent pixels in the encryption
version is weak enough and almost disrupted to a ran-
domness pattern. (e distributions of the vertical and di-
agonal directions possess similar modalities.

In addition, to quantitatively analyze this, correlation
coefficients are calculated:

Cxy �
Ls 􏽐

Ls

i�1 xiyi( 􏼁 − 􏽐
Ls

i�1 xi 􏽐
Ls

i�1 yi����������������������������������������

Ls 􏽐
Ls

i�1 x
2
i − 􏽐

Ls

i�1 xi􏼐 􏼑
2

􏼒 􏼓 Ls 􏽐
Ls

i�1 y
2
i − 􏽐

Ls

i�1 yi􏼐 􏼑
2

􏼒 􏼓

􏽲 ,

(27)

where xi and yi are the values of two adjacent pixels and Ls is
the total number of selected pixel pairs. Table 3 lists the
correlation coefficients of plain images and those of the
corresponding encrypted versions. (e results show that the
coefficients for the encrypted images are all sufficiently low,
indicating that the proposed method is equipped with a
better encryption effect. In Table 4, we compare ours with
other encryption schemes [41–43]. We can see that our
method outperforms them in three directions. (e chaotic
operation in our system engages VQ indexes, error

Table 2: Parameter settings of these comparisons.

Algorithm Size of input image Input of CS Sparsity basis? Block size αcr � αcs?

BLP-CS [39] 256 ∗ 256 Plaintext FrFT 16 ∗ 16 Yes
BCS-In [40] 256 ∗ 256 Plaintext LT 16 ∗ 16 Yes
BCS-DRPE [29] 256 ∗ 256 Plaintext DWT 16 ∗ 16 αcr � αcs + 1/8
VQCS-DRPE 256 ∗ 256 Error No 4 ∗ 4/VQ, 16 ∗ 16/CS αcr � αcs + 3/16
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Figure 8: Comparisons on PSNR values and PCE values for [29] and the proposed method under different compression ratios. (a) PSNR
values vary with different compression ratios. (b) PCE values vary with different compression ratios.
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Figure 10: Continued.
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Figure 9: Histograms for the plain “Camera” image and the corresponding encrypted images under different compression ratios. (a) Plain
“Camera” image; (b) histogram of (a); (c) encrypted image of the same size as (a); (d) histogram of (c); (e) encrypted image under
αcr � 13/16; (f ) histogram of (e); (g) encrypted image under αcr � 5/8; (h) histogram of (g); (i) encrypted image under αcr � 7/16;
(j) histogram of (i); (k) encrypted image under αcr � 1/4; (l) histogram of (k).
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measurements, and authentication information, whereas the
operation in other systems engages raw images. (ese
combined VQ indexes, error measurements, and authenti-
cation information have a much lower correlation than
pixels in nature images. (erefore, our method has stronger
robustness to resist correlation-based statistical attacks.

4.2.4. Information Analysis. Information entropy is used to
measure the uncertainty and randomness associated with a
random variable. (e entropy value of a random variable is
defined as

H(x) � − 􏽘
N

i�1
p xi( 􏼁log2 p xi( 􏼁, (28)

where p(xi) is the probability of appearance of xi.(e bigger
the information entropy of the cipher image is, the more
secure the cryptosystem is. Table 5 lists the entropies of the
plain images and the corresponding encrypted versions. One
can see that the proposed method is better than the works
[42, 43], and the entropies change within a very narrow
range, which means that the information leakage of the

proposed method is negligible. (us, our approach can well
resist entropy-based statistical analysis.

4.2.5. Differential Attack Analysis. To test the sensitivity to
plain image, we randomly select one pixel from each plain
image andmodify the last bit of the pixel at the same location
to obtain the corresponding modified plain image. (e
original and modified plain images are encrypted with the
same keys, and we get two encrypted images. (e two
encrypted images are evaluated quantitatively by the number
of pixels change rate (NPCR) and unified average changing
intensity (UACI):

NPCR �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
D(i, j) × 100%,

UACI �
1

M × N
􏽘

M

i�1
􏽘

N

j�1

C1(i, j) − C2(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
× 100%,

(29)

where C1 and C2 are two encrypted images obtained by a
slight change in the chosen plaintext image and D(i, j) is
defined as
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Figure 10: Correlations of the plain “Camera” image of 256 × 256 and the corresponding encrypted image of the same size in different
directions. (a–c) Horizontal, vertical, and diagonal correlations of the plain “Camera” image; (d–f) horizontal, vertical, and diagonal
correlations of the final encrypted image.

Table 3: Correlation coefficients between adjacent pixels.

Image
Original image Encrypted image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Camera 0.9334 0.9592 0.9086 0.0032 −0.0007 0.0005
Lena 0.9458 0.9720 0.9211 −0.0025 0.0058 −0.0075
Baboon 0.8733 0.8273 0.7854 0.0054 0.0038 0.0000
Peppers 0.9610 0.9670 0.9296 0.0057 −0.0020 0.0028

Table 4: Comparisons on mean correlation coefficients for various methods.

Direction
Mean correlation coefficients

Ref. [41] Ref. [42] Ref. [43] Ours
Horizontal 0.0124 0.0127 0.0132 0.0032
Vertical 0.0070 0.0117 0.0078 0.0025
Diagonal 0.0050 0.0235 0.0182 0.0031
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D(i, j) �
0, C1(i, j) � C2(i, j),

1, C1(i, j)≠C2(i, j).
􏼨 (30)

(e results are tabulated in Table 6 and compared with
the works [41–43]. As seen, our method outperforms the
works [41–43] either in NPCR or in UACI. Unlike the results
in [41–43], one-pixel variation in two plain images will make
at least one pixel changed markedly in the corresponding
two encrypted images. In our method, if making the slightest
bit of a randomly chosen pixel changed, the two encrypted
images may be the same because a tiny change perhaps does
not impact the index vector or change authentication in-
formation andmeasurements. It may change one index or 8-
bit depth authentication information or error measurements
if replacing a chosen pixel by a random value.(ese changed
pixels may influence almost all the pixels of the encrypted
image through the subsequent diffusion phase. (us, our
method has a better ability to resist differential attacks.

4.2.6. Cropping Attack Analysis. If the sampling ratio is
αcr � 13/16, the encrypted image has the same size as the
input plain image. (e indispensable VQ indexes hold
solely 6.25% pixels of the whole encrypted image, and the
authentication information and the error information
occupy 12.5% and 81.25%, respectively. (e VQ indexes
share a much smaller number of pixels than the error data
while saving the most information of the input plain image.
When the encrypted image is subjected to attacks, the
probability of the damaged index data will be much smaller
than that of error data, and even after being damaged, the
damaged indexes can be replaced with the undamaged
neighbor indexes. (eoretically, the DRPE-CSVQ can
ensure the image restoration quality to a certain degree.
Figure 11 also gives the experiment results of the proposed
method under cropping attack with the cropping size
64 × 64. (e first column to the third column presents
detailed image reconstructions and authentications with
multiple standard images “Camera,” “Lena,” and “Baboon.”

We can see from the second row that there are full of
different types of noises, indicating that the error matrix
and the VQ indexes are both destroyed. (ese destroyed
sub-blocks correspond to those VQ indexes damaged in the
encrypted image. (e PSNR results of the reconstructed
images with error compensation are 15.9090 dB,
15.9326 dB, and 15.7447, respectively, which are far from
satisfactory to authenticate. If ignoring the error matrix, we
can obtain the images in the third row with PSNR values of
19.8572 dB, 21.1723 dB, and 20.9273 dB, respectively, which
have better visual perception than those in the second row.
But there are still some discrete sub-blocks in the images in
the third column, which are indications of the destroyed
indexes. An alternative solution is to replace the damaged
indexes with their neighbor indexes, and the fourth row
shows the final reconstructed images. (e PSNR values of
the fourth row are 24.4895 dB, 26.5853 dB, and 24.2341 dB,
respectively, which are enough to accomplish subsequent
authentication. (e fifth row shows the decoded images
after the inverse DRPE transform, and the last row shows
the authentication results between decoded images and
final reconstructed images. (e PCE values of the au-
thentication results reach 0.0032, 0.0021, and 0.0017, re-
spectively, indicating that our DRPE-CSVQ implements
successful authentication after cropping attack.

As mentioned earlier, we also implement the work [29]
with the same input images under cropping size 64 × 64.
After simulations by the same software, we can obtain the
final reconstructed images with respective PSNR values of
7.0614 dB, 10.3057 dB, and 11.5010 dB in Figures 12(b1)–
12(b3), which are much worse than those in our method. In
addition, one cannot find the apparent high peak from the
center of each correlation plane, indicating that the dis-
tortions on these reconstructed images have severely
influenced the authentication effect. What is more, the PCE
values of the authentication results are only 0.000885,
0.000415, and 0.000450, respectively; thus, we can conclude
that themethod [29] fails to authenticate after being attacked
with the cropping size 64 × 64.

Table 5: Information entropies for various methods.

Image
Information entropies

Plaintext Ref. [41] Ref. [42] Ref. [43] Ours
Camera 7.0097 7.9966 7.9955 7.9964 7.9984
Lena 7.2045 7.9951 7.9965 7.9984 7.9983
Baboon 7.0091 7.9947 7.9963 7.9954 7.9982
Peppers 7.5813 7.9965 7.9958 7.9982 7.9984

Table 6: NPCR and UACI values for various methods.

Image
(NPCR (%); UACI (%))

Ref. [41] Ref. [42] Ref. [43] Ours
Camera (99.63, 33.71) (99.57, 33.37) (99.61, 33.69) (99.60, 33.48)
Lena (99.61, 33.56) (99.55, 33.34) (99.61, 33.63) (99.61, 33.49)
Baboon (99.60, 33.52) (99.54, 33.32) (99.60, 33.61) (99.60, 33.51)
Peppers (99.61, 33.63) (99.58, 33.35) (99.62, 33.74) (99.61, 33.50)
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Figure 11: Continued.

16 Security and Communication Networks



(d1) (d2) (d3)

(d)

(e1) (e2) (e3)

(e)

1

0.5

0

1

0.5

0

1

0.5

0

(f1) (f2) (f3)

(f )

Figure 11: Authentication results of our DRPE-CSVQ under cropping attack with the cropping size 64 × 64. (a, b, c, d, e, f-1, 2, 3) Standard
images “Camera,” “Lena,” and “Baboon” used for testing; (a-1, 2, 3) the encrypted images suffering from the cropping size 64 × 64; (b-1, 2, 3)
the reconstructed images with error compensation; (c-1, 2, 3) the reconstructed images without error compensation; (d-1, 2, 3) the
reconstructed images corresponding to the images (c-1, 2, 3); (e-1, 2, 3) the decoded images by inverse DRPE; (f-1, 2, 3) the authentication
results between the images (d-1, 2, 3) and the images (e-1, 2, 3).
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5. Conclusion

(is paper has presented a secure and efficient image
authentication scheme based on DRPE-CSVQ. It is the first
time we generalize the DRPE technology to compressive
sensing and vector quantization application scenarios. (e
phase information of the plain image is obtained using
DRPE and quantized to generate the authentication in-
formation. Simultaneously, the same plain image is com-
pressed by VQ, and then an error matrix is generated. Since
VQ can preserve enough details of an image, the error
matrix would be very sparse. To balance the sparse degree
of all sub-blocks of the error matrix such that the sub-
blocks can be sensed with the same sensing matrix, we
conduct a permutation on the error matrix and follow the
block-based CS compression on the error matrix. (e
combined image that comprises the VQ indexes, the
quantized measurements, and the authentication infor-
mation is permutated and diffused to ensure security.
Supported by the detailed numerical simulations and
theoretical analyses, the DRPE-CSVQ fits into the practical
realm better than its counterpart.
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