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Ransomware is a special malware designed to extort money in return for unlocking the device and personal data files. Smartphone users
store their personal as well as official data on these devices. Ransomware attackers found it bewitching for their financial benefits. +e
financial losses due to ransomware attacks are increasing rapidly. Recent studies witness that out of 87% reported cyber-attacks, 41% are
due to ransomware attacks. +e inability of application-signature-based solutions to detect unknown malware has inspired many
researchers to build automated classification models using machine learning algorithms. Advanced malware is capable of delaying
malicious actions on sensing the emulated environment and hence posing a challenge to dynamic monitoring of applications also.
Existing hybrid approaches utilize a variety of features combination for detection and analysis. +e rapidly changing nature and
distribution strategies are possible reasons behind the deteriorated performance of primitive ransomware detection techniques. +e
limitations of existing studies include ambiguity in selecting the features set. Increasing the feature set may lead to freedom of adept
attackers against learning algorithms. In this work, we intend to propose a hybrid approach to identify and mitigate Android ran-
somware.+is study employs a novel dominant feature selection algorithm to extract the dominant feature set.+e experimental results
show that our proposedmodel can differentiate between clean and ransomware with improved precision. Our proposed hybrid solution
confirms an accuracy of 99.85% with zero false positives while considering 60 prominent features. Further, it also justifies the feature
selection algorithm used. +e comparison of the proposed method with the existing frameworks indicates its better performance.

1. Introduction

Ransomware has blown away the cyber security world in
recent past. It targets the major losses like data, money, and
even life. +ese are special malware used to extort money in
return of access and data without user’s consent. Attackers
are consistently working on producing advanced methods to
deceit the victim and generate revenue. According to coa-
lition’s cyber insurance claim report (Cyber Insurance
Claims Report, 2020), out of 87% reported attacks, 41% are
due to ransomware attacks as shown in Figure 1. +e
possible reason for this significant increase is because of

COVID-19 pandemic; most of the employees are working
remotely. +e rapidly changing nature and distribution
strategies along with smart tactics are also responsible for
deteriorated performance of primitive ransomware detec-
tion techniques. Ransomware is generally seen in two forms:
locker-ransomware and crypto-ransomware [1]. Locker-
ransomware attacks lock the victim’s device to restrict its use
until they pay ransom. On the other side, crypto-ransom-
ware attacks encrypt all personal files to make them inac-
cessible for owner. Victims are forced to pay ransom to allow
unrestricted access to their own personal and confidential
data. To classify, analyze, and detect malicious application
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samples, there exists use of two primitive approaches, i.e.,
static and dynamic techniques. Static techniques examine
the applications by matching their signature, code, or per-
missions used and can detect previously known ransomware
only.

+ough the literature witnessed that static analysis is fast
and effective in detection of Android ransomware, static
analysis techniques are popular for their ability of identifying
only known ransomware. Considering fast-evolving nature
of Android ransomware, static analysis is not enough. Static
analysis is based on code and signature similarity and fails at
code obfuscation. On the other hand, dynamic analysis
checks the general behavior of an application while exe-
cution. Dynamic analysis techniques are strong enough to
withstand with vulnerable situations and can even detect
suspicious behavior even when code is compressed or
encrypted. However, dynamic analysis also has a few flaws
against smart malware tactics being used these days. Smart
malware actions are sometimes triggered only under certain
conditions, which is not possible to achieve in emulated
testing environment. Hence, fusion of effective static tech-
niques with dynamic techniques could give a robust hybrid
solution for Android ransomware. +e literature also states
that there exist comparatively less studies based on hybrid
technique for identifying Android ransomware. Existing
hybrid solutions majorly vary in feature set used for de-
tection of Android ransomware. Most of the hybrid ap-
proaches focus on a specific ransomware family or a specific
ransomware type or specific feature only.+ose type-specific
or family-specific solutions would be difficult to consider as a
generalized solution. Another important aspect to be con-
sidered here is novelty required in collecting and utilizing
the important features for analysis. Ransomware families
utilized new evolving features for constructing new variants,
hence creating need of constructing robust feature set for
analysis and detection. +e success of any approach directly
depends on feature set and feature selection method being
used. To accurately classify the applications, the feature set
being used has to be well-built. Extracting prominent

features and feature selection methods to be used is an
ongoing research challenge. Suspicious authors constantly
modify a few features to make frequent new variants, hence
posing challenge for existing techniques. However, most of
the existing studies focus on one or two types of features only
for their analysis and detection while testing its run-time
behavior. +ough system calls, permissions and APIs are
important features to be used for analysis and detection of
Android ransomware. However, the literature lacks in kernel
level checks, file operations, system component, phone state,
and so on. Researcher often faces difficulty in predicting all
possible behavior set due to limited availability of ran-
somware dataset and its fast-evolving nature.

In this work, we performed static analysis as well as
dynamic analysis over the collected sample of 3249 clean and
malicious applications. Static analysis was performed using
Apk tool. In the static feature extraction phase, we focus on
manifest file to extract permissions associated with the
application sample. In parallel, dynamic analysis was per-
formed over the collected data samples using an emulator,
i.e., habo analysis system. During the dynamic feature ex-
traction phase, we focussed on API calls, system calls,
permissions, file operations, network features, and other
system components. Further, static and dynamic feature
vectors were transformed to build combined feature matrix
containing unique features. A novel feature selection algo-
rithm was applied to select k-prominent features iteratively.
Multiple machine learning classifiers were applied to classify
samples as clean or ransomware.

+e major contributions of this work are follows:

(i) +is work demonstrated the effective use of ob-
tained dynamic features by studying combined
impact of all the dynamic features. To the best of our
knowledge, prior existing studies utilized one or two
standard features like system calls and API. Here, we
focussed on all the significant obtained dynamic
features to build the efficient dynamic model.

(ii) We have also built a dominant feature selection al-
gorithm to extract top k-dominant features being used
by Android ransomware samples and clean sample.
+is helped to discriminate among risky and nonrisky
features to effectively analyze malicious behavior.

(iii) With exhaustive experimentation by varying the
number of features to be 20, 40, 60, and till 80, we
showed the absolute difference in nominal fre-
quency of features used by Android ransomware
and clean applications.

(iv) We evaluated the effectiveness of machine learning
classifiers by calculating accuracy, false positive, and
false negative rate of each classifier for different set
of features iteratively. +e result shows that among
all the machine learning algorithms, random forest
algorithms achieved the highest accuracy of about
99.85% with zero false negative.

(v) We have also compared the results of our proposed
method with those of the existing system as shown
in Table 1. +e results of our proposed hybrid
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Figure 1: Ransomware share in recent reported cyber incidents
(modified from Cyber Insurance Claims Report, 2020).
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framework outperform the existing static, dynamic,
and hybrid approaches. Our proposed hybrid so-
lution confirms the accuracy of 99.85% with zero
false positives while considering 60 prominent
features. Further, it also justifies the feature selection
algorithm used.

+e rest of the paper is organized as follows. +e second
section presents related work. +e complete methodology
followed is explained in the third section. +e fourth section
presents experimental results followed by conclusion and
future scope in the last section.

2. Related Work

Two prominent approaches to restrict ransomware infec-
tions are static and dynamic analysis of software applica-
tions. Static analysis investigates the structural properties of
an application without executing it. It primarily emphasizes
on code, metadata, and digital signatures imbued within
software [5–7]. On the contrary, dynamic analysis examines
application behavior by executing it. It executes software
within a simulated environment and studies its behavior.
Application behavior corresponds to the access permissions,
network usage, and information shared, processed, and
exchanged by the software application during execution.
Static analysis requires less resources and is fast. However,
they got failed in case of code obfuscation. On the other
hand, dynamic approaches are more effective in performing
actual behavior check. However, dynamic approaches are
incapable of executing all possible paths and also cannot
check interapplication communication on emulators.
Hence, many researchers have also worked on hybrid ap-
proaches to increase the performance of ransomware
detection.

Reference [8] attained lot of popularity and success
because in their methodology, they make use of multiple
properties together for the analysis and detection. +ey
used source code as well as permissions for capturing
static features. +is model achieved better performance
results by exploring feature level granularity through API
calls. Reference [9] proposed that a significant static
approach developed was based on application features for
detection of malware. It captures important permissions
and suspicious API calls of applications, assigns a weight
value to them, and then compares it with a threshold value

so as to make appropriate decisions. Weight value for each
application is based on the nature of the identified
malicious patterns. Reference [10] gave a signature-based
static technique. Its aim was to scan the payload to check
the threatening strings relevant to financial claim.
However, this technique was not much popular because
generally text messages for financial claim are sent from
C&C (Command and Control) server. Reference [2]
proposed framework consists of multiple layers for fil-
trations. In this paper, they generate a message digest
value, i.e., MD5 (message digest) based on suspicious
permission being used, dangerous permissions being
granted, and hazardous intentions. Appropriate decisions
are further made on basis of hash value comparison.
Reference [3] focussed on checking whether any file had
undergone any remarkable changes. Authors make use of
techniques like content similarity and entropy measure-
ment for performing the checks. Reference [4] framed a
static model capable of identifying both locker as well as
crypto-ransomware. +is model does not require any apk
to be decompiled because its detection is based on
bytecode of application. It does not make use of source
code. It also can detect the multiple variants of ran-
somware. Reference [11] built a static model called
R-PackDroid that was light weight solution and was
implemented on users’ device itself. Its functionality was
to extract and analyze the application packages from the
apk files. Reference [12] extended their previous work,
which has attained a considerable improvement. For the
successful implementation of their designed experiment,
they gained the administrative rights by rooting the de-
vice. After getting the root access, they performed ex-
tensive testing on the several applications like financial
applications and social applications. +eir experiments
observed that most of the crucial applications do not fulfil
the minimum-security requirements, which increase the
chance of data leakage. Reference [13] made use of hi-
erarchal steps of analysis before installation of an appli-
cation to guarantee its trustworthiness. It has the
capability of labelling each application in one of categories
as either trustable or type of risk associated with it, i.e.,
high risk, low risk, and medium risk. For its successful
implementation, its analysis is based on multiple infor-
mation being gathered like permissions used by appli-
cations, number of downloads, source of the application,
and its rating and developer reputation also. +is

Table 1: Comparison with existing studies.

Reference Approach Machine learning model used Feature set used Accuracy
(%)

[2] Static
Random forest, logistic regression, XGBoost,
Naive Bayes, support vector machine (SVM),
deep learning, and decision tree classifier

Intent, permission, API calls, system
commands, and malicious activities 96.3

[3] Dynamic Naive Bayes, SVM, and logistic regression Application programming interface (API) 97
[4] Hybrid SVM Permission, API calls, system calls 99.7

Our proposed
method

(dynamic)
J48, LMT, random forest, and random tree

System calls, system components, system
command, phone events, run-time
permissions, and broadcast receivers

99.85
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approach does not include code-based detection as it used
only application metadata. +ey proved their approach as
an effective as well as reasonable approach. Reference [14]
developed a completely automatic malware identification
mechanism. Its results are based on the multiple classifiers
which categorize each application as benign or malicious
with the appreciable accuracy of 82.93%. For their ex-
perimental observations, they used a very large set of
applications containing 107,327 safe and 8,701 malicious
applications along with the feature set of top 34,630 out of
23,74,340 features. To maintain balance between the
performance and results of all the classifiers, they col-
laborate performance of all. Reference [15] used supple-
mentary techniques that have always played important
role when combined with conventional techniques. Here,
in this paper also, authors have firstly captured the
metadata of each application and their associated features
like developer info, number of downloads, application
creation date and time, and permissions being granted.
+en, further it applies appropriate machine learning
algorithms to assess and analyze. +is is a simple and
effective approach to gain high performance accuracy. +e
literature also suggests deep learning feature fusion for
identifying mobile malware [16]. Research trends in
Android literature have been performed by authors and
suggest that machine learning has ability to achieve better
accuracy [17, 18]. According to authors [19], healthcare
organizations are the key targets of ransomware attack
due to the vitality and confidentiality of patient data and
then comes the governmental institutions as criminals
know the importance of data for the government and they
expect to get back the ransom. +e third main target of
ransomware attack is higher educational institutions due
to weak IT hierarchy and then comes the law firms and
mobile users who become the target of ransomware attack.
Table 2 shows rank-wise targets organizations affected by
ransomware attacks.

Reference [20] formulated a hybrid technique called as
MONET which is based on the static as well as dynamic
analysis. In this model, behavior of the user is consistently
monitored and mapped against the run-time behavior of the
malicious application. It also includes signature matching
generated on the basis of API calls.+e significant aim of this
approach was to identify malware as well as its variants.
Reference [21] attempted to provide full protection against
malware, and most importantly this model gives descriptive
analysis to users about the threat and its awareness measures.
+is model sustained high performance accuracy as it is a
three-step fold mechanism. It makes use of combined
benefits of multiple approaches like static and dynamic and
further merged it with effects of machine learning algo-
rithms or local-remote hosts. First, it includes static analysis
using a famous framework called Drebin [22] feature set. It
also then applied dynamic analysis with the use of system
calls which actually improves their analysis results. Further,
it applies appropriate machine learning concepts and local-
remote host concepts to strengthen their performance ac-
curacy. Reference [23] observed that library component does
contain some instances of its malicious behavior. Based on

this apparent observation, authors developed a unique ap-
proach in which they detect the malwares on the basis of
abnormal library instances. +e major part of the whole
process emphasizes on to find whether a library instance has
been renamed or not. For the demonstration of their
framework, they used more than 1100 applications set out of
which 185 were found to be malicious as their library in-
stances were found to be abnormal. Reference [24] proposed
a new framework to perform malware detection on the basis
of network traffic flow.+ey considered all the constraints of
the traditional static and dynamic techniques such as code
obfuscation and resource limitation. In comparison to
which, they find that their approach seems to be quiet
promising. Based on the fact that most of malware develop
and spread across the multiple devices during network
processing, so analyzing the network flow will definitely help
in identification of malicious activities associated with ap-
plications. +e proposed approach performs automatic
feature selection using appropriate natural language pro-
cessing and achieves 99.15% detection rate. +e framework
was also claimed to perform better than many antivirus
scanners.

+e literature witnesses that the most of the existing
frameworks consider system calls, API tracing, and static
features like manifest files and permissions, for detection
and analysis. On the contrary, ransomware families target
the other features and also target personal information and
device information. Towards the end of 2017 (Quick heal,
2018), it was reported that ransomware is making use of
unique features and make frequent new variants. Examples
are doubleLocker that locks both screen as well as data. Some
of variants show smart behavior, and their action is based on
the Internet status of the user. Such frequently emerging new
features which had never been seen before pose a great
challenge for existing techniques [1]. However, the engi-
neering new feature fusion method to support in-depth
study of all ransomware families is the need of the hour.

3. Methodology

+is section presents the overall methodology followed for
the hybrid framework to mitigate Android ransomware. We
have included details of data collection, feature extraction,
feature selection, and machine learning classifiers. To en-
hance the effectiveness of the proposed hybrid framework,
we have built the feature selection algorithm to extract k-
dominant features. +is proposed hybrid framework also
utilizes the various machine learning models to classify each
apk file as ransomware or clean.

Table 2: Key targets of ransomware attacks.

Rank targets Key target organisations
1 Healthcare sector
2 Government institutions
3 Education
4 Law firms
5 Mobile and MAC users

4 Security and Communication Networks



3.1. Data Collection. In this experimentation, applications
are collected from twomajor sources. For clean applications,
around 1486 apk files have been downloaded from Google
Play Store. Google Play Store is an official Android market
that promises to provide the most trusted source of appli-
cations. Google Play Store developer and support team claim
that they do not permit applications which mine the
cryptocurrencies [25]. For malicious data samples, Android
Malware Dataset (AMD) is used. AMD is a standard re-
pository which officially provides access to its dataset es-
pecially for research purpose [26] and has been used by
many researchers in their study [27–29]. AMD provides
updated and latest release for its collection. AMD dataset
contains thousands of malicious applications. In this work,
we have included only ransomware families which cover
1763 ransomware samples. Here, in this study, Android
applications are termed as clean applications or ransomware
applications as in Table 3.

3.2. Proposed Hybrid Framework. Figure 2 presents the
overall methodology of the proposed hybrid framework. A
large set of 3,249 application samples containing both clean
and malicious samples are used as input. First, static analysis
is performed on each application in data sample to extract
static features associated with that application. Further,
dynamic analysis is performed to extract dynamic features
set used by both benign and ransomware applications. Static
analysis and dynamic analysis are performed in parallel to
extract feature set. Further, we transformed the obtained
static and dynamic feature set information to build a
combined feature vector matrix. A well-designed feature
selection algorithm is applied to identify k-dominant fea-
tures. +is algorithm is applied iteratively to identify k-
dominant feature where k is set to be 20, 40, 60, and 80. To
evaluate the effectiveness of model, machine learningmodels
are applied to train and classify each apk files as clean or
ransomware application.

3.3. Feature Extraction. In this work, we majorly focus on
manifest.xml file to extract static properties associated with
that application. Manifest file provides metadata like
package name, acquired permissions, and related application
components, i.e., activities, broadcast receivers, and other
services required as static properties only hold features being
used without executing an app. For advanced cyber-attacks,
it becomes important to check actual behavior analysis of
application. Hence, in this work, we also performed dynamic
analysis of each apk file to extract the dynamic features. To
evaluate the effectiveness of static and dynamic techniques
over Android ransomware applications, we analyzed a few
applications statically as well dynamically. We observed the
similarity in feature usage pattern among clean as well as
ransomware samples. Common features are considered to be
the most dangerous features. It becomes very important to
scan those static and dynamic features for better results.+is
laid the formation of the algorithm for extracting dominant
features for our proposed hybrid framework as discussed in
subsequent sections.

3.3.1. Static Feature Extraction. For extraction of static
properties associated with application, we have used Apk
tool version 2.4.0 [30] as shown in Figure 3. Apk tool is a
popular open-source tool that decompiles apk file to ex-
tract its code and other metadata details. +e decom-
pressed files contain manifest.xml, resource folder, and
java code. Permissions are generally considered to be one
of the most important static properties. Each application
acquires a set of permissions upon installation. +ese
permissions can be easily extracted from manifest.xml file.
In this work, python scripts are used to extract permissions
using Apk tool. Apk tool decompiles each apk file, extracts
the permissions associated with it, and helps store the
information in a text file format. +e scripts involve the
following steps:

(i) +e script requires .apk file as input
(ii) It uses Apk tool v2.4.0 to decode .apk file to xml file,

dex files, and other resource folder
(iii) +e script scans manifest.xml file to extract all

permissions using “permission” tag
(iv) Further, this information is stored to text file format
(v) +ese steps are repeated for all the .apk files

+e working of script for static feature extraction using
Apk tool is as shown in Figure 4. +e steps are repeated for
all applications, i.e., apk files in the collected dataset. As the
dataset contains both clean and ransomware applications,
static permission is analyzed thoroughly. Further, we ob-
served similarity in feature usage between clean and ran-
somware applications. It was found that permission used by
clean applications is quite similar to permissions being used
by ransomware samples. Hence, those permissions are
considered to be riskiest permission and must undergo
checks for analyzing any application. +e details of per-
mission extracted are shown in the result section.

Apk tool takes up the largest proportion and is often
used to decompile APKs. Current support tools for static
analysis and its percentage of use in other studies [31] are
enumerated as shown in Figure 5.

A study over Android detection mechanisms using static
features also confirms that around 41% of techniques used
permissions as a key parameter for detection and analysis of
Android malware [31]. Other features used are API calls,
metadata, intents, and so on as depicted in Figure 6.

3.3.2. Dynamic Feature Extraction. Dynamic analysis ob-
serves the actual behavior of an application while in exe-
cution. It is quite obvious that on-device real time execution
of Android application on Android platform will result in
high consumption of battery and other device resources.
Hence, in this study, dynamic analysis is performed on the
virtual emulated environment to examine its dynamic fea-
tures as shown in Figure 7.+e literature states that dynamic
features like API calls, permissions, and system calls are
frequently used features. In this work, emulator called habo
analysis system [32] is used which has capability to scan and
extract other set of dynamic features also. Security analyst
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generally used the habo analysis system to automate the
process of malware analysis. Dynamic features used in this
proposed work include API calls, permissions, system calls,
network, file monitoring, and other system components. A
robust approach to perform an effective dynamic analysis
lies in extracting a limited set of features that provide the
ability to classify between ransomware and benign behavior
of application being tested. For which, we have used the
prominent feature selection algorithm as discussed in

subsequent sections. +e traces obtained upon execution
under controlled virtual environment are recorded to
generate the individual reports. +ese reports contain sig-
nificant information about dynamic features like API calls,
permissions, system calls, network, file monitoring, and
other system components. Further, these generated reports
are converted to required input format for the experiment.
+e steps followed for extracting the dynamic features are as
follows:

Table 3: Difference in clean and ransomware applications.

Clean applications Ransomware applications

Characteristics +ese applications do not contain malicious code in the
source code. +ese are safe for device.

+ese applications do contain malicious code in the source
code. Malware authors, i.e., attackers may inject the code to

affect the device users.

Installation
Upon installation of clean applications, it performs its
dedicated task and does not harm either the device or

user’s data.

Ransomware applications encrypt the confidential data and file
in system upon installation. +ese can even lock the device and

demand ransom to unlock it.

Static Analysis

Analyze

AnalyzeHabo Analysis
System

Reverse Engineering

Android Application
Samples

Emulator

Dynamic Analysis

Feature Matrix

Feature Selection
Machine Learning

Classifiers

Clean

Ransomware

Dominant Feature
Matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Figure 2: Proposed hybrid framework.
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Figure 3: Static feature extraction.
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(i) Set up the environment settings
(ii) Install VirtualBox 5.1
(iii) Upload the source code to virtual machine to

compile it
(iv) After successful compilation, upload .apk file
(v) For each application in dataset,

(a) Test and analyze the application
(b) Download the output.dynamic report file

3.4.FeatureVector. In this step, the recorded features from the
previous step were transformed into nominal representation to
build feature vector. +e feature used by application is marked
as 1 denoting its presence and 0 in case of its absence.

Let us assume an application that uses set of features (f1,
f2, . . ., fn). For every application in collected dataset, i.e.,
clean as well as ransomware, fn is calculated based on
formula as follows:

fn �
1, if feature exists,

0, otherwise.
 (1)

3.5. Feature Selection Using Prominent Feature Selection
Algorithm. Static analysis is based on code and signature
similarity and fails at code obfuscation. Dynamic analysis
techniques are strong enough to withstand with vulnerable
situations and can even detect suspicious behavior even
when code is compressed or encrypted. Smart malware
actions are sometimes triggered only under certain

conditions, which is not possible to achieve in emulated
testing environment. Hence, we have used a fusion of static
features with dynamic feature to produce promising results
for hybrid solution for Android ransomware. Existing hy-
brid solutions majorly vary in feature set used for detection
of Android ransomware. Ransomware families utilized new
evolving features for constructing new variants. +e success
of any approach directly depends on feature set and feature
selection method being used.

+e feature set must be unique for both clean feature
vector and ransomware feature vector. Hence, a unique
feature set is created by taking combination of all the static
and dynamic feature sets used by clean samples and ran-
somware samples. Initially, extracted static features and
extracted dynamic features were large in number and re-
dundant. Further, a total of 94 features were extracted as
unique set of features as shown in Table 4. Considering all
the features or larger set of feature combination for analysis
and classification may lead to redundant data. Moreover, to
maintain the accuracy and effectiveness of results, we have
used prominent feature set in this work. To identify the most
significant features, we used a feature selection algorithm as
stated Algorithm 1. +is algorithm determines top k-
dominant features being used by both ransomware and clean
applications.

Feature vector files contain data in the form of zeros and
ones to represent existence and absence of each feature fed as
an input. Further, we calculated sum of frequencies of each
feature in clean feature vector file and further normalized it
by dividing it with total number of samples, i.e., for clean as
well as ransomware samples.+e value of nominal frequency
for each feature determines its dominance. +en, we cal-
culated the absolute difference between both normalized
frequencies for each feature. It represents similarities in
feature existence in both clean and ransomware samples. For
extracting the most used features, we sorted all the values in
ascending order. +e smaller values of difference signify
more dominance of that feature whereas higher the differ-
ence, lesser the dominance of the feature. Initially, we
identified the top 20 most dominant features to analyze and
classify the samples. However, we have also iteratively in-
creased the number of dominant features by 20 at each step.
However, it is expected that considering the large number of
feature combination may result in high consumption of
system resources as well as time. +e difference in nominal
frequencies of features among clean and ransomware ap-
plications is discussed in the result section.

3.6. Classification Using Machine Learning Models. +e
obtained combination of unique set of static and dynamic
features is used to train machine learning models. In this
work, we have used supervised learning. Two class labels
used are c for clean application and r for ransomware for
training the classification models. Existing solutions [33, 34]
have suggested many classifiers and attained promising
results. So, during our experiments, we have used multiple
classifiers to test and validate our results which includes
random forest [35], decision tree (J48) [36], logistic model

I: Using Apktool 2.4.0 on es-file-explorer-4-2-1-9.apk
I: Loading resource table…
I: Decoding AndroidManifest.xml with resources…
I: Loading resource table from file:_WorkArea1\Frameworks\1.apk
I: Regular manifest package…
I: Decoding file resources…
I: Decoding values/ XMLs
I: Baksmaling classes.dex…
I: Baksmaling classes3.dex…
I: Baksmaling classes2.dex…
I: Copying assets and libs…
I: Copying unknown files…
WORKING ON EXTRACTING PERMISSIONS
FINISHED.

Figure 4: Working of apk tool.
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tree, and random tree. Selection of the correct number of
dominant features was critical decision of the feature se-
lection phase. Initially, top 20 dominant features were se-
lected. Further, experiment was repeated by incrementing
dominant features by 20 at each step till 80, i.e., 20, 40, 60,
and 80.

3.7. Performance Evaluation. For measuring the performance
evaluation statistics, we have used the following metrics.

3.7.1. Accuracy. Accuracy of machine learning models
can be found by dividing the total number of correctly
classified with sum of actual positives and actual nega-
tives. +e formula for calculating the accuracy is as
follows:

accuracy �
TP + TN

TP + TN + FP + FN
∗ 100. (2)

3.7.2. Recall. Recall is fraction of true positive with sum of
true positives and false negatives. +e equation for calcu-
lating recall can be found as follows:

recall �
TP

TP + FN
. (3)

3.7.3. Precision. Precision is division of true positive with
sum of true positives and false positives. +e equation for
calculating precision can be found as follows:

precision �
TP

TP + FP
. (4)

3.7.4. F-Measure. A good score of precision and recall will
lead to a good F-measure of the model. +is value represents
the harmonic mean and justifies the strength of the model
for classification.+e formula for its calculation is as follows:

F − measure �
precision × recall
precision + recall

×2. (5)

4. Experimental Results

+e experimental results of this study are discussed in this
section. Intense manual analysis over initially obtained feature
set helped to identify the most dangerous features used by
Android ransomware as discussed in Section 4.2. To determine
the relevance and dominance of feature, we analyzed results
with varying number of features during the feature selection
algorithm as discussed in Section 4.3. Classification results with
top k-dominant features and their corresponding performance
evaluation are presented in Section 4.4.
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4.1. Experimental SystemSetup. Being a hybrid approach, we
required a good device and other computational resources
for our experiments. It includes both static and dynamic
analyses of a large dataset of 3249 application samples.
Table 5 shows the details of system setup and tools used
during the experiment.

4.2. Feature Extraction and Critical Analysis over Obtained
Feature Set. All the static and dynamic execution reports
were transformed to feature vector format to analyze ob-
tained features for both clean and ransomware samples.
Nominal values for each feature show whether a particular
feature is used by that sample or not. Based on reports of
clean and ransomware feature vector statistics, we identified
top 30 features used by clean samples as well as top 30
features used by ransomware samples as shown in Figures 8
and 9 separately. +e results showed that ransomware ap-
plication sample uses many crucial features also, and
moreover a few clean application samples are also used. It
becomes cumbersome for analyst to make decisions. For
example, our results show that the use of feature Access
Network (f5) is 75% by clean applications whereas 82% use

Table 4: Unique features list extracted.

Feature_No Feature_Name
f1 Access URL
f2 Access database
f3 Access location
f4 Access mail session
f5 Access network
f6 Access network state
f7 Access shared app data
f8 Activate device manager
f9 Active activity
f10 Active ActivityForResult
f11 Add alert window
f12 Add view
f13 Aquire root access
f14 Call setAction of intent
f15 Change WIFI (wireless fidelity) state
f16 Change component property
f17 Change network state
f18 Check available GPS
f19 Check root access
f20 Create database
f21 Create file
f22 Create new process
f23 Detect device id (antisimulator)
f24 Detect operator brand (antisimulator)
f25 Disable keyguard
f26 Execute SQL query
f27 Execute system command
f28 File read
f29 File remove
f30 Get WIFI state
f31 Get accounts
f32 Get connected WIFI
f33 Get device id
f34 Get installed app
f35 Get last location
f36 Get main intent of apk
f37 Get phone number
f38 Get running service
f39 Get running task
f40 Get scanned WIFI
f41 Get special property of simulator
f42 Get specific account
f43 Get standby state
f44 Get stored WIFI
f45 Get user id
f46 Hide from desktop
f47 Initialize URI
f48 Initialize URL
f49 Initialize intent
f50 Initialize monitor driver file
f51 Initialize new process
f52 Install shortcut
f53 Intercept broadcast
f54 Kill background processes
f55 Launch apk via intent
f56 Load class
f57 Load dynamic library
f58 Load website in webview
f59 Make toast
f60 Monitor network data

Table 4: Continued.

Feature_No Feature_Name
f61 Open bluetooth
f62 Parse URI
f63 Read URL data
f64 Read call log
f65 Read external storage
f66 Read history bookmarks
f67 Read one line from buffer
f68 Read system settings
f69 Receive network data
f70 Record audio or media
f71 Register receiver
f72 Reset password
f73 Run-time error
f74 Scan WIFI
f75 Send broadcast
f76 Send extra information
f77 Send mail via intent
f78 Send network data
f79 Send notification
f80 Send SMS
f81 Set looped task
f82 Set timed task
f83 Start recording
f84 Start service
f85 Stop recording
f86 Uninstall shortcut
f87 Vibrate
f88 Window information
f89 Write external storage
f90 Write file
f91 Write system settings
f92 SetSharedPreferences
f93 AddAppToShareData
f94 ReadSharedPreferences
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in ransomware applications samples. Access Network in-
dicates establishing communication with Internet which can
be very dangerous in case of ransomware application.
Similarly, features like Send Network Data (f78), Receive
Network Data (f69), and Send Extra Info (f76) have been
observed to be 10–15% more in use than a normal clean
application sample. Making communication with command
and control servers is the major step involved in ransomware
working mechanism. So, it justifies that it is important to
check such critical features while analyzing application
against ransomware attacks. +e use of file operations like
File Read (f28) and File Remove (f29) do not differ in large,
hence should be added to list of risky features. Based on the
observation made, we intend to focus on similarity in feature
usage pattern among clean as well as ransomware samples.
Common features which do not differ in large are considered
to be the most dangerous features. It becomes very im-
portant to scan those static and dynamic features for better
results. To produce effective results, we have used the feature
selection algorithm for extracting dominant features for our
proposed hybrid framework as discussed in subsequent
sections.

4.3. Feature Selection. Initially, we analyzed all the features
of all the samples and found that occurrences of usage of
some features in clean and ransomware applications differ in
large. To record the difference in nominal frequency of each
feature among clean and ransomware samples, we tend to
find k-dominant features as discussed in Algorithm 1.
Further, we implemented the experiment by varying the
value k as 20, 40, 60, and 80.+e varying k helped to perform
cross-analysis about dominant features over all the collected

samples. +e dominant features distinguish the differences
in the behavior of clean and Android ransomware appli-
cations. Here, graphs as in Figures 10–15 represent

Table 5: Experimental system requirements.
Static analysis tool Apk tool v2.4.0
Dynamic analysis tool Habo analysis system
Data mining tool Weka 3.8.3
Operating system Windows 10

Processor Intel(R) core (TM) i5-8250U CPU@
1.80GHz

RAM 8.0 B

Input: Unique feature vector data for both clean and ransomware samples
Output: List of k-dominant features
Symbols Used: Let Sc be the total number of clean sample, Sm be the total number of ransomware samples, and K be the number of
dominant features required to be extracted
Step 1: for all clean samples, calculate sum of frequencies of each feature and normalize it
Normalized_FrequencyClean(fi) � 

n
i�0 Frequency(fi)/Sc

Step 2: for all ransomware samples, calculate sum of frequencies of each feature and normalize it
Normalized_Frequencyransomware(fi) � i�0Frequency(fi)/Sm

Step 3: for all features in unique feature list, calculate the absolute difference between normalized frequencies of clean and
ransomware sample DiffNormalizedFrequency(fi)

� NormalizedFrequencyClean(fi) − Normalized_Frequencyransomware(fi)

Step 4: Sort DiffNormalizedFrequency(fi)

Step 5: Choose k to record k number of dominant features for k in (20, 40, 60, 80) iteratively.

ALGORITHM 1: Dominant feature selection.
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Figure 8: Top 30 features used by clean samples.
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difference of normalized feature occurrence for top 20, 40,
60, and 80 dominant features, respectively.

+e results of top 20 dominant features extracted include
Access URL (f1), Access location (f3), Access shared app
data (f7), Activate device manager (f8), Active Activity (f9),
Create file (f21), Get device id (f33), Get installed app (f34),
Get phone number (f37), Get running service (f39), Get user
id (f45), Initialize URL (f48), Load class (f56), Load website
in webview (f58), Read call log (f68), Run-time error (f73),
looped task (f81), Set timed task (f82), Start service (f84), and
Window information (f88). We observed that clean appli-
cations generally do not use much of a few features like
Activate device manager (f8), Read call log (f68), and Get
running service (f39) but ransomware applications do.

However, top 40 dominant features include all the
features extracted as top 20 list as well as a few more features
like Access Database (f2), Access Network State (f6), Call
setAction of intent (f14), and Check root access (f19).
Features like Access Database (f2), Access Network State
(f6), Call setAction of intent (f14), and Check root access

(f19) are majorly used by ransomware applications to
perform kernel level check to attain the root access and
device admin privileges. +e results also justify that our
feature selection algorithm is able to identify themost crucial
features which must be included for analysis procedure.

Similarly, we have also identified top 60 and top 80
dominant feature lists for our experiments. Selection of the
correct number of dominant features was critical decision of
the feature selection phase. Initially, top 20 dominant fea-
tures were selected. Further, experiment was repeated by
incrementing dominant features by 20 at each step till 80,
i.e., 20, 40, 60, and 80. To compute the effectiveness of the
model, we have applied the classification model iteratively
for all top extracted features as discussed in Section 4.4.

4.4. Classification. In this phase, we performed the classi-
fication over collected data set containing both ransomware
and clean applications. +e major purpose is to identify
suitable classifier with the appropriate number of features
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which can classify applications with highest accuracy. We
have used multiple classifiers to test and validate our results
which include random forest, decision tree (J48), logistic
regression, and random tree. During the feature selection
algorithm, we decided to extract top k-dominant features
with varying value of k to be 20, 40, 60, and 80. Classification
results with all values of k are presented in subsequent
sections. We evaluated and compared the performance of
classifiers with other performance measurement statistics,
i.e., accuracy, recall, precision, and F-measure as shown in
Figures 16–19.

Figure 20 shows that initially J48 produced highest
false positives. Further, with the increase in the number
of features set, the considerable dip represents a slight
better performance than LMT (logistic model tree) and
random tree. Overall, random forest produces minimal
values for false positive over the change of the number of
features and least when 60 dominant features were
considered.

Figure 16 shows that initially random forest, random
tree, and LMT produce almost the same values for false
negatives. Further, with the increase in the number of
features set, the downfall represents a slight better perfor-
mance. However, J48 produced highest false negatives
throughout different sets of dominant features. With k to be
40, random forest produced minimal values for false neg-
atives. +e rest gradually becomes stable with varying
number of features.

Accuracy of any machine learning classifiers can be
calculated by dividing the total number of correctly classified
with sum of actual positives and actual negatives. +e line
chart as shown in Figure 17 illustrates that with the increase
in the number of features, there is a substantial increase in
performance of all the classifiers. Overall, random forest
found to be the best in classifying applications sample into
clean or ransomware.

+e results show that among multiple classifiers, the
random forest algorithm outperforms in terms of highest
accuracy, lowest false negative, and false positive for all sets
of features taken to be as 20, 40, 60, and 80. With 60
dominant features, random forest algorithms achieved the
highest accuracy of about 99.85% with zero false negative. As
the random forest algorithm is based on ensemble learning,
the problem of overfitting and missing data is reduced. Due
to its abundance qualities, it has also been used to detect
ransomware by other researchers as the only classifier used
in their studies [37, 38]. Researchers also do compare the
performance of multiple classifiers, and their results also
indicate that random forest performs better than random
tree or any other single decision model tree [39].

4.4.1. Classification Results with Top 20 Dominant Features.
Figure 18 shows effect of selecting 20 dominant features as
an input dataset on F-measure along with the results ob-
tained from computing precision and recall for multiple
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classifiers, i.e., J48, random forest, LMT, and random tree.
Computational values of random forest, random tree, and
LMT are closely equivalent to each other but random forest
has achieved best values of recall, precision, and F-measure,
i.e., 0.984118, 0.986356, and 0.985236, respectively.

4.4.2. Classification Results with Top 40 Dominant Features.
Figure 19 shows effect to cater 40 dominant features as an
input dataset on F-measure, precision, and recall for mul-
tiple classifiers, i.e., J48, random forest, LMT, and random
tree. Computational values of precision for random forest
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and J48 are slightly different to each other but overall
random forest has achieved the best values of recall, pre-
cision, and F-measure, i.e., 0.997731, 0.991545, and
0.994628, respectively.

4.4.3. Classification Results with Top 60 Dominant Features.
+ere is dramatic change in results of 60 dominant features.
Here, all the classifiers performed significantly well to
classify the application samples. Figure 21 shows level up of
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Figure 15: Difference in nominal frequencies of top 80 dominant features (Part 2).
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Figure 16: False negative rate.
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Figure 17: Accuracy of multiple classifiers.

Recall Precision F-measure
J48 0.979013046 0.977349943 0.978180788
Random Forest 0.984117981 0.986355884 0.985235662
LMT 0.983550766 0.984667802 0.984108967
Random Tree 0.984117981 0.983560091 0.983838957
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Figure 18: Classification results for top 20 features.

18 Security and Communication Networks



Recall Precision F-measure
J48 0.996029495 0.991530209 0.993774759
Random Forest 0.997163925 1 0.998579949
LMT 0.997163925 0.995469989 0.996316237
Random Tree 0.99432785 0.99039548 0.99235777

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

Pe
rc

en
ta

ge

Figure 21: Classification results for top 60 features.

Recall Precision F-measure
J48 0.983550766 0.991423671 0.987471526
Random Forest 0.99773114 0.991544532 0.994628216
LMT 0.99432785 0.988719684 0.991515837
Random Tree 0.99432785 0.981522956 0.987883911
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Figure 19: Classification results for top 40 features.
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Figure 20: False positive rate.
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random forest classifier with precision value to 1. However,
results also showed that recall value of random forest and
LMT is exactly same, i.e., 0.997163.

4.4.4. Classification Results with Top 80 Dominant Features.
A radical change in evaluation metric results is observed on
considering 80 dominant features as shown in Figure 22.
+ere is sudden rise in performance of J48; this is due to fact
that J48 performs well when there are large numbers of
features. Also, recall of J48 and LMT are found to be
equivalent, i.e., 0.997163.

5. Conclusion and Future Work

Existing hybrid solutions majorly vary in feature set used for
detection of Android ransomware. Most of the hybrid ap-
proaches focus on a specific ransomware family or a specific
ransomware type or specific feature only.+ose type-specific
or family-specific solutions would be difficult to consider as a
generalized solution. Extracting prominent features and
feature selection methods is a research challenge. We used a
total of 3249 applications samples to extract the static as well
as dynamic features. +e experimental results show that our
proposed model is able to differentiate between clean and
ransomware with improved precision. +e results of our
proposed hybrid framework outperform the existing static,
dynamic, and hybrid approaches. Moreover, it also shows
that the conglomeration of all dynamic features helps dis-
tinguish ransomware more effectively. Our proposed hybrid
solution confirms accuracy of 99.85% with zero false posi-
tives while considering 60 prominent features. Further, it
also justifies the feature selection algorithm used.

+e considerable improvement in accuracy of our
proposed hybrid framework encourages the use of the novel
feature selection algorithm with ensemble machine learning
classifiers also. We can also demonstrate the results over a
larger dataset. In future, we may train ensemble learning
models to detect as well as classify the ransomware into their
families. Static features like URL, signatures, strings, and
other resources and dynamic features like CPU usage and
time could also help in achievement of promising results.
Hence, we strongly recommend the use more static and
dynamic features in future.
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