
Research Article
A Collusion-Resistant Blockchain-Enabled Data Sharing
Scheme with Decryption Outsourcing under Time Restriction

Xieyang Shen ,1 Chuanhe Huang ,1 Xiajiong Shen,2 Jiaoli Shi ,3 and Danxin Wang1

1School of Computer Science, Wuhan University, Wuhan, China
2Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
3School of Information Science and Technology, Jiujiang University, Jiujiang, China

Correspondence should be addressed to Chuanhe Huang; huangch@whu.edu.cn

Received 14 June 2021; Accepted 26 July 2021; Published 27 August 2021

Academic Editor: Yinghui Zhang

Copyright © 2021 Xieyang Shen et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the ever-increasing demands on decentralization and transparency of cloud storage, CP-ABE (Ciphertext Policy-Attribute-
Based Encryption) has become a promising technology for blockchain-enabled data sharing methods due to its flexibility.
However, real-world blockchain applications usually have some special requirements like time restrictions or power limitations.
)us, decryption outsourcing is widely used in data sharing scenarios and also causes concerns about data security. In this paper,
we proposed a secure access control scheme based on CP-ABE, which could share contents during a particular time slot in
blockchain-enabled data sharing systems. Specifically, we bind the time period with both ciphertexts and the keys to archive the
goal of only users who have the required attributes in a particular time slot can decrypt the content. Besides, we use time slots as a
token to protect the data and access control scheme when users want to outsource the decryption phase.)e security analysis
shows that our scheme can provide collusion resistance ability under a time restriction, and performance evaluations indicate that
our scheme uses less time in decryption compared to other schemes while ensuring security.

1. Introduction

Traditional blockchain-enabled data sharing schemes usu-
ally assume that CSP (cloud service provider) can be trusted
to keep data confidential. However, this assumption causes
more concerns about the security and integrity of data since
more and more end users tend to outsource the decryption
phase to CSP due to their resource-constrained devices, for
example, more and more smart devices with the duty of data
storage and computation collecting private information
under smart city scenarios [1]. To mitigate users’ concerns
about their data privacy and security, an access control
scheme that can either prevent curious CSP from scanning
data stored on the cloud or disclose nothing during the
outsourcing decryption must be proposed [2].

Attribute-based encryption is considered by scholars as a
novel solution for solving the problems stated above. ABE
was first proposed by Sahai and Waters [3] and further
developed two categories: Ciphertext-Policy ABE (CP-ABE)

and Key-Policy ABE (KP-ABE) [4], depending on whether
the access policies are embedded with the ciphertext or the
user’s private key. ABE can prevent both unauthorized users
and curious servers from accessing the data and support data
owners to encrypt their data before sending them to cloud
servers. In CP-ABE, the access policy is binding with the
ciphertext so that data owners do not need to update the
ciphertext when attributes are changed.)us, CP-ABE is
more suitable for cloud access control environments and can
be deployed in many scenarios.

Besides, time restriction is more and more common
nowadays due to the sensitivity of the data in blockchain-
enabled data sharing systems, such as video content [5] and
personal health record [6].)e fine-grained access control
has been paid much more attention in attribute-based en-
cryption schemes, but it is still not easy to get the goal of
adding time restrictions in these schemes. Furthermore, the
semitrusted cloud server providers make these issues more
serious as the providers themselves are curious about the

Hindawi
Security and Communication Networks
Volume 2021, Article ID 7249470, 11 pages
https://doi.org/10.1155/2021/7249470

mailto:huangch@whu.edu.cn
https://orcid.org/0000-0003-4807-823X
https://orcid.org/0000-0001-5554-4871
https://orcid.org/0000-0002-8908-1921
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7249470

content stored in the cloud. From the time restriction aspect,
for example, a malicious cloud service provider can easily
predict the policy update or attribute revoke operation of a
company (as a data owner), then the provider can delay the
updating operation for a few hours or even a few minutes to
let the revoked users get the data illegally and shirk its re-
sponsibility to the high latency of the network. Compared
with recent ABE schemes [7], our scheme set time as a part
of the key to examine both the cloud servers and the users. In
this case, the time restriction can be seen as an attribute of
the user and an examined standard on a cloud server.

In this paper, we focus on designing a collusion resis-
tance access control scheme based on ABE and ensuring the
safety of data after decryption outsourcing. We propose a
secure access control scheme based on CP-ABE under time
restrictions. For the above goals, we bind the time slot with
both ciphertexts and secret keys in a blockchain-enabled
data sharing scheme so that only the legal user (which means
satisfying the access policy and the time restriction at the
same time) can decrypt the data. Besides, we use a time slot
as a token to make sure that the outsourcing party cannot get
any information from the calculation phase.

)e main contributions are summarized as follows:

(1) We propose a blockchain-enabled data sharing
scheme based on CP-ABE by binding the time slot
with both ciphertexts and secret keys. In this way,
users must meet any request between attributes and
time slot to decrypt the data.

(2) We propose a method in the multiservers scenario to
prevent a new kind of collusion that a malicious
cloud server provider does not execute the owner’s
update/revoked order in time to gain some time for
revoked users to get the data illegally.

(3) We propose a method to change the time slot in
outsourcing into a token to guarantee that the cal-
culation phase in the outsourcing party will not leak
any information about the data and the access policy.

)e rest of our paper is organized as follows.
Related work is introduced in Section 2. In Section 3, we

first list some preliminaries and then proposed our system
architecture. A detailed scheme is presented in Section 4.We
also propose our collusion resistance updating method in
this section. Security analysis and performance evaluations
are conducted in Section 5. Conclusion and further dis-
cussion are in Section 6.

2. Related Work

Outsourcing is a common solution for power limited devices
to complete the task they could not afford in blockchain-
enabled data sharing schemes [8]. Despite the consideration
of computation and storage, outsourcing services are also
applied to many scenarios such as big data analysis [9],
attack detections [10], machine learning [11]. CP-ABE [12] is
regarded as one of the most practical models for access
control schemes in blockchain-enabled data sharing, for it
not only allows the data owner to define the access policy

from several attribute authorities [13] but also does not need
a trustworthy third party to realize decentralization and
transparency requirements for blockchain [14]. DAC-MACS
(Data Access Control for Multi-Authority Cloud Storage)
designed by Yang et al. [5], is one of the multiauthority
schemes which propose effective and secure data access
control schemes for video content sharing. However, users
are required to transfer their private keys to the cloud for
generating a decryption token for efficiency. A series of
constructions exist to realize fine-grained access control for
data sharing with CP-ABE in different ways. Yang et al.
focused on efficient revocation [15] and multiauthority [12],
respectively. Shi et al. designed a version key mechanism for
direct revocation [16]. Unfortunately, most of the above
schemes did not take time into consideration.

Time is a quite unique factor in some scenarios like
video content sharing [5], online storage service [17], and
weather reporting [18]. It has become an important
prominent factor, especially in blockchain-enabled data
sharing that can even decide the worth of the data.
However, it also raises concerns about data security and
end devices affordability. With the proposal of sharing
time-sensitive data in a particular time period, several ABE
schemes have taken time into consideration. Liu et al. [19]
proposed a time-based proxy reencryption scheme, so that
in a particular time slot, the access policy can control the
access for users. Conversely, with the change of time pe-
riod, data owners need to reencrypt the ciphertext, which is
not suitable for blockchain-enabled data sharing systems.
Yang et al. [5] proposed a time domain multiauthority ABE
method that binds time with ciphertext and secret key, but
computation cost on both data owner and user increases
linearly. Hong et al. [20] designed an access control scheme
based on both time and attributes, where cloud servers play
an important role, including generating a token and
updating ciphertext online at each of the time periods.
However, the time period of this scheme is defined at the
beginning of the system initialization.)us, the time period
cannot fit most of the situations in the real world. As in our
scheme, the time slot information is considered an essential
problem to achieve the goal. Each data owner can define the
time slot on their own demand. Furthermore, we take the
blockchain-enabled data sharing environment into con-
sideration and further combine the collusion resistance
ability with our scheme.

On the other hand, disclosure of private keys increases
the security risks of data such as PHRs (Personal Health
Record) or even the information of the COVID-19 pan-
demic [21]. Liu et al.[6] established a patient-centric
framework in the multiauthority model and used sign-
cryption to guarantee data security. Besides, Li et al. con-
centrate on scalability in access control schemes. In their
scheme, users in the PHR system were divided into various
security domains and different policies would be published
to different domains according to the definition of PHR
owners. ABE as cryptographic primitives were applied and
the rules of encryption and key-distributed were also based
on those primitives. What’s more, they use a hash chain to
ensure forward security. However, the work in [6] just

2 Security and Communication Networks

applied to the PHR environment and may lose their varieties
of other scenarios.

Revoking is also an important part of attribute-based
encryption in blockchain-enabled data sharing systems, as
authorities must keep the data consistency of each user.)e
first Hybrid Revocable ABE scheme is proposed by Attra-
padung and Imai [22], which allowed data owners to choose
how to revoke an attribute online: direct revocation or an
indirect one.)us, the scheme can take both advantages of
direct and indirect revocation and avoid the disadvantages.
Other schemes like [23], proposed by Sahai et al., solved the
problem of attribute dynamic updating by proposing an
attribute delegation method. Furthermore, they use a seg-
mented secret key to ensure attributes are granted or revoke
that even under a more restrictive access policy. But the
backward security cannot be assured because the scheme
needs to reencrypt the ciphertext so that when a new user
comes to join the system, with the later time slot, he or she
can still decrypt the data. Yang and Jia [13] try to solve the
key escrow problem by putting forward a novel CP-ABE
scheme in which a two-party computation protocol was
executed between Key Generation Center (KGC) and Data
Storage Center (DSC). In the above schemes, we could see
that attribute revocation requests were mostly demanded by
attribute authorities rather than users, or to say revoked
users might not want to request for revocation for many
reasons.

3. System Architecture

In this section, we first introduce the related preliminary
knowledge, then present the system model of our scheme,
and introduce the proposed access control scheme. At last,
we give the security model. For convenience, some notations
are summarized in Table 1.

3.1. Preliminaries

3.1.1. Bilinear Maps.)ere exist two multiplicative cyclic
groups G and GT with prime order p and generator g; e: G ×

G⟶ GT is a bilinear map if and only if the following three
properties are satisfied:

(1) Bilinearity: if ∀u, v ∈ G and x, y ∈ Zp, then we have
e(ux, vy) � e(u, v)xy

(2) Nondegeneracy:e(g, g)≠ 1
(3) Computability: ∀u, v ∈ G , e(u, v) is an admissible

algorithm

3.1.2. Collusion Resistance. A collusion attack [24] in ABE
means two or more entities (users, cloud servers, or even
authorities) can successfully decrypt the data they can not
decrypt individually after some operations like exchange
their secret key or share information with each other.
However, collusions using time restriction have not been
mentioned before. For example, Alice has just been revoked
by the data owner within the current time slot t1 with the
attribute which satisfied the access policy, while Bob is a

curious cloud server provider that stores the ciphertext. It is
obvious that both of them cannot decrypt the ciphertext
individually. However, if they are working together with
each other, Alice can send the data access request at the end
of t1 to Bob, while Bob needs to update the ciphertext at the
beginning of the next time slot t2. However, Bob can respond
to the request of Alice using the ciphertext in t1 while
shifting the blame to network latency. As a result, Alice can
get the decrypt the ciphertext in the time slot she should not
have access right in.)is kind of collusion can be easily
implemented as it is easy to predict the attribute revoke time
for Alice. Our schememust have the ability to resist this kind
of collusion attack in any circumstances.

3.1.3. Time Slot. A time slot is a particular time period
defined by the data owner.)e length of a time slot can be a
day, an hour, or even a minute. However, it is not achievable
for a cloud server to update every ciphertext with the newest
time slot because the overhead of updates increases expo-
nentially. So, it is a good choice for the cloud to update the
ciphertext when they get the access request. On the other
side, the data owner can define the attribute of a user across
different time slots. For example, the time slot defined by the
owner is an hour while the attribute of Alice is granted and
revoked at 9 : 30 and 11 : 30, respectively. For a clear ex-
planation, we call a time slot a decryptable time slot if and
only if a user has the validity completely covered and the
time slot can decrypt the ciphertext.

3.2. SystemStructure. We build our blockchain-enabled data
sharing system with time restrictions as follows. As we
cannot predict the changing trend of user’s attributes, we
divide time into time slots to separate the operation of
attributes. We define time slot as T � n{ | n ∈ 1, 2, . . . , N}.
As shown in Figure 1, the system model is constituted by
four types of entities: cloud server providers (servers in the
cloud), attribute authorities (AAs), data owners (owners),
and data users (users).

Cloud servers play the role of data storing and executing
computation steps in policy updating, users/attributes re-
voking part. Normally, we consider that cloud servers are
curious but honest, which means that cloud server providers
will give their best to get the data stored in the cloud as a
prerequisite of doing what data owners want correctly. As in

Table 1: List of notations.

T Time slot
D Attribute index
Ud Attribute set authorized by AAd

U Universal attribute set, s

CT Ciphertext
gid Global identity
λ Global parameters
Sgid Set of user’s attributes s

Sgid,t Attribute set of global id gid at time t
SKgid,x Secret key of attribute x for user with gid
ϖ A set of random number ∈ Zp

DEK Decryption key

Security and Communication Networks 3

our model, we consider the situation that cloud servers may
delay the update/revoke computation part for a short period
of time to provide convenience for revoked users to gain data
illegally. We derived this kind of situation into collusion
between the cloud server and revoked users.

For attribute authority (AA for short), each of them is
independent and responsible for granting or revoking at-
tributes of users according to their roles or identities in their
own domains. In our model, we consider that each attribute
is only associated with a single AA (which may suit most of
the situations in reality). However, each AA is in charge of a
different number of attributes.)at is to say, an attribute can
only be authorized by one authority. We will identify the
attributes by the index of the authorities below. For each
authority, we use ϕ: U⟶ D to map all attributes which
belong to the AA to an identifier of the authority. AA can
control the attributes or the structure in its domain.)is
kind of authorizing is required as the attributes changed
periodically. As for time slots, it is not necessary to keep the
length of every time slot the same for the reason that there
may be different demands on time restrictions. In practice,
this kind of requirement may largely reduce the computa-
tion cost on both authorities and data owners.

)e data owner makes the definition of access policy
before the data encryption on his side. Besides, he also makes
a time span to set a time slot first. In the updating phase, the
owner can update the slot or a new tree of time slot changing

(usually not necessary).)e encryption part on owners can
be fast and light-weighted as owners only need to encrypt the
data with the access policy designed by themselves. We
define the ciphertext as CTA,te

. Besides, only those users who
have the attributes satisfying the access control policy in the
time slot te(e ∈ T) can decrypt the data in CTA,te

.
In our system, when a user with gid gains a new attribute

x, a new secret key SKgid,x will be granted at the same time by
corresponding AA. If the user wants to decrypt the data, he
has to obtain the update keys first at this time slot (i.e., UKx,t)
from the authority who can publish the attribute. After that,
the user can compute decryption keys for a time slot t based
on his secret keys and further uses them to decrypt the
ciphertext. In this case, we can guarantee that users can only
get the data in a single time slot because those users who do
not update their attributes with the time slot in the past
cannot satisfy any access control policies in our system.
Considering the time consistency, we use the time slots we
mentioned above to ensure that all entities in our model can
check their current time with time slot at any second they
want.

3.3. SecurityModel. In our scheme, we take these points into
consideration: (1))e cloud server is curious about the
ciphertext stored in the cloud, and they will try their best to
decrypt them. (2) Cloud servers may send the data (in the

Data ownerData user Attribute authority

Cloud sever providers

Generate CT
Upload

D
ow

nl
oa

d

Generate
GPP PK

Request

Private key

Request

Private key

Generate
M

(c
) D

ec
rp

t

(a
) S

et
up

(b
) E

nc
ry

pt

Figure 1: System model.

4 Security and Communication Networks

form of ciphertext) to unauthorized users. (3) Users and
cloud servers may collude with each other.)e security
model is run between a challenger and an adversary A ,
which is defined by the following game with two phases.

Setup. (1))e challenger first runs GlobalSetup algorithm
and opens the access of GPP to the adversary. (2) A ran-
domly select several AAs to play the role of corrupted AA
and ask them to send their public key PKd to A.

Phase 1. A can request secret keys and update keys only
by repeating the following steps:

(1) SKQuery(gid, x): A sends a secret key request to
those uncorrupted authorities by submitting a tuple
(gid, x) where gid is the unique global identifier of a
user and x is an attribute which is authorized by one
of the uncorrupted authority. After receiving the
queries, the challenger runs SKeyGen algorithm to
return the corresponding secret keys SKgid,x to A.

(2) UKQuery(t, x): at the beginning of a time slot,A can
ask those uncorrupted authorities to update their
attributes or time slot update (if needed) and submit
the pair of (t, x) to be updated by authorities.)e
challenger returns an update key UKx,t to A.

Challenge Phase. A submits two equal length messages
M0 and M1, an access policy A∗ (all attributes in A∗ belongs
to U), a time slot t∗ ∈ T to the challenger. After this, the
adversary should give the public key PKd of all corrupted
authorities whose attributes appear to the challenger.)en,
the challenger flips a coin β ∈ 0, 1{ } and sends to A the
encrypted Mβ using (A∗, t∗).

Phase 2. A can make as many queries as he wants
according to Phase 1.

Guess. A submits a guess β′ for β.)e adversary A will
win the game if β′ � β and satisfies the following demand.

(1) UKQ(t, ∗) can only be queried on time slot after the
time of all requests above, which means that the past
time slot period of time in the system cannot be
traced. Also, for any pair (t, x), UKQ phase can be
executed only once because the corresponding au-
thority will not publish the update key after the
beginning of the time slot, which means the initialize
phase in each slot is run by AA executes only once.

(2) For any queried gid, Sgid,t (Sgid,t stands for the set of
gid and t) does not satisfy A∗.)e advantage ofA is
defined as |Pr[β � β′] − 1/2|.

4. Time Slot Access Control Scheme

In this section, we will explain our scheme step by step and
list some algorithms if needed. Based on the algorithms
defined in Section 3. Our scheme contains the four main
phases: System Initialization which runs at the beginning of
the whole system, Key Generation ran by each AA, Data
Encryption phase for data owners to encrypt data with
defined access policy, and Data Decryption ran by Users and
computation outsourcing party.)e workflow of our
scheme is listed in Figure 2.

4.1. System Overview. Phase 1: system initialization:)e
system initialization phase is run at the beginning of the
system and has two steps: Global Setup and Authority Setup.

(1) Global Setup:

GlobalSetup(λ)⟶ GPP
)e input of the global setup phase is the security
parameters and the output is the Global public pa-
rameters GPP which will be used in other phases
later. Set G and GT as a bilinear group of prime order
p with the bilinear group G which has the generator
g.)e global public parameter GPP used for key
generation is published as GPP � (e, H, g, p); here e

is a bilinear paring, and H is a hash function that
maps every gid to elements of the group G.

(2) Authority Setup:
AuthoritySetup(GPP, Ud)⟶ (PKd,MSKd)

Each AA must run a setup algorithm before pub-
lishing authorities. It takes the inputs as the global
public parameters GPP , which outputs in Global-
Setup phase, the attribute domain Ud of the authority
itself.)e output of this phase is themaster secret key
MSKd which is used for the authority itself and the
public key PKd , which sends to users. For any at-
tribute x belongs to the attribute universe, the al-
gorithm chooses the random exponents
αx, βx, cx ∈ Zp. Besides, the algorithm also chooses a
random element for the pseudorandom function F

as the seed to generate the function. For each at-
tribute that can be published by authorities, it
chooses a random number R � F(τx, a) ∈ G (ax

denotes the attributes set of the authorities) and uses
it to generate a secret key for the user. Here, we
denote Ud × T⟶ G to be a hash function that
maps both the attributes of the authorities and time
slots in Ud × T to elements of G.)en, the public
key can be generated as PKd � (e(g,

g)αx , gβx , g(1/cx)}x∈Ud
, Hd), where αx, βx, cx are

combined to build the master secret key which is
only kept by the authorities themselves.

So after the initialization phase, we get the global pa-
rameters GPP, public keys PKd , and secret keys MSKd

generated by every authority. Each authority will further use
these keys to generate a secret key for those users in their
attribute domain.

Phase 2: key generation by AA.
SKeyGen(gid, x,GPP,MSKϕ(x))⟶ (SKgid,x)

Every AA runs the key generation algorithm for users in
its domain. Each AA takes the global public parameters GPP,
the master secret key MSKϕ(x) generated on the last phase
along with user’s global identity gid as input and outputs the
secret key for corresponding user as SKgid,x.)e key gen-
eration algorithm is run by AA, and outputs the secret key
SKgid,x , which associates with users’ global identity and the
corresponding attribute.)e algorithm has two steps:

(1) Sets ux,gid � 2hx + countx and adds the pair
(gid, ux,gid) to a Listx (a list of attribute trees for the

Security and Communication Networks 5

user x with the time restriction) and sets
countx � countx + 1.

(2))e authority AAϕ(x) sends the secret key SKgid,x to
the user. We have to emphasize that every secret key
for the attribute is only generated after the attribute
is established for the sake of privacy preserving for
user information.

Phase 3: data encryption:
Encrypt(M, te, A,GPP, PKd)⟶ CT
)e encryption phase includes the input part of the

Message M, access control policy A which is based on at-
tributes may from several authorities, the time slot te, the
global public parameters GPP, and the public keys PKd .
)e output of this phase is the ciphertext CT which contains
the access policy A.

Considering the difference in file type and scale, owners
first encrypt their files by using a symmetric encryption
algorithm and use our data encryption method to encrypt
the secret key of the symmetric encryption. In this way, we
could shorten the encrypt message length to reduce the
computation cost on the owner side. In this Phase, M

consists of two parts: one is the symmetric encryption key K

and the other is the ciphertext encrypted by K.A is the access
control policy and PKd are the set of public keys generated
by the authorities; these public keys are related to the access
policy.)e data owner chooses a random number r ∈ Zp as
the secret and keeps it without anyone else knowing it. After
this, the owner chooses another two random vectors v

⇀, u
⇀

∈∈Zp, and for each index i ∈ 1, 2, . . . , m{ }, it selects another
random oracle r′ ∈ Zp. So, the ciphertext is computed as
follows:

CT � te, (A, ρ), C � M · e(g, g)
e
, Ci,1 � e(g, g)

λi e(g, g)
αρ(i)ri ,

Ci,2 � g
μi g

βρ(i)ri , Ci,3 � g
ri , Ci,3′ � g

1/rx()
ri

, Ci,4 � Hϕ(ρ(i)) ρ(i), te(
ri

m

i�1
.

(1)

)en, the owner stores the ciphertext in cloud servers for
later data sharing.

Phase 4: data decryption by users:
Decrypt(CT,GPP, PKd , DKgid,x,t

x∈S∈gid,t
)

⟶ (M)or⊥
)e decryption algorithm can run by users or out-

sourcing party which depends on user’s choices. When users
want to decrypt by themselves, the input includes the ci-
phertext CTalong with the access policy A, the global public

parameters GPP, the public keys PKD and decryption keys as
DKgid,x,t

x∈S∈gid,t
which is related to the user’s gid and

current time slot.)e algorithm outputs the plaintext M

when the decryption succeeds or a token ⊥ implying de-
cryption fails for some reason. All users with proper attri-
butes can download the ciphertext in which their attributes
meet the demand of the access policy at the specific time slot
te.)e decryption phase must compute the decryption key
first and then decrypt the ciphertext.

ServerAA

GPPGlobal setup

User

AA setup

Encrypt

GPP

Owner

CT

Decrypt

Decrypt

SkeyGen

SKgid,x

SKgid,x

Initialization

Encrypt

Decrypt

Figure 2: Workflow.

6 Security and Communication Networks

4.1.1. Decryption Key Computation. At the beginning of the
decryption, the user with gid first needs to compute the
decryption key for the current time slot as follows:
DecryptKey(SKgid,x, te)⟶ (DKgid,x,t) or ⊥. In this phase,

the user first checks the attribute set and whether the cor-
responding attribute x as x ∈ Sgid,t exists. If so, the
decryption key can be computed as follows:

DKgid,x,t � Dgid,x,t � Kgid,x,vx
, Dgid,x,t
′ � Evx

Kgid,x,vx
′

· Kgid,x,vx
″ , Dgid,x,t

″ � Evx
′

Kgid,x,vx
′

 . (2)

It is worth noting that if a user has the right attributes
with another time slot t′ later than te they cannot compute
the decryption key either.)is feature has great resistance to
the collusion attacks we mentioned before.

4.1.2. Ciphertext Decryption. After generating the decryp-
tion key with adequatea attributes and time slot, the de-
cryption algorithm goes as follows: Decrypt(CT,GPP,

PKd , DKgid,x,t
x∈Sgid,t

)⟶ (M) or⊥. For any t≠ te or Sgid,t

that cannot satisfy (A, ρ), the algorithm outputs ⊥. For those
users who can be satisfied with conditions above, the decrypt
algorithm goes in two steps.)e first step is to find a I �

i | ρ(i) ∈ Sgid,te
 and compute the corresponding constants
ωi | i ∈ I . For I, compute the following:

Ci �
Ci,1 · e H(gid), Ci,2

e Dgid,ρ(i),te
, Ci,3

·
e Dgid,ρ(i),te
′ , Ci,3′

e Dgid,ρ(i),te
″ , Ci,4′

�
e(g, g)

λi e(g, g)
αρ(i)ri · e H(gid), g

μi g
βρ(i)ri

e g
αρ(i) H(gid)

βρ(i) , g
ri

·
e Rvρ(i)

αρ(i)cρ(i)rgid,ρ(t),vρ(i)

, g
ri/cρ(i)(

e Rvρ(i)

αρ(i)cρ(i)rgid,ρ(t),vρ(i)

, g
ri

·
e Hϕ(ρ(i)) ρ(i), te(

ςvρ(i) ,trgid,ρ(i),vρ(i) , g
ri/cρ(i)(

e g
ςvρ(i) ,trgid,ρ(i),vρ(i)

/cρ(i)
, Hϕ(ρ(i)) ρ(i), te(

ri⎛⎜⎜⎝ ⎞⎟⎟⎠

·

e Rvρ(i)

cρ(i)rgid′,ρ(i),vρ(i)

, g
ri/cρ(i)(

e Rvρ(i)

rgid′,ρ(i),vρ(i)

, g
ri

� e(g, g)
λi · e(H(gid),g)

μi .

(3)

And, the last step computes the following:

i∈I

C
ωi

i � e(g, g)i∈Iωiλi · e(H(gid), g)i∈Iωiμi

� e(g, g)
r
.

(4)

)en, users can recover the symmetric encryption secret
key by K � C/e(g, g)r. After that, users can get the message

by doing a symmetric decryption in which the computation
cost is negligible.

If the user wants to outsource the decryption part to
other computation devices, the first thing to do is to generate
outsourced key and recover the key for decryption.)e user
generates the outsourced key as follows:

OKgid,x,t � Ogid,x,t � Kgid,x,vx
, Ogid,x,t
′ � Evx

Kgid,x,vx
′ (1/σ)

· Kgid,x,vx
″ , Ogid,x,t

″ � Evx
′

Kgid,x,vx
′ (1/σ)

 . (5)

Here, σ ∈ Z∗ is the recover key RK selected by the data
user.

)e second step is run by CSP or computing devices
(they might be a node on the blockchain). After receiving the

Security and Communication Networks 7

OK from the user along with the ciphertext, they will
partially decrypt the ciphertext as follows:

Ci
′ �

Ci,1 · e H(gid), Ci,2

e Ogid,ρ(i),te
, Ci,3

·
e Ogid,ρ(i),te
′ , Ci,3′

e Ogid,ρ(i),te
″ , Ci,4

� e(g, g)
λi/σ() · e(H(gid), g)

μi/σ().

(6)

After that, they calculate CT′.

CT′ �
i∈I

C
ωi

i � e(g, g)i∈I ωiλi/σ() · e(H(gid), g)i∈I ωiμi/σ()

� e(g, g)
(r/σ)

.

(7)

)e last phase is executed on the user side. After the user
gets CT′ from outsourcing entities, the user can use RK to
retrieve the plaintext:

De � CT′e(g, g)
− (1/σ)

� e(g, g)
− (1/σ)

 e(g, g)
− (1/σ)

� e(g, g)
r
.

(8)

4.2. Updating With Time Restriction. As we mentioned be-
fore, when a user tries to revoke an attribute or applies for a
new attribute from AA, the secret keys associated with his
attributes should be updated either. While in our scheme,
this problem can be replaced by the changing of time slot.
AAϕ(x) needs to run the update key algorithm when re-
ceiving the update request from data owners.)e algorithm
takes the input as the current time slot t, updates attribute
x ∈ Uϕ(x) , and outputs the update key UKx,t.

For example, when a data owner Ud tries to revoke an
attribute xi , he must send an updates request to the AAϕ(x)

which is in charge of xi.)en, AAϕ(x) selects a random set
ϖ ϖ1,ϖ2, . . . ,ϖk ∈ Zp(

k
n�1 ϖk � 0) where the numbers in

the random set are equal to the numbers of the attribute
authorities he wants to send to. After this phase, AAϕ(x)

updates the attribute key component ASKK,n for the user Ud

with the attribute xi as ASKK,n
′ � Di � gcn H(i)ci ,

Di
′ � (gci)ϖk .
By using updating algorithm, cloud servers can update

the ciphertext without getting any sensitive information
from the data owner. Meanwhile, only the cloud server
knows about the s′. In this case, the new kind of collusion
attacks between cloud and revoked users can be easily
traced.

5. Security Analysis and
Performance Evaluation

5.1. Security Analysis. As mentioned in the previous sec-
tions, in our scheme, the main difference between our
scheme and Lewko andWaters scheme [25] is we embedded
time slots into both ciphertexts and keys. So, the security of
our scheme lies in the below attacks:

(1) Outsourcing entities try to infer information about
the ciphertext and may compare the ciphertext to
find differences in diverse data owners.
As the outsourcing entities undertake massive pre-
decryption tasks from different users, they may
collect different ciphertext. However, they cannot
infer any information only from those ciphertexts as
each CT has different te, access policy and bilinear
paring.

(2) Users try to predict the data info from the ciphertext,
which they cannot decrypt.
)is attack assumption does not hold either because
first users cannot get any reason about their failure
on decryption but a symbol ⊥.

Despite these attacks, our scheme is similar to the
scheme in [25].)us, our scheme is secure in the bilinear
group model, which is the same as the proof used in [25]. In
the generic bilinear group model and random oracle model,
there is no adversary that can break our scheme in poly-
nomial time with a nonnegligible advantage in the security
game we mentioned before. Moreover, we will make an
analysis of our scheme from the other three parts: collusion
resistance, data confidentially, and attributes revoke.

5.1.1. Collusion Resistance.)ere may exist several kinds of
collude operations in our model and we will analyze them
one by one.)e first one is collusion between users. For
those users whose attributes cannot meet the demand of
access control policy, it is a common way to combine their
secret keys with each other to get a new key that can decrypt
the ciphertext. However, since the prime order of their secret
key is randomly chosen by authorities, respectively, no
matter what kind of attributes set they ever had, they cannot
get a proper key in any case.

Another case is the collusion between an unauthorized
user with a revoked user with gid1. Users with gid1 may want
the secret key gid2 once had to get a combination of at-
tributes with their own gid1. As mentioned before, this kind
of collusion can not exist either because of the random
oracle.

)e last situation is as we listed in the introduction. For
the traditional method, cloud server providers can forge the
execution time of updating algorithm or even simply pull
back the updating time and pass the buck to serious network
delay. Users can select plural servers with their data stored
and any one of the servers delay his updating does not make
sense to those malicious revoked users. Because that the data
owner can select the servers as his wish, it is nearly im-
possible for a revoked user to make a deal with all servers in
the domain. From this point, we could say that this kind of
collusion can barely exist.

5.1.2. Data Confidentiality. As we mentioned before, not all
the channels are secure in our model. But for the data
transmission part, all of the data are transmitted in ci-
phertext, so we only consider the situation below: the cloud

8 Security and Communication Networks

server or any user who cannot access the data may get the
tuple (Cipher,CT) at any time slot (here Cipher stands for
the text transformed by plaintext). As the owner encrypts the
plaintext such as symmetric encryption first, the Cipher does
not leak any information about the data. On the other hand,
CT can be decrypted only by those users with appropriate
attributes, so attackers can not find any relations between
Cipher and CT. Furthermore, any user who wants to recover
the time slot or attributes in CT is not possible for the same
reason.

5.1.3. Revocation.)is part is slightly similar to the collusion
resistance part as we mentioned before, and here we only
consider the forward security and backward security of our
scheme. Due to the fact that the time slot is running con-
tinuously, when a new user joins the system and is granted
attributes from the authorities, the time slot match with his
keys cannot be the period before his join.)us, forward
security can be ensured in this way. Similar to the forward
security, when AA wants to revoke attributes of a user, the
ciphertext cannot be decrypted by this user as the ciphertext
is updated with a new time slot and the user cannot get a new
key both with the revoked attributes and the new time slot.

5.2. Performance Evaluation

5.2.1. Experimental Setup.)e simulation platform for our
scheme is Ubuntu 14.04 with an Intel Core (TM) i5-5600U at
2.6GHz and 4GB RAM.)e simulation environment is
JPBC (Java Pairing-Based Cryptography library ver2.0.0)
with 160-bit group order, 512-bit field size.

5.2.2. Algorithm Analysis. In our experiments, we did 10000
trials to limit the error range. We first compare the com-
putation cost on owners. As we can see in Figure 3, the
computation time takes about 10% less than Hur’s scheme

and the DAC-MACS. While in the decryption part, we can
see that the computation time cost is much less. In real-
world scenarios, it is obvious that the operation of down-
loading is much more than updating because data users in
the cloud environment are huge. Meanwhile, as in a cloud-
based system, it is more important to save the computation
cost on the user side as mobile devices are widely used
nowadays.

5.2.3. Attribute Impact. In this section, we try to simulate
the impact on attribute numbers on both the encryption side
and the decryption side. We set the 10 AA with different
attributes from 1 to 20. Specifically, the cost on the de-
cryption side (with both outsourcing and self-decryption)
and the computation on encryption are evaluated in Figure 3
to show the impact on the attribute universe more precisely.
)e experiment shows that both encryption and decryption
costs grow steadily with the rise of attributes number.
Outsourced decryption time on the user side almost stays the
same as no matter how many attributes are in the policy, the
user only needs to compute the paring algorithm for once.
Moreover, we also take the key generation time into con-
sideration. As we can see from Figure 4, our attribute au-
thority private key generation time is still between the DAC-
MACS case and Shi’s scheme, and the attribute authority
private key generation time is proportional to the number of
attributes.

5.2.4. Attribute Update Evaluation. As lots of the scheme
only takes policy updates into consideration, we only
compared our attribute updating algorithm with DAC-
MACS, which have a similar part to ours. With the increase
of the attributes, owners need more time to generate the
update key while the time spent on servers almost stays the
same because the major part of the computation task has
been done on the cloud side. For most situations in reality,
the owner can afford the computation cost.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

En
cr

yp
tio

n
tim

e o
n

ow
ne

r (
s)

Numbers of attributes in access policy

Our scheme
DAC-MACS [12]

Shi’s scheme [16]
Yang’s scheme [5]

(a)

D
ec

ry
pt

io
n

tim
e o

n
us

er
 (s

)

DAC-MACS [12]
Shi’s scheme [16]
Yang’s scheme [5]

Our scheme without
outsourcing
Our scheme with
outsourcing

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
Numbers of attributes in access policy

(b)

Figure 3: Encryption and decryption time cost with a different number of attributes. (a) Encryption time on the owner side. (b) Decryption
time on the user side

Security and Communication Networks 9

From the above aspects, both theoretical analysis and
experiments results show that our scheme can provide time
slot access control and attributes update at the cost of a slight
increase of key generation phase. However, as the key is
generated on AA, it barely has any effect since AA normally
has enough computation power. Moreover, comparing with
the existing schemes, our blockchain-enabled data sharing
scheme has a high level of security of collusion resistance.

6. Discussion and Conclusion

In this paper, we have proposed a collusion-resistant CP-
ABE blockchain-enabled data sharing scheme to achieve
access control under a time restriction. Specifically, we have
proposed this scheme using time slots as a token to bind with
ciphertexts and keys to make sure that only the user with
demanded attributes and in the particular time slot can
decrypt the data. Besides, we considered a new kind of
collusion, which might be common in our daily life that
curious cloud servers may delay the policy update/attribute
revoke algorithm for a short time to let the revoked user get
data illegally.)is kind of collusion is hard to trace because
cloud servers can easily shift their responsibility to other
reasons like network latency and so on. Furthermore, we
used time slots to ensure data security while the decryption
phase is outsourced. Further discussion on our schemes is
about security issues on revocation and collusion resistance.
In the future, we will keep on implementing our scheme and
exploring the access control structures with a time restric-
tion and taking time into consideration in the case of col-
lusion between the revoked user and one of the authorities.

Data Availability

)e data used to support the findings of this study are
available from the authors upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is study was supported by the National Science Foun-
dation of China (nos. 61772385 and 61572370.)

References

[1] Z. Tian, C. Luo, H. Lu, S. Su, Y. Sun, and M. Zhang, “User and
entity behavior analysis under urban big data,” ACM/IMS
Transactions on Data Science, vol. 1, no. 3, 2020.

[2] Z. Tian, C. Luo, J. Qiu, X. Du, and M. Guizani, “A distributed
deep learning system for web attack detection on edge de-
vices,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 3, pp. 1963–1971, 2020.

[3] A. Sahai and B. Waters, “Fuzzy identity-based encryption,”
Lecture Notes in Computer Science, vol. 3494, pp. 457–473,
2005.

[4] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for fine-grained access control of encrypted
data,” in Proceedings of the 13th ACM conference on Computer
and communications security, pp. 89–98, Alexandria, VA,
USA, October 2006.

[5] K. Yang, Z. Liu, X. Jia, and X. S. Shen, “Time-domain at-
tribute-based access control for cloud-based video content
sharing: a cryptographic approach,” IEEE Transactions on
Multimedia, vol. 18, no. 5, pp. 940–950, 2016.

[6] J. Liu, X. Huang, and J. K. Liu, “Secure sharing of personal
health records in cloud computing: ciphertext-policy attri-
bute-based signcryption,” Future Generation Computer Sys-
tems, vol. 52, pp. 67–76, 2015.

[7] L. I. Youhuizhi, Z. Dong, K. Sha, C. F. Jiang, J. Wan, and
Y. Wang, “TMO: time domain outsourcing attribute-based
encryption scheme for data acquisition in edge computing,”
IEEE Access, vol. 7, Article ID 40240, 2019.

[8] B. Q. Baodong, R. H. Deng, S. L. Shengli, and S. M. Siqi,
“Attribute-based encryption with efficient verifiable out-
sourced decryption,” IEEE Transactions on Information Fo-
rensics and Security, vol. 10, no. 7, pp. 1384–1393, 2015.

[9] L. Zhang, C. Xu, Y. Gao, Y. Han, X. Du, and Z. Tian, “Im-
proved Dota2 lineup recommendation model based on a
bidirectional LSTM,” Tsinghua Science and Technology,
vol. 25, no. 6, pp. 712–720, 2020.

[10] Z. Gu, W. Hu, C. Zhang, H. Lu, L. Yin, and L. Wang,
“Gradient shielding: towards understanding vulnerability of
deep neural networks,” IEEE transactions on network science
and engineering, vol. 8, no. 2, 2020.

[11] Z. A. Lei, B. St, and C. Ll, “An finite iterative algorithm for
sloving periodic Sylvester bimatrix equations,” Journal of the
Franklin Institute, vol. 357, no. 15, Article ID 10757, 2020.

[12] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “DAC-MACS:
effective data access control for m cloud storage systems,”
IEEE Transactions on Information Forensics and Security,
vol. 8, no. 11, pp. 1790–1801, 2013.

[13] K. Yang and X. Jia, “Expressive, efficient, and revocable data
access control for multiauthority cloud storage,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25,
no. 7, pp. 1735–1744, 2014.

[14] D. Wang, L. Zhang, C. Huang, and X. Shen, “A privacy-
preserving trust management system based on blockchain for
vehicular networks,” in Proceedings of the 2021 IEEE Wireless
Communications and Networking Conference (WCNC),
Nanjing, China, March 2021.

[15] K. Yang, X. Jia, and K. Ren, “Attribute-based fine-grained
access control with efficient revocation in cloud storage

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5 6 7 8 9 10

Ke
y

ge
ne

ra
tio

n
tim

e (
m

s)

Numbers of attributes in each AA

Our scheme
DAC-MACS [10]
Shi's scheme [14]

Figure 4: Key generation cost with different numbers of attributes
in AA.

10 Security and Communication Networks

systems,” in Proceedings of the 8th ACM SIGSAC symposium
on Information, computer and communications security,
pp. 523–528, Hangzhou, China, May 2013.

[16] J. Shi, C. Huang, J. Wang, K. He, and J. Wang, “An access
control scheme with direct cloud-aided attribute revocation
using version key,” in Proceedings of the International Con-
ference on Algorithms and Architectures for Parallel Processing,
pp. 429–442, Dalian, China, August 2014.

[17] T. Kitagawa, H. Kojima, N. Attrapadung, and H. Imai, “Ef-
ficient and fully secure forward secure ciphertext-policy at-
tribute-based encryption,” Lecture Notes in Computer Science,
vol. 7807, pp. 87–99, 2015.

[18] L. Zhang, Z. Huang, W. Liu, Z. Guo, and Z. Zhang, “Weather
radar echo prediction method based on convolution neural
network and Long Short-Term memory networks for sus-
tainable e-agriculture,” Journal of Cleaner Production,
vol. 298, Article ID 126776, 2021.

[19] Q. Liu, G.Wang, and J. Wu, “Time-based proxy re-encryption
scheme for secure data sharing in a cloud environment,”
Information Sciences, vol. 258, pp. 355–370, 2014.

[20] J. Hong, K. Xue, Y. Xue et al., “TAFC: time and attribute
factors combined access control for time-sensitive data in
public cloud,” IEEE Transactions on Services Computing,
vol. 13, no. 1, 2017.

[21] Z. Gu, L. Wang, and X. Chen, “Epidemic risk assessment by A
novel communication station based method,” IEEE Trans-
actions On Network Science And Engineering, 2021.

[22] N. Attrapadung and H. Imai, “Attribute-based encryption
supporting direct/indirect revocation modes,” in Proceedings
of the IMA International Conference on Cryptography and
Coding, pp. 278–300, Cirencester, UK, December 2009.

[23] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic cciphertext
delegation for attribute-based encryption,” Lecture Notes in
Computer Science, vol. 7417, pp. 199–217, 2012.

[24] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” in Proceedings of a
Workshop on the Feory and Application of Cryptographic
Techniques, pp. 10–18, Linz, Austria, April 1985.

[25] A. Lewko and B. Waters, “Decentralizing attribute-based
encryption,” in Proceedings of the Advances in Cryptology -
EUROCRYPT 2011, pp. 568–588, Tallinn, Estonia, May 2011.

Security and Communication Networks 11

