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Indoor robots, in particular AI-enhanced robots, are enabling a wide range of beneficial applications. However, great cyber or
physical damages could be resulted if the robots’ vulnerabilities are exploited for malicious purposes. )erefore, a continuous
active tracking of multiple robots’ positions is necessary. From the perspective of wireless communication, indoor robots are
treated as radio sources. Existing radio tracking methods are sensitive to indoor multipath effects and error-prone with great cost.
In this backdrop, this paper presents an indoor radio sources tracking algorithm. Firstly, an RSSI (received signal strength
indicator) map is constructed based on the interpolation theory. Secondly, a YOLO v3 (You Only Look Once Version 3) detector
is applied on the map to identify and locate multiple radio sources. Combining a source’s locations at different times, we can
reconstruct its moving path and track its movement. Experimental results have shown that in the typical parameter settings, our
algorithm’s average positioning error is lower than 0.39m, and the average identification precision is larger than 93.18% in case of
6 radio sources.

1. Introduction

1.1. Motivation and Background. Indoor robots are be-
coming increasingly popular in the market in view of their
beneficial applications, ranging from navigating and
sweeping to healthy-caring. In combination with artificial
intelligence (AI), they are anticipated to drastically change
people’s daily lives. Although these with advantages, in-
door robots still face severe cyber and physical threats due
to their hardware and software vulnerabilities [1]. In
extreme cases, even the simplest cleaning robots could be
manipulated to launch aggressive physical attacks, such as
assassinating revealed in [2] and eavesdropping on private
conversations in [3–9]. )erefore, it is essential to track
the nonstationary robots for security besides traditional
efficiency concerns.

By literature review, we identify three types of alter-
native techniques that could be utilized for indoor robots’
tracking. In the first place, a robot could be tracked using
indoor navigation technique, where multiple anchors that

transmit signals are needed for the robot to derive its own
position based on its received signals. Note that to per-
form the tracking task, we need the robot to report its
position [10]. )is process could be easily spoofed and
spoiled by selfish or malicious robots. In the second place,
based on SLAM- (simultaneous localization and map-
ping-) based technique, a robot may obtain and report its
position through diverse sensors [11]. Obviously, this is
only feasible for the ‘honest’ robots. In the third place,
image recognition or video recognition could be adopted
to identify and distinguish different robots if cameras
could be installed on the ceiling [12, 13]. However, this
alternative is very sensitive to light condition and ob-
stacles. In summary, existing efforts could not fulfill the
requirements for malfunctioned robots tracking task due
to two challenges. On one hand, they usually require the
cooperation from hijacked or malicious robots. On the
other hand, they are sensitive to indoor multipath effects
(as for radio-based techniques) or illumination conditions
(as for image-based solutions).

Hindawi
Security and Communication Networks
Volume 2021, Article ID 7456552, 9 pages
https://doi.org/10.1155/2021/7456552

mailto:lxpeng@hotmail.com
https://orcid.org/0000-0002-1906-7825
https://orcid.org/0000-0002-6181-4441
https://orcid.org/0000-0002-6580-1349
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7456552


1.2. Related Work. For ease of presentation, the state of art
efforts in indoor localization is shown in Table 1. As shown in
Table 1, the efforts in the indoor localization are classified by
their method, environment settings, and the one-time object
identification consideration. It can be seen that most methods
do not take the dynamic environment into the environment,
while some traits in the dynamic environment would change,
such as wireless channel. Besides, Table 1 is self-explainable,
and no existing efforts consider the identification issue for the
localized objects in one time. In order to make up this research
gap, a one-time indoor object localization and identification
scheme is proposed in this paper.

1.3. Main Work and Contribution. In this backdrop, this
paper aims to develop an active but nonintrusive indoor
robots tracking algorithm. Our tracking process contains
two steps, i.e., identification step and localization step,
and each indoor robot is treated as a wireless radio source.
In the identification step, a YOLO v3 network [16] is
deployed to identify and distinguish different robots’
signals based on the constructed RSSI maps. )en, each
robot’s position is derived based on the identification
results in the localization step. Our main contributions
are threefold:

(1) An RSSI map construction scheme is proposed in the
identification step, which has a satisfactory locali-
zation resolution with low cost by deploying a small
number of monitors.

(2) After establishing RSSI maps, a network based on
YOLO v3 is trained and applied for multiple robots
recognition; then, the bounding boxes information
of YOLO v3 [16] is further utilized on the recog-
nition results to refine the localization accuracy. To
our best knowledge, this is the first paper that treats
indoor robot tracking from the viewpoint of object
recognition.

(3) A series of experiments are conducted on a collected
dataset to evaluate effectiveness of our algorithm.
Results have shown that in typical indoor environ-
ments, our proposal’s positioning error is less than
0.39m with a recognition precision higher than
93.18% in case of 6 radio sources.

)e remaining part of this paper is organized as follows.
Section 2 introduces the system model. In Section 3,
identification and localization algorithm for indoor radio
sources is detailed. Evaluation experiments are conducted to
verify the correctness and effectiveness of the proposed
algorithm in Section 4. Finally, a brief conclusion is provided
in Section 5.

2. System Model

)e scenario we considered here is that several indoor robots
work on a floor, named the task area, of a building; and there
are several classrooms, meeting rooms, and corridors on this
floor. To realize efficient control and navigation, a robot usually
has a communication module and could be treated as an

indoor radio source. )erefore, we could track different robots
if we can recognize and distinguish their equipped radios. For
the ease of description, each radio source refers to a robot in the
following analysis.

2.1. Task Area Model. A Cartesian coordinate system is
established for the task area to assist radio source localization
or tracking, in which an origin, two perpendicular axes, and
their positive directions are determined based on the floor
plane. In our setting, the origin locates at the northeast
corner of the floor, while east and north directions are the
positive directions of the horizontal and vertical axes, re-
spectively. )e set of to-be-tracked radio sources, i.e., indoor
robots, is S � S1, S2, . . . , SN􏼈 􏼉, where Si denotes the i-th
radio source, and N is the number of radio sources. All radio
sources’ positions at time t are L � (x1(t), y1(t)),􏼈

(x2(t), y2(t)), . . . , (xN(t), yN(t))}, where xi(t) and yi(t)

are the i-th radio source’s abscissa and ordinate, respectively.
A number of monitors are deployed for tracking purpose

through collecting the RSSI values. To determine their re-
spective positions, the task area is divided into (m − 1) ×

(n − 1) rectangular areas with the same size, and themonitor
is placed at each vertex of all rectangles. In this way, a total of
m × n monitors are placed. Denote the set of monitors as
D � D1,1, D1,2, . . . , Dm,n􏽮 􏽯, and Di,j refers to the monitor
deployed in the i-th column and the j-th row. Each monitor
periodically collects its received RSSI value. Di,j’s monitored
RSSI value at time t is denoted as Z(t)i,j. )en, all monitors’
collected RSSI values at time t (i.e., 1 of Figure 1(a)) could be
recorded as

R1(t) � [X|Y|Z(t)], (1)

where X, Y, and Z(t) are all matrices with m rows and n

columns, Xi,j and Yi,j are Di,j’s abscissa and ordinate, re-
spectively, and Z(t)i,j represents the maximum RSSI value
from the collected N RSSI values by Di,j at time t, 1≤ i≤m

and 1≤ j≤ n.

2.2. Radio Propagation Model. It is a difficult and time-
consuming task to build the radio propagation model for the
task area due to the challenges brought by multipath effects.
Moreover, the change of the indoor environment may easily
bias the established empirical model [14]. To solve this tricky
problem, based on the collected RSSI values at the monitors
without building any analytical model, an RSSI map is built to
extract the radiation trait, which is the spatial distribution of the
power within the environment [13] (i.e., the image selected by
the bounding box in Figure 1(c)). To be specific, the collected
raw dataset R1(t) could be transformed to an RSSI map, in
which an RSSI value is represented by a rectangular shape, as
1–2 in Figure 1(a). Let the set of extracted radiation traits be
P � P1, P2, . . . , PN􏼈 􏼉, where Pi is the i-th radio source’s ra-
diation trait.

2.3. Tracking Model. To track multiple radio sources or
robots, we have to continuously derive their respective
positions at different time snaps. )erefore, in each time
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snap t, we have to firstly recognize different radio sources
based on the established RSSI map and P and then derive
each radio source’s position.

For the recognition purpose, we need to derive a
bounding box for each radio source through treating the RSSI
map as an image. )en, N bounding boxes could be obtained
for N radio sources; the set of bounding boxes is denoted as
ε � E1, E2, . . . , EN􏼈 􏼉, where Ei represents the bounding box
for the i-th radio source and contains four elements: the

abscissa and ordinates of the bounding box’s top left vertex
and the length and the width of the bounding box in order.

)e next move is to get all recognized radio sources’
positions based on ε in combination with the coordinate
system embedded in the RSSI map and thus its derived
image. Let Λ � (􏽢x1(t), 􏽢y1(t)), (􏽢x2(t), 􏽢y2(t)), . . . ,􏼈 (􏽢xN(t),

􏽢yN(t))} be the set of N radio sources’ estimated positions,
where 􏽢xi(t) and 􏽢yi(t) are the abscissa and ordinate of the i-th
radio source at time t.
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Figure 1: )e flowchart of the YOLO v3-based radio source tracking algorithm. (a) Images preparation. (b) Radio sources recognition.
(c) Radio sources localization.

Table 1: A comparison of efforts of indoor localization.

Reference Method Environment One-time identification
Liang et al. [12] Multifingerprint Time-varying No consideration
Rahman et al. [13] Pedestrian dead reckoning Static No consideration
Yu et al. [14] Maximum likelihood estimation Static No consideration
Poulose and Han [15] Bayesian decision theory Static No consideration
Zhu et al. [16] Augmented reality Static No consideration
Fazelinia et al. [17] Fingerprinting with AM signal Static No consideration
)is work YOLO v3 approach Time-varying Yes
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2.4. Problem Formulation. To facilitate the problem for-
mulation, we define ΩR1(t) as the identification function
which can derive S based on R1(t); ΨR1(t) as the bounding
function to derive ε based on R1(t); and Θε as the locali-
zation function to get the estimated positions Λ based on ε:

ΩR1(t): R1(t)( 􏼁⟶ (S)􏼈 􏼉, (2)

ΨR1(t): R1(t)( 􏼁⟶ (ε)􏼈 􏼉, (3)

Θε: ε⟶Λ{ }. (4)

When N radio sources exist in the task area, and M

radios are identified successfully from the N radio sources at
time t, this paper aims to jointly minimize the identification
error in the identification stage (stage 1) and the positioning
error in the localization stage (stage 2):

min |M − N| (stage 1)

min 􏽘
M

j�1
xj(t) − 􏽢xj(t)􏼐 􏼑

2
+ yj(t) − 􏽢yj(t)􏼐 􏼑

2
􏼔 􏼕

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
(stage 2)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

3. YOLO v3-Based Radio Source Tracking

3.1. Basic Idea. After obtaining the interpolated RSSI map
and its derived image at time t, we have to first identify each
radio source and determine its bounding box. From the
perspective of object recognition in an image, the recog-
nition task could be completed if we can capture the
characteristics of each radio source’s radiation trait, which
represents a radio source’s radiation range and intensity in
an RSSI map [17]. )e process of capturing a radio source’s
radiation trait equals to deriving ΩR1(t) and ΨR1(t). How-
ever, there are many ways to solve (2) and (3). For example,
the empirical model for indoor object detection and lo-
calization based on RSSI is widely utilized because of its
simplicity and low-cost. But its positioning accuracy is
unsatisfactory since the measured RSSI values are sensitive
to the indoor multipath effects. Moreover, it is impractical
to distinguish different radio sources based solely on RSSI
data.

In this backdrop, this paper adopts deep neural networks
for tackling image segmentation, i.e., radio source recog-
nition, in view of their great success in image recognition
areas. To be specific, YOLO v3 is adopted for this purpose
due to its unique capability to capture the different radio
sources’ radiation traits and their differences [16]. We could
identify each radio source and obtain its bounding box at the
same time after conducting YOLO v3 on the image of an
RSSI map. In other words, YOLO v3 is adopted to solve both
(2) and (3) simultaneously. Compared with empirical
model-based solutions, deep neural networks-based
methods are robust to indoor multipath effects.

To tackle the localization problem shown in (4), a
straightforward idea is treating the center of each radio
source’s bounding box as its position. However, this will

introduce extra localization errors if the bounding box
derived by YOLO is biased. Taking this into consideration,
the position of the pixel point with the largest RSSI value
within the i-th radio source’s bounding box Ei is chosen as
the radio source’s location. If there are multiple pixel points
with the same maximum RSSI value, the center position is
adopted as the localization result.

3.2. Indoor Radio Sources Identification and Localization.
As shown in Figure 1, our indoor radio sources tracking
method contains three steps: images preparation, radio
sources recognition, and radio sources localization. In the
first step, raw RSSI values at the monitors are collected to
build RSSI maps, which will further be transformed into
images using the interpolation theory. )en, a YOLO v3
detector is trained offline on the images for identifying and
distinguishing different radio sources, and the trained
YOLO v3 network is utilized for online radio sources’
recognition. Finally, all radio sources’ positions are deter-
mined based on their respective bounding boxes and the
largest RSSI values of the pixels within the boxes.

3.2.1. Images Preparation. Adapting R1(t) directly to
construct the RSSI map will result in two defects. On one
hand, the positioning granularity of the RSSI map is
determined by the monitors’ deployment density.
Sparsely deployed monitors will lead to low tracking
accuracy while high-density deployment would introduce
high deployment cost. On the other hand, biased or even
error monitored data are common due to the impacts of
malfunctioned monitors or indoor multipath effect.
)erefore, to achieve low-cost monitoring while pro-
moting the tracking accuracy, the 2-th Bernstein Bezier
interpolation theory [18] is utilized to refine the raw RSSI
map, and R1(t) is expanded to R2(t).

As shown in Figure 2, Di,j, Di,j+1, Di+1,j, and Di+1,j+1 are
four deployed monitors, and their positions are
(xi,j(t), yi,j(t)), (xi,j+1(t), yi,j+1(t)), (xi+1,j(t), yi+1,j(t)),
and (xi+1,j+1(t), yi+1,j+1(t)), respectively. I1, and I2 are the
center of gravity of the triangle△Di,jDi,j+1Di+1,j and triangle
△Di+1,jI1Di+1,j+1, and their positions are (xI1

(t), yI1
(t)) and

(xI2
(t), yI2

(t)). )e purpose of applying 2-th Bernstein
Bezier interpolation theory [14] is to derive the RSSI values
at I1 and I2 without deploying extra monitors.

Next, according to the 2-th Bernstein Bezier polynomial
theory, we have the following interpolation formula:

zIh
� 􏽘

0≤f,g≤2
f+g�2

2!

f!g!
bi,jxIh

f
yIh

g
(h � 1, 2{ }).

(6)

Here, zIh
is the RSSI value of the interpolation point; xIh

and yIh
are the interpolated point’s abscissa and ordinate;

and bi,j is called the Bezier ordinates of zIh
[14]. Let the

dataset in the task area after applying the 2-th Bernstein
Bezier interpolation be R2(t):
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R2(t) � X′ Y′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Z′(t)􏽨 􏽩
p×3q

, (7)

where X′, Y′, and Z′(t) are all matrices with p rows and q

columns, and they contain the abscissas, ordinates, and RSSI
values of the points after interpolation, respectively. bi,j is
called the Bezier ordinates of zIh

and needs to be determined.
)en,R2(t) is adopted to establish the refined RSSI map

(i.e., the interpolated RSSI map), as 1–3 of Figure 1(a) shows.
Finally, image augmentation method presented in reference
[19] is applied to expand the number of images in the
training dataset, as step 4 in Figure 1(a) shows.

3.2.2. Radio Sources Recognition. As shown in the radio
sources recognition step in Figure 1, a YOLO v3 network
contains three parts: feature extraction network, first de-
tection head, and second detection head, in which 70 net
layers consist the neutral networking, and 78 connection
tables and 58 learnable tables are used to connect different
layers [16].

In the offline training stage, a number of images obtained
in the images preparation step are adopted as the training
dataset, and each image is labelled with all the radio sources’
class and bounding box information. )en, the outputs of
the network are the images where the radio sources are
recognized with their respective bounding boxes. To refine
the weights in the network, back propagation method is
adopted and cross entropy is the loss function [16]. )e
learning rate, the number of training epochs, the number of
warm-up periods, and the regularization are set to be 0.001,
3500, 1000, and 0.0005, respectively. In the online recog-
nition stage, the penalty, the confidence, and the overlap
thresholds are all set to be 0.5.

3.2.3. Radio Sources Localization. To tackle the potential
error introduced by biased bounding box derived by YOLO
v3 network, the position of the pixel with the largest RSSI
values within a recognized radio source’s bounding box is
chosen as the source’s location, as shown in the radio source
localization step shown in Figure 1. )erefore, for an
identified radio source, (4) can be converted to

􏽢xi(t), 􏽢yi(t)( 􏼁 �
1
w

􏽘

w

k�1
xk(t) 􏽘

w

k�1
yk(t)⎛⎝ ⎞⎠ w � 1, 2, · · · ,

(8)

where (xk(t), yk(t)) ∈ Ek, zk(t) � max Z(t){ }, and w is the
number of the selected pixels in the i-th bounding box.

3.2.4. Algorithm Description. )e indoor radio sources
tracking algorithm is illustrated in Algorithm 1. Step 1
determines the dataset to construct the RSSI map after
interpolation. In steps 2 and 3, the YOLO v3 network is
trained, next deriving the image to be recognized in step 5,
and the trained YOLO v3 detector is utilized to obtain the
identification and localization results in steps 6–9.

4. Simulation Results

4.1. Experimental Settings. All experiments are conducted in
Room 701, Communication Hall, Army Engineering Uni-
versity. )e floor plan of the room is shown in Figure 3; the
size of room is 11.2m × 10.4m; and the vertical and hori-
zontal distances between two neighboring monitors are both
0.8m [17]. )e size of established RSSI map is 700 × 525
pixels and the output image’s size is normalized as 227 × 227
pixels to accelerate the training process. In addition, the
software for collecting RSSI data is WiFi NetSpot. )e
tracking period T lasts for 30 minutes, and it is divided into a
number of time intervals with each interval t0 being 30
seconds. 6 radio sources are investigated, i.e., MECHERVO
(S1), Huawei MatePad (S2), )inkpad T580 (S3), Xiaomi
mix2 (S4), HUAWEI P40 (S5), and )inkpad T480 (S6).
)ese portable devices are carried by Turtlebot Robots. We
open all the collected raw RSSI values to the research
community (https://github.com/tracking-data/tracking-
project/releases/tag/v1.0).

4.2. Performance Metrics

4.2.1. Average Identification Precision. Assume a times of
experiments are conducted in total. In the j-th experiment,
the i-th radio source emerges k3 times, and it is detected k1
times while being recognized correctly by Algorithm 1 for k2
times. )en, the identification rate of the i-th radio source in
the j-th experiment will be Vi(j) � k2/k1 and the recall rate
Ri(j) � k2/k3 is derived to measure the false alarm per-
formance. )en, after a times of experiments, the average
identification precision Vave

i and the average recall rate Rave
i

of the i-th radio source will be

V
ave
i �

1
a

􏽘

a

j�1
Vi(j),

R
ave
i �

1
a

􏽘

a

j�1
Ri(j).

(9)

4.2.2. Average Positioning Error. For the i-th identified radio
source, its location ( 􏽢xi(j), 􏽢yi(j)) can be estimated by Al-
gorithm 1 in the j-th experiment, and its real position
(xi(j), yi(j)) is known in advance. With time period
[0, T] (T � n × t0), denote the average positioning error for
the i-th radio source defined as

μi �
1
n

􏽘

n

j�0
􏽢xi(j) − xi(j)( 􏼁

2
+ 􏽢yi(j) − yi(j)( 􏼁

2
􏽨 􏽩. (10)

4.3. Results and Analysis

4.3.1. Radio Sources Recognition Results. A straightforward
presentation of the radio source recognition results in one
single timeslot is shown in the images output layer in
Figure 1(b), where 6 radio sources (ranging from S1 to S6)
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are identified with 0.9986, 0.9999, 0.995, 0.9999, 0.9998, and
0.9999 confidence scores, respectively.

Figure 4 shows the 6 radios’ identification precision and
localization errors. As shown in Figure 4(a), the average
identification precisions of the 6 radios are 0.9648, 0.9562,
0.9469, 0.9318, 0.9404, and 0.9440, respectively. )e dif-
ferences between different radios’ identification precision lie
in the fact that different radio sources have different radi-
ation traits. Generally speaking, the more obvious, i.e., the
larger the transmitting power, a radio’s radiation trait, the
higher its identification precision; and the radiation traits are
subject to lots of factors such as the transmitting power, the
usage degree, and the position. Figure 4(b) presents the CDF
of 6 radios’ average positioning error. As shown in
Figure 4(b), each radio’s average positioning error is less
than 0.39m with a probability higher than 90%.

Figure 5 shows the 6 radio sources’ real and estimated
traces in 60 timeslots. As can be seen, the difference between

the real and the estimated traces is less than 0.4m, which is
better than 1.54m with fingerprinting approach in [20].
Besides, the higher the identification precision of a radio
source is, the less its positioning error will be. A video is
made based on the tracking results and is made publicly
available (https://github.com/tracking-data/tracking-
project/releases/tag/v1.0).

4.3.2. Generality of the Trained Network. To evaluate the
generality of the trained network, we have tested the trained
network in Room 705 and Room 725 located in the same
building with different number of robots from S1 to S4, and
the testing results are shown in Table 2. From Table 2, we
know that the trained network can still achieve high rec-
ognition (>90%) and localization (≤0.65m) accuracy in
different rooms. Moreover, it is validated that our algorithm
still works independent of the number of emerged radios.

North
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Figure 3: )e experimental environment. (a) Floor plan. (b) Robot.
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5. Conclusion

In this paper, we proposed an algorithm to identify and
localize indoor robots (radio sources) in the real time.
Experiments show that the proposed algorithm can not only
do well in the indoor radio sources identification with

93.18% average identification precision but also is good at
localizing them with 0.39m average positioning error under
typical parameters settings. In the future, it would be more
interesting to extend the proposed algorithm to enable an
incremental robots tracking with variable number of un-
known robots.

Input: Data RT
1 � R1(0),R1(t0), . . . ,R1(T)􏼈 􏼉 recorded by deployed monitors every interval t0 within [0, T], T � n · t0

Output: Identification results (Si, Vi), localization results (􏽢xi(t), 􏽢yi(t)) (1≤ i≤M, 0≤ t≤T)

Offline stage
(1) Derive RT

2 based on RT
1 according to (6) and (7)

(2) Configure network parameters (i.e., training epochs)
(3) Determine ΩR2

and ΨR2
by training the network

(4) Return the trained YOLO v3 network
Online stage

(5) Derive the RSSI map according to RT
2

(6) Input the established RSSI map to the network
(7) Derive identification results as (Si, Vi) based on step 6
(8) Derive localization results as (􏽢xi(t), 􏽢yi(t)) based on (8)
(9) Return (Si, Vi), (􏽢xi(t), 􏽢yi(t))

ALGORITHM 1: Indoor radio sources tracking algorithm.
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Figure 5:)e tracking traces of 6 radio sources. (a))e trace of S1. (b))e trace of S2. (c))e trace of S3. (d))e trace of S4. (e))e trace of
S5. (f ) )e trace of S6.

Table 2: Generality evaluation results.

Experiment scene Radio source Vave
i μi (m)

Room 705

S1 0.9217 0.49
S2 0.9029 0.63
S3 0.9311 0.52
S4 0.9168 0.65

Room 725
S1 0.9065 0.59
S2 0.9436 0.57
S3 0.9179 0.61

8 Security and Communication Networks



Data Availability

All data are available within this paper.

Conflicts of Interest

)e authors declare that they have no conflicts of interest or
personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China (No. 61671471).

References

[1] M. )omas, “2020 global threat intelligence report,” 2020,
https://at.nttdata.com.

[2] M. Brundage, S. Avin, J. Clark, and H. Toner, “)e malicious
use of artificial intelligence: forecasting, prevention, and
mitigation,” 2018, https://www.eff.org.

[3] S. Sami, D. Yimin, X. T. Sean Rui, R. Nirupam, and H. Jun,
“Spying with your robot vacuum cleaner: eavesdropping via
lidar sensors,” in Proceedings of the 18th Conference on
Embedded Networked Sensor Systems, pp. 354–367, Virtual
Event, Japan, November 2020.

[4] J. Song, Q. Zhong,W.Wang, C. Su, Z. Tan, and Y. Liu, “FPDP:
flexible privacy-preserving data publishing scheme for smart
agriculture,” IEEE Sensors Journal, vol. 21, no. 16,
pp. 17430–17438, 2021.

[5] L. Zhang, M. Peng, W. Wang, Z. Jin, Y. Su, and H. Chen,
“Secure and efficient data storage and sharing scheme for
blockchain-based mobile-edge computing,” Transactions on
Emerging Telecommunications Technologies, Article ID e4315,
2021.

[6] W. Wang, H. Huang, L. Zhang, and C. Su, “Secure and ef-
ficient mutual authentication protocol for smart grid under
blockchain,” Peer-to-Peer Networking and Applications,
vol. 14, pp. 1–13, 2020.

[7] W. Wang, H. Xu, M. Alazab, T. R. Gadekallu, Z. Han, and
C. Su, “Blockchain-based reliable and efficient certificateless
signature for IIoT devices,” IEEE Transactions on Industrial
Informatics, vol. 2021, Article ID 3084753, 2021.

[8] L. Zhang, Z. Zhang, W. Wang, Z. Jin, Y. Su, and H. Chen,
“Research on a covert communication model realized by
using smart contracts in blockchain environment,” IEEE
Systems Journal, vol. 2021, Article ID 3057333, 2021.

[9] Y. Zou, L. Zhang, W. Wang, Z. Jin, Y. Su, and H. Chen,
“Resource allocation and trust computing for blockchain-
enabled edge computing system,” Computers & Security,
vol. 105, Article ID 102249, 2021.

[10] D. Dardari, P. Closas, and P. M. Djuric, “Indoor tracking:
theory, methods, and technologies,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 4, pp. 1263–1278, 2015.

[11] R. Liu, S. H. Marakkalage, M. Padmal et al., “Collaborative
SLAM based on WiFi fingerprint similarity and motion in-
formation,” IEEE Internet of <ings Journal, vol. 7, no. 3,
pp. 1826–1840, 2020.

[12] X. Liang, H. Wang, Y.-H. Liu, B. You, Z. Liu, and W. Chen,
“Calibration-free image-based trajectory tracking control of
mobile robots with an overhead camera,” IEEE Transactions
on Automation Science and Engineering, vol. 17, no. 2,
pp. 933–946, 2020.

[13] M. M. Rahman, V. Moghtadaiee, and A. G. Dempster,
“Design of fingerprinting technique for indoor localization
using AM radio signals,” in Proceedings of the 2017 Inter-
national Conference on Indoor Positioning and Indoor Navi-
gation (IPIN), pp. 1–7, Sapporo, Japan, September 2017.

[14] L. Yu, Y. W. Leung, X. Chu, and J. K. Y. Ng, “Multi-Fin-
gerprint for wireless localization in time-varying indoor en-
vironment,,” in Proceedings of the GLOBECOM 2020 - 2020
IEEE Global Communications Conference, pp. 1–6, Taipei,
Taiwan, December 2020.

[15] A. Poulose and D. S. Han, “Indoor localization using PDR
with Wi-Fi weighted path loss algorithm,” in Proceedings of
the 2019 International Conference on Information and Com-
munication Technology Convergence (ICTC), pp. 689–693, Jeju
Island, Korea (South), October 2019.

[16] J. Zhu, Q. Chen, and J. Zhang, “Localization optimization
algorithm of maximum likelihood estimation based on re-
ceived signal strength,” in Proceedings of the 2017 IEEE 9th
International Conference on Communication Software and
Networks (ICCSN), pp. 830–834, Guangzhou, China, May
2017.

[17] M. Fazelinia, M. R. Daliri, and S. Ebadollahi, “Wi-Fi RSS-
based indoor localization using reduced features second order
discriminant function,” in Proceedings of the 2019 27th Ira-
nian Conference on Electrical Engineering (ICEE), pp. 921–
924, Yazd, Iran, April 2019.

[18] I. Amidror, “Scattered data interpolation methods for elec-
tronic imaging systems: a survey,” Journal of Electronic Im-
aging, vol. 11, no. 2, 2002.

[19] H. Rizk, M. Torki, and M. Youssef, “CellinDeep: robust and
accurate cellular-based indoor localization via deep learning,”
IEEE Sensors Journal, vol. 19, no. 6, pp. 2305–2312, 2019.

[20] R. Ma, Q. Guo, C. Hu, and J. Xue, “An improved WiFi indoor
positioning algorithm by weighted fusion,” Sensors, vol. 15,
no. 9, pp. 21824–21843, 2015.

Security and Communication Networks 9

https://at.nttdata.com
https://www.eff.org

