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In the biometric recognitionmode, the use of electroencephalogram (EEG) for biometric recognition hasmany advantages such as
anticounterfeiting and nonsteal ability. Compared with traditional biometrics, EEG biometric recognition is safer and more
concealed. Generally, EEG-based biometric recognition is to perform person identification (PI) through EEG signals collected by
performing motor imagination and visual evoked tasks. .e aim of this paper is to improve the performance of different affective
EEG-based PI using a channel attentionmechanism of convolutional neural dense connection network (CADCNNnet) approach.
Channel attention mechanism (CA) is used to handle the channel information from the EEG, while convolutional neural dense
connection network (DCNN net) extracts the unique biological characteristics information for PI. .e proposed method is
evaluated on the state-of-the-art affective data set HEADIT..e results indicate that CADCNN net can perform PI from different
affective states and reach up to 95%-96%mean correct recognition rate. .is significantly outperformed a random forest (RF) and
multilayer perceptron (MLP). We compared our method with the state-of-the-art EEG classifiers and models of EEG biometrics.
.e results show that the further extraction of the feature matrix is more robust than the direct use of the feature matrix.
Moreover, the CADCNN net can effectively and efficiently capture discriminative traits, thus generalizing better over diverse
human states.

1. Introduction

Confirming that the identity of a person is becoming more
critical in today’s large data-driven society, which leads to an
increasing demand for the reliability of user identification
technology to meet the ever-increasing security. .is is
becoming particularly important in highly secure operations
such as air traffic control and supervisory control of au-
tonomous systems or remote operations such as remote
operation of unmanned aerial vehicles. At present, identi-
fication based on EEG has shown high application value in
security. For example, EEG signals are determined by a
person’s unique brain wave pattern. At the moment, EEG
signals can be influenced by mood, stress, and mental state
[1]. EEG-based PI system development has dramatically

increased in recent years. Motor tasks of EEG signals are eye
closing [2], hands movement and foots movement [3], visual
stimulation of EEG signals [4, 5], and multiple mental tasks
of EEG signal such as mathematical calculation, writing text,
and imagining movements [6, 7].

.e methods of EEG-based PI are mainly divided into
three categories: (1) EEG-based PI using motor tasks; (2)
based on visually evoked EEG signals of PI; and (3) based on
cognitive tasks induced EEG signals of PI. When using the
first type of motor task EEG signal PI, the motor tasks are
eyes open, eyes closed, left hand fist, right hand fist [8], etc. It
is the potential signal generated by human behavior in the
cerebral cortex, which is convenient for collecting EEG
signal but lacks psychological response. .e second type of
EEG collected using visual evoked tasks occurs at a specific
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time and part of the brain. It is easy to detect and is suitable
for brain-computer interfaces to PI [9]..e requirements for
the subjects are low. Only normal visual function is required,
and the corresponding vision can be collected. However,
visually induced EEG requires continuous display of pictures
for visual stimulation, which is easy to cause visual fatigue
and subjects are required to be very concentrated when
performing visual stimulation. At the same time, visually
evoked EEG signals for identification cannot be applied to
subjects with visual dysfunction. .e third type uses EEG
signals collected by cognitive tasks, such as EEG signals
induced by motor imaging tasks [10] and requires partici-
pants to imagine the brain electrical pattern of a certain limb
movement. However, the brain regions activated by different
imaging tasks are different. .e motor imaging EEG of
different tasks also have different characteristic frequency
bands..erefore, the EEG induced by cognitive tasks cannot
be better applied to people with cognitive dysfunction.
Because the EEG signals of the above three tasks (motor
tasks, visual evoked, and cognitive tasks) PI did not explore
the influence of the changes of mental state EEG signals on
the performance of person identification. Emotions, feelings
and attitudes are usually related to the individual’s mental
state affected by the environment. Emotion is always ac-
companied by a state of human psychology. However,
emotion-induced EEG has rarely been studied to perform PI.
Current research usually uses positive, neutral, and negative
emotions for PI. While human emotions mainly include
happiness, sadness, surprise, anger, disgust, fear, neutrality,
pain, sadness, etc. Compared with the PI based on positive,
neutral, and negative emotions of EEG signals, the identi-
fication of multiple different emotions [11] is more chal-
lenging because it needs to deal with extracting effective
features for person identification under a variety of different
emotional EEG. In recent years, in the literature on PI based
on emotional EEG, 20 subjects were identified using the
excitement state data in the public emotional DEAP EEG
data set. .e smaller emotional data set [11, 12] the average
recognition accuracy can be up to 92%; in the literature [13],
the average correct recognition rate (CRR) of DEAP data
using wavelet feature extraction and deep neural network
can reach 90%; in the literature [14], DelPozo-Banos et al.
also use In the DEAP data set, the average CRR of the feature
extraction algorithm using power spectral density reached
91.97%; in the literature [15], Li et al. used DEAP’s emotional
EEG signal data set, using the deep learning CNN+GRU
algorithm for PI average CRR can reach 91%. Although a lot
of research work has been proposed, it is basically based on
the emotional EEG signal data set of DEAP. .e emotional
EEG in the DEAP data set uses the experimental paradigm of
video stimulation to stimulate the corresponding emotional
EEG and induce the emotional brain Electric emotions are
very limited, and there is insufficient research on human
emotional states for PI performance. .erefore, for over-
comes the shortcomings of previous work to collect EEG
signals of mental state changes for PI research, this paper
proposes a PI method based on emotional EEG signals.

EEG signal changes with time and cortical recording
position, so researchers tend to use deep learning

architecture to capture features in EEG signal for clas-
sification task. Research shows, compared with tradi-
tional classifiers, deep learning models can extract deeper
and more important feature information from the input
raw data for classification tasks [16, 17]. Convolutional
neural network (CNN) has been used in EEG identifi-
cation [11, 16] and verification [11, 12]. In these studies,
CNN is directly used to learn the characteristics of EEG
signals from the amplitude changes of EEG time series.
CNN algorithm uses filters for convolution operation,
which can automatically learn the key features of EEG
signal, and these filters can stack and combine the au-
tomatically learned features of multiple CNN layers into
more complex local patterns. In the stack of convolution
layer, pooling layer is usually the feature information
placed intermittently. .en, the pooling layer samples the
output of the convolution layer twice by only outputting
the maximum value of each small area. .e second
sampling allows the convolution layer after the pooling
layer to work in a different proportion to the layer before
it. So the CNN model is adaptive.

In order to solve the above problems, this paper uses the
EEG data set HEADIT [18], which is richer in emotion.
HEADIT uses the experimental paradigm of audio stimu-
lation to stimulate the emotions of each state. Be able to
effectively PI based on emotional EEG signals, this paper
proposes a deep learning method based on the channel
attention mechanism (CA) [19] convolutional neural dense
connection network (DCNN) [20] for emotional EEG of PI.
.e DCNN net used in this article can effectively shorten the
number of neurons connected between the front layer and
the back layer, reduce the problem of gradient disappear-
ance, strengthen feature propagation and reduce network
parameters, and more effectively use different emotional
states EEG signals. .e EEG signals characteristics of the
EEG signal can effectively PI based on the emotional EEG
signal, and solve the problem of insufficient research in the
PI based on the emotional EEG signal. .e EEG signals
characteristics of the EEG signal can effectively implement
PI based on the emotional EEG signal, and solve the problem
of insufficient research in the PI based on the emotional EEG
signal. Finally, the study found that as the time size of the
EEG signal changes, the PI performance is not affected. It
shows that the algorithm proposed in this paper has good
stability. According to the existing literature, it has not been
found that the combination of the channel attention
mechanism algorithm combine the convolutional neural
dense connection network algorithm is used in the PI of
emotional EEG signals.

.e main contributions of this investigation can be
summarized as follows:

(1) .e deep learning method composed of CA and
DCNN net can be applied to the PI of emotional state
EEG. .is method has not been studied in the
existing literature.

(2) .e CADCNN net can retain all the feature infor-
mation of the emotional EEG signal, and repeatedly
learn the unique features, and the algorithm
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proposed in this paper has the characteristics of high
stability.

(3) .e experimental results on the public affective data
set of HEADIT show that the method proposed in
this paper can get the best results. At the same time,
the method proposed in this paper overcomes the
influence of the emotional EEG signal on the per-
formance of PI.

.e structure of this paper is as follows. Sections II and
III present the deep learning approach to EEG and exper-
iments design. .e results are reported in Section 4. Section
5 discusses the results from the experimental studies. Finally,
the conclusion is presented in Section 6.

2. Deep Learning Approach to EEG

2.1. Method Overview. .is paper proposes a based on the
emotional EEG signal PI method that is CADCNN
net algorithm. Figure 1 demonstrates the 1s affective EEG
data feeding into the CADCNN net the model for PI. It can
be seen from Figure 1 that themethod proposed in this paper
includes a channel attention mechanism, two dense layers
and a transition layer. Before performing PI, first use a band-
pass filter method to filter the emotional EEG signal to
obtain the target rhythm and remove the redundant in-
formation in the emotional EEG signal. .en use the CA
method to calculate the channel weights from the channels
that have been filtered affective EEG signal. .en set higher
weights for the channels with rich emotional EEG signal
feature information. Finally, add the assigned channel
weights and the original emotional EEG data output to the
DCNN net, the feature learning of the multi-emotion EEG
signal is carried out in the DCNN net. .e DCNN net
contains dense layers and transition layers, respectively. .e
dense layer part is used for feature extraction of emotional
EEG signals. However the transition layer performs a
convolution operation on the feature matrix output by the
dense layer to reduce the dimension of the feature and obtain
a new feature matrix. .en the dense layer and the transition
layer are combined to obtain a DCNN net to realize the task
of PI. Next, this article will explain the three modules in-
cluded in the model, namely the channel attention mech-
anism module, the dense layer and the transition layer
network module.

2.2. Channel Attention Mechanism (CA). .e channel se-
lection for the PI of emotional EEG signals is done by using
the channel attention module. Specifically, the channel at-
tention mechanism consists of a convolutional neural net-
work and a LeakRelu activation function. .e emotional
features of the prepared emotional EEG signal are extracted
through the convolution operation, and then the LeakyRelu
activation function is used to calculate the weight of each
channel. With the calculated the channel weight is added to
the original emotional EEG data, and finally the result of the
channel weighted calculation is output. .e structure is
shown in Figure 1. .e attention network takes the output
features of the DCNN net as input. .ere we define the filter

data sequence as F � (F1, F2, . . . , FN) ∈ RN∗inch ∗ time∗ sample,
where N represents batch size, inch represents the number of
channels, and time and sample represent time length and
data sampling point, respectively. For each sample, we use
one scale CNN to obtain one dimensional feature repre-
sentation Fc � (F1′, F2′, . . . ., FN

′) ∈ RN∗inch ∗ 1∗ 1. Where CF

represent the one scale convolution results. In addition, .e
1∗ 1 convolution is be used for activation function. .e
purpose of activation function is to computing channel
weight. .e activation process can be expressed by:

FA � Leaky Relu Fc(  ∈ R
N∗in− ch∗1∗1

. (1)

Subsequently, the channel attention value can be cal-
culated as

FCA � ADD F, FA(  ∈ R
N∗in− ch∗time∗sampe

. (2)

2.3. Dense Layer. In order to better retain the biological
characteristics of the emotional EEG signal and make the PI
efficient and stable. .is paper proposes a different data
connection method that is to combine the input of the
matrix and the output of the dense layer to form a new the
feature matrix. .e structure diagram is shown in Figure 2.
.e output of the model result is that xℓ has obtained the
feature maps of all layers before it. x0, . . ., xl−1 as input:

Xℓ � hℓ X0, X2, X3 ( , (3)

where [x0, x1, . . ., xl−1] refers to the series of feature maps
generated in the 0th, . . ., l− 1th layer and Hℓ(.) is the feature
splicing function. Due to the dense connectivity of its feature
maps, this paper refers to this network structure as a con-
volutional neural dense connection network (DCNN net).

2.4. Transition Layer. To reduce the dimension of emotional
EEG signal features and reduce redundant information, this
paper adds a transition layer to extract higher-level feature
information after dense layer splicing. And perform the
following four operations on the feature matrix of the Hl(·)
function: BatchNormalization (BN), nonlinear activation
function (LeakyReLU) and 3× 3 convolution (Conv) and the
four steps of maximizing the pooling layer. .e feature
stitching in the dense layer network completes the output
feature matrix for input into the transition layer. First, it is
normalized to speed up the training process. After convo-
lution operation, LeakyRelu is used to add nonlinear factors
to improve the expression ability of the model. Finally, we
use maximize the pooling layer reduces the dimension of the
salient features, finally outputs the feature matrix. .e
structure diagram is shown in Figure 3.

When training the model, the loss function used is the
iterative cross-entropy loss function [21] to train the net-
work, and the initial learning rate is 0.001. .e loss function
formula is as follows:

loss � − 
B

o�1


C

c�1
yo,clog po,c . (4)
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Figure 1: Overview of the proposed network architecture. .ere are three parts in the model: channel attention model, dense layer, and
transition layer. .e channel attention model is formed by a convolutional layer and a LeakyRelu activation function layer with one channel
scales. .e dense layer comprises of a convoluted and a concrete layer. .e transition layer consists of a convolutional module and a max
pooling layer which models can reduce the dimension of the concrete feature matrix.
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Figure 2: Dense layer model structure. Inch represents the number of channels, w and h represent the width and height of the feature.
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Figure 3: Transition layer model structure. Inch represents the number of channels, w and h represent the width and height of the feature.
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Among them, C� 32 represents the number of categories,
B� 32 represents the batch training size, and y represents the
correct hot coding. When the class label c is consistent with the
predicted class label, y_(o, c)� 1, otherwise y_(o, c)� 0.
Dropout is set to 0.5 to reduce model over fitting.

3. Experimental

In this section, we first illustrate the HEADIT affective EEG
data set that we used to conduct experiments studies and also
described the preprocessing step of our solution. Since
HEADIT was created for mental state classification pur-
poses, we described our data partition methodology used to
accommodate the performance of the PI task. Finally, we
explained the proposed CADCNN net approach and its
implementation.

3.1. Affective EEG Data Set. In this experiment, we per-
formed experiments using HEADIT data set which is con-
sidered as a standard data set to perform emotion
recognition tasks. .e emotional EEG data contains positive
and negative emotional tasks. .irty healthy volunteers
participated in the experiment. A realistic emotional state is
induced through oriented language narration. .ere are 15
guiding image, narrative, each narrative describes a different
emotion and situation..e subjects are asked to image target
emotion by a voice-guided.

.e representation of the data set is shown in Table 1; the
steps used in the preprocessing of EEG data are as follows:

(1) .e sampling frequency of the data is 256Hz
(2) A band-pass filter from 4.0 to 42.0Hz was applied the

original EEG signal. .e signal was further separate
into the different frequency band of EEG signal as
fellows: theta (4–8Hz), alpha (8–15Hz), beta
(15–32Hz), gamma (32–40Hz) and EEG signals of
all bands (4–42Hz)

(3) .e data was divided into 1 s, 3 s and 5 s from short
length of EEG data set.

3.2. Subsampling and Cross-Validation. Emotional EEG’s
emotional type label division is to induce the subject to
spend time to recall or imagine a scene by playing audio
cause the real experience of the suggested emotion. Table 2
lists the emotional EEG emotional categories induced EEG
by audio in detail. In order to imitate the real emotions of
identity recognition in actual application scenarios, this
paper combines all the emotion categories of the induced
emotional EEG signals inputs it into the model for learning.
At the same time, we explore the influence of EEG signals
with different time window sizes on the performance of
identification. .en we divided the induced EEG into three
kinds of different time window sizes: 1 s, 3 s and 5 s EEG data
for PI. Each subject performed 265 emotional EEG trails,
with a total of 8480 samples (265 sub-samples× 32 subjects);
each participant’s ID number was used as a label in the PI.
.e description of the data and labels is as follows:

(1) Data: number of participants ×265 sub-sample
×256EEG data points (1 s, 256Hz adoption rate)

(2) Label: identification number ×265 sub-sample ×1
(ID)

In all experiments, the training and test sets are divided
into samples using 5-fold cross-validation. 80% of the sub-
samples are used as training data and 20% of the sub-samples
are used as the test set. In each compromise, we ensure that
the sub-samples of each trial are not allocated to multiple
sets. .erefore, the sub-samples in the training and test sets
are completely independent.

3.3. Comparison of Affective EEG-Based PI among EEGs from
Different FrequencyBands. .e acquisition of EEG signals is
usually a change in the potential activity of the human
cerebral cortex. Electrical activity is the EEG signal formed
by billions of cells forming the neurons of the human brain.
.e potential difference between the inside and outside of
the neuron cell membrane is the EEG signal. Most re-
searchers usually divide EEG signals into multiple frequency
bands for analysis. Here, this paper also divides the EEG
signal into four frequency bands: theta (4–8Hz), alpha
(8–15Hz), beta (15–32Hz), gamma (32–40Hz) and all
frequency bands (4–40Hz). First, we used classic Butter-
worth band-pass filter to obtain EEG signal data for each
frequency band, and then use CNN dense net algorithms to
extract effective features of the affective EEG signal from
different frequency bands for PI. .is article is to verify
whether the rhythm of different frequency bands has an
impact on the performance of PI. .is paper uses the
proposed DCNN net method, CNN-LSTM [13] and EEG-
net [19, 22] for comparison experiments. We used the av-
erage of fivefold cross-validation CRR accuracy rate is
compared and analyzed. .e EEG rhythm with the most
significant biological characteristics is selected as the rhythm
for PI.

Table 1: Emotional EEG data format with tags.

Array name Array shape

Data 30× 265× 256× 256
participate× trial× channel× data

Labels 30× 265
participate× trail

Table 2: Emotional categories of EEG signals induced by audio
stimulation.

Positive Negative
Love Disgust
Joy Jealousy
Happy Grief
Compassion Frustration
Content Anger
Relief Sad
Excite Fear
Awe
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3.4. Comparison of Affective EEG-Based PI among EEGs from
Sets of Sparse EEG Electrodes. Evaluation of electrode re-
cording factors in EEG-based personal identification: A vital
step in real implementations[23]. In order to simplify the PI
device, it is more convenient in actual application scenarios.
In this experiment, this paper assumes whether it is possible
to reduce the number of electrodes from 256 to 32 while
maintaining the same high CRR accuracy. .e fewer the
number of electrodes needed in PI, it’s the easier the system
is to use and practical. For study this problem, this paper
defines 8 groups of EEG electrode groups respectively: right
frontal lobe (A), parietal lobe (B), left temporal lobe (C),
right brain Lobe (D), left cerebral lobe (E), left frontal lobe,
left temporal lobe, left cerebral lobe (F), left frontal area (G)
and right temporal lobe (H). In this research, this paper also
uses the DCNN net method proposed in this paper and
CNNLSTM and EEG net for comparison experiments. We
used the average CRR accuracy of five-fold cross-validation
for comparison and analysis. Select the electrode group with
the most obvious and stable biological characteristics as the
electrode group for PI.

In the case of reducing the number of electrodes, in order
to further improve the performance of the model, channels
with more emotional EEG information are further selected
from the screened 32-channel electrodes..is paper proposes a
channel attention mechanism algorithm for automatic channel
selection. Make the DCNN net focus on the channels with
strong EEG signal characteristics when learning the biological
characteristics of the emotional EEG signal. So this paper adds
the channel attention mechanism method before the DCNN
net performs biological feature learning to makes the perfor-
mance of DCNN net better. .rough the channel attention
mechanism method, each sample (including training samples
and test samples) has its own unique set of weights, which are
used for the weighting of its own feature channels. .erefore
the model can efficiently perform PI.

3.5. Comparison of Proposed CADCNN Net and Other Tra-
ditionalMachine Learning Approaches toward Affective EEG-
Based PI Application. In the previous experiments, this
paper conducted experiments on the CADCNN net and
DCNN net. At the same time, to prove that the deep learning
algorithm proposed in this paper is better than the tradi-
tional machine learning algorithm. In this experiment, this
paper chose the traditional and commonly used machine
learning algorithms: Random Forest (RF) [21, 24] and
Multilayer Perceptron (MLP) [1]. .e above two traditional
machine learning classifiers and the latest deep learning
methods EEG net, CNNLSTM, CADCNN net and DCNN
net are respectively compared. .e EEG data used in this
experiment is the optimal rhythm and optimal electrode
group selected in the previous two experiments.

4. Results

.e experimental results are reported separately for each
experiment in this section. .e analysis based on the various
frequency bands of emotional EEG signals, the sparsity of

EEG electrodes and the performance of existing methods is
compared.

4.1. Comparison of Affective EEG-Based PI among Different
Affective States. Collecting EEG signals in real time and
preprocessing the signals and selecting the appropriate
rhythm are very important to improve the performance of
PI. .erefore, we firstly evaluated our proposed method
(DCNN net) using EEG signals in the five canonical bands to
identify the critical ones. In addition to DCNN net, latest
deep learningmethods EEG net, CNNLSTMwas used on the
same input bands to confirm the finding. When exper-
imenting with different frequency bands on the emotional
EEG data set, it spanned 15 different emotional states (love,
joy, happy, relief, compassion, content, excite, awe, anger,
jealousy, disgust, frustration, fear, sad, grief ) EEG signal. As
shown in Figure 4, the experimental results showed that
alpha and beta frequency bands provide significantly higher
CRR than gamma, theta and all bands. As the calculated
variance of the alpha rhythm is lower than that of the beta
rhythm, the alpha rhythm has a higher stability than the beta
rhythm. .erefore, this article chooses the alpha rhythm as
the main rhythm for PI. .e comparison of the mean CRR
(with standard error bar) among different affective EEG
frequency bands and different recognized approaches had
been shown in Figure 4.

4.2. Comparison of Affective EEG-Based PI among EEGs from
Different Frequency Bands. In order to evaluate the impact
of reducing the number of electrodes on the PI performance
of the method proposed in this paper, we divides the 256
electrodes into brain functional areas, and divides the
electrode groups into 8 groups with 32 electrodes in each
group..e brain functional areas of each electrode group are
respectively Right frontal lobe (A), parietal lobe (B), left
temporal lobe (C), right cerebral lobe (D), left cerebral lobe
(E), left frontal lobe, left temporal lobe, left cerebral lobe (F),
Left frontal area (G) and right temporal lobe (H). From the
results, we can see that the reduction in the number of
electrodes does not reduce the PI performance of the al-
gorithm proposed maintains a fairly high accuracy rate,
while the EEG net and CNNLSTM algorithms have reduced
the number of electrodes PI performance drops. According
to Table 3, the mean CRR reported that brain function area
in the B area (parietal lobe) shows the best performance.
CADCNN net reached up to 96.24% mean CRR. After the
reduction of the number of EEG electrodes from 256 to 32
for more practical application，B area was the best 32
electrodes for application in similar scenarios to this
experiment.

Furthermore, to get more informative electrodes from
the 32 selected electrodes, this experiment adds the channel
attention mechanism algorithm. Before the data is input to
the DCNN net, first use the channel attention mechanism
algorithm to quickly filter out the channels of high-value
information from the limited electrodes information and
then input it into the DCNN net algorithm proposed in this
article to PI.
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According to experiment results, it shows that the al-
gorithm proposed in this paper has learned the main bio-
logical characteristics of emotional EEG signals well, and the
reduction of the number of electrodes can effectively reduce
the noise and redundant EEG signal biometric information
generated by the environmental impact of EEG signals. And
after the channel attention mechanism is added, the loss
value of training in each epoch drops the fastest..e training
loss value is shown in Figure 5. It shows that after adding
channel attention mechanism, CADCNN net model can
strengthen the learning of important features while learning
individual EEG features, reduce the learning of unimportant
features, and then carry out effective identification.

4.3. Comparison of Proposed CA-DCNN Net and Other Tra-
ditionalMachine Learning Approaches toward Affective EEG-
Based PI Application. In the previous two band screening
and channel selection experiments, we found that there are
two people’s data sets are pathological EEG data. .erefore,
in this experiment, we will eliminate the EEG signals of these
two people, and then carry out the algorithm comparison
experiment. A comparison between the latest deep learning
methods and traditional machine learning classifiers used in

the PI based on different emotional state EEG. To evaluate
the effectiveness of the algorithm, we compared our
CADCNN net model with classical EEG-net and CNNLSTM
two conventional classifiers, MLP and random forest (RF)
using to PI. Results show that the CADCNN net and CNN
models are able to generalize over different states. However,
the conventional classifiers can hardly handle EEG signals of
different states other than those used in the training phase.
In this experiment, CADCNN net achieved a mean CRR of
96.24%. In comparison, MLP and RF only achieved a mean
CRR of 92.12% and 80.54% using signals in the 15 different
affective states..e comparative results in Table 4 also in-
dicated that CACNN dense net was potentially a better
solution to use the different states affective EEG than CNN
and traditional machine learning classifiers. Since the feature
matrix actually represents the feature splicing between each
layer of convolution operation and the previous layer of
convolution operation. Compared with the traditional
convolution operation, CADCNN net can provide a more
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Figure 4: Comparison of CRR among five sets of EEG frequency bands.

Table 3: .e average correct recognition accuracy of 8 brain
functional areas and all electrode groups in EEG-net, CNN,
CNNLSTM and CADCNN net experiments.

Cortical regions CADCNN EEG net CNN CNNLSTM
Right frontal lobe 0.8649 0.8569 0.9198 0.8612
Parietal lobe 0.9624 0.8442 0.9299 0.8718
Left temporal lobe 0.9217 0.7756 0.9249 0.8535
Right cerebral lobe 0.9228 0.7716 0.9211 0.8620
Left cerebral lobe 0.9222 0.7925 0.9226 0.8544
Right cerebral lobe 0.8971 0.7756 0.9247 0.8503
Left frontal area 0.9179 0.6750 0.9205 0.8705
Right temporal lobe 0.9151 0.7037 0.9163 0.8666
All electrodes 0.9107 0.8873 0.9162 0.9236
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Figure 5: CADCNN net and DCNN net algorithm loss value per
epoch.
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effective method to learn biology the uniqueness of EEG
signals. In summary, the proposed learning model based on
affective EEG and CADCNN net is demonstrated to be able
to learn unique biometric traits from EEG signals for PI in
diverse affective states.

4.4. Comparison of the Time Window Size of Emotional EEG
Signals. In this analysis, we investigate whether different
window sizes will affect the PI performance. In this ex-
periment, this article used 15 kinds of emotional EEG signal
of alpha band and B area brain function electrodes for
training and testing. We used the forward steps for all the
moving windows, despite the three window sizes. Specifi-
cally, the three moving windows in comparison are, 1
second, 3 seconds, and 5 seconds..e PI results of emotional
EEG signals with different time window sizes are shown in
Figure 6. As the time window size of emotional EEG signals
changes, it does not bring higher PI performance. Results in
Figure 6 indicate that larger window sizes do not bring
improved performance. Contrarily, a slight degradation of
the correct recognition rate is observed with larger window
sizes.

5. Discussion

In this paper, we mainly focus on two issues, namely, the
physical and algorithmic issues of EEG-based PI applica-
tions. .e physical issues referred to the EEG capturing such
as the different affective states, the different frequency bands,
and the electrode positions on the scalp. .e algorithmic
issues exhibited the operation of the proposed CADCNN net
approach on EEG in an effective way for PI applications. We
also considered the advantages of CADCNN net over the
other relevant traditional machine learning approaches
(MLP and RF).

Regarding physical issues, the experimental results in-
dicated that CADCNN net approaches could deal with
different affective states EEG signals, reaching up to 93.34%
mean CRR. On the other hand, a traditional machine
learning approach such as RF and MLP to PI did not reach
85% mean CRR. .e performance of PI in each frequency
band is uneven. Finally, this paper selects the alpha rhythm
of the emotional EEG signal with the highest mean CRR of
PI. .en this article also explores the impact of reducing the
number of electrodes on the performance of PI. We divide
the electrodes of emotional EEG signals into 8 groups of 32-
lead electrodes according to the brain function area. It is
found that the algorithm proposed in this paper does not

affect the PI performance and still maintains equivalent high
CRRwhen the number of electrodes is reduced. It shows that
the reduction of the number of electrodes is helpful to design
EEG signal acquisition equipment, which is convenient for
practical application. For further explore the feasibility of PI
in practical applications, this paper also further explores the
impact of different time windows on the performance of PI.
We use different emotional EEG signal data with time
windows of 1 s, 3 s, and 5 s, respectively. .e experimental
results of the proposed algorithm show that with the change
of the time window of the affective EEG signal, the PI
performance is not affected. It shows that the algorithm
proposed in this paper can effectively learn the unique bi-
ological characteristics that promote PI. With the extension
of the EEG signal time, the noise in the acquisition process
also increases. .erefore, it is also very important to ef-
fectively learn the unique characteristics of PI from the
emotional EEG signal containing noise. However, the
CADCNN net proposed in this paper does not affect the
performance of PI as the time window of the EEG signal
changes. It can be determined that the algorithm proposed in
this paper has effectively learned the unique characteristics
to PI.

Concerning algorithmic issues, the CADCNN net pro-
posed based on emotional EEG signal PI can be seen from
the experimental results to be superior to the latest deep
learning algorithms and related traditional machine learning
algorithms (CNNLSTM, EEG-net, MLP and RBF). For
example, in the comparison between the CADCNN net and
the CNN, CNNLSTM, EEG net, MLP and RBF algorithms,
the CADCNN net is significantly faster in the training model
convergence speed while having a slightly higher mean CRR,
especially when a small number of electrodes are used. In
addition, the CADCNN net overcomes the influence of
feature engineering on the performance of PI. .e algorithm
proposed in this paper does not use specially designed
feature extraction methods such as PSD, which avoids the
influence of emotional state when extracting biometrics for
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Figure 6: .e PI results of different time window sizes in the
average correct recognition accuracy of CADCNN net and DCNN
net algorithms.

Table 4: Experimental results of the average correct recognition
accuracy of each algorithm.

Algorithm Accuracy
CADCNN net 0.9624
DCNN net 0.9588
CNNLSTM 0.9000
EEG-net 0.8539
MLP 0.9212
RF 0.8054
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PI. On the contrary, the CADCNN net algorithm proposed
in this paper is a data-driven algorithm, which builds a
model based on training data, and is an uncertainty algo-
rithm. .e minimizing of loss guided the models to over-
come the influence of affective states. .erefore, CADCNN
net can outperform machine learning algorithms. .e al-
gorithm model proposed in this paper also overcomes the
influence of different emotional states and the influence of
different time window sizes on the performance of PI.
.erefore, the CADCNN net algorithm proposed in this
paper can outperform the machine learning algorithm and
the latest deep learning algorithm. In addition, recent re-
search on the PI of emotional EEG signal data sets has shown
that deep learning methods have higher accuracy than
traditional classifiers.

6. Conclusion

.is paper proposes a novel CADCNN net algorithm for the
PI of emotional state EEG. .e algorithm proposed in this
paper has better PI performance than conventional machine
learning algorithms in the mean CRR of PI. CADCNN net
can learn the unique biological characteristics for PI better
than the current relatively new deep learning methods and
machine learning methods. .e mean CRR of extracting the
alpha rhythm from the emotional EEG and selecting 32
electrodes for PI can reach 96.24%..erefore, the CADCNN
net overcomes the influence of emotional state in EEG-based
PI reported in previous studies and complements the re-
search on affective EEG signal PI.
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