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Predicting the emotions evoked in a viewer watching movies is an important research element in affective video content analysis
over a wide range of applications. Generally, the emotion of the audience is evoked by the combined effect of the audio-visual
messages of the movies. Current research has mainly used rough middle- and high-level audio and visual features to predict
experienced emotions, but combining semantic information to refine features to improve emotion prediction results is still not
well studied.+erefore, on the premise of considering the time structure and semantic units of a movie, this paper proposes a shot-
based audio-visual feature representation method and a long short-term memory (LSTM) model incorporating a temporal
attention mechanism for experienced emotion prediction. First, the shot-based audio-visual feature representation defines a
method for extracting and combining audio and visual features of each shot clip, and the advanced pretraining models in the
related audio-visual tasks are used to extract the audio and visual features with different semantic levels. +en, four components
are included in the prediction model: a nonlinear multimodal feature fusion layer, a temporal feature capture layer, a temporal
attention layer, and a sentiment prediction layer. +is paper focuses on experienced emotion prediction and evaluates the
proposed method on the extended COGNIMUSE dataset.+emethod performs significantly better than the state-of-the-art while
significantly reducing the number of calculations, with increases in the Pearson correlation coefficient (PCC) from 0.46 to 0.62 for
arousal and from 0.18 to 0.34 for valence in experienced emotion.

1. Introduction

When watching movies, audiences experience a range of
emotions over time based on the visual and auditory in-
formation they receive. +is phenomenon has been a con-
cern of and has been studied by psychologists [1]. As people
always evaluate, select, edit, and split movies based on their
affective characteristics, recognizing the continuous dy-
namic emotion evoked by movies can be used to build better
multimedia intelligent applications, such as computational
affective video-in-video advertising [2] and personalized
multimedia content [3], and to create automatic summaries
and adaptive playback speed adjustment for long videos, etc.
Movies have always been one of the main objects of video

sentiment analysis. Unlike short videos on social media,
movies are much longer and can induce a rich emotional
response from an audience. Additionally, the rich emotional
content in movies is inherently multimodal. +e complex
interplay between audio and video modalities determines
the perceived emotion.+erefore, both the complexity of the
film data and the dynamic interactivity of the emotional
content of the movie make quantifying and automatically
predicting the emotions audiences experience a challenging
problem.

+ere are three different “types” of movie emotion. +e
intended emotion describes the emotional response the
movie tries to evoke in audiences, the experienced emotion
describes the actual emotions felt by the viewer while
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watching the movie, and the expected emotion is the ex-
perienced emotion expected over a population [4]. Re-
searchers have combined existing models of affective
psychology to measure emotional responses, such as di-
mensional and categorical approaches. +e dimensional
method has been used in most predictive studies [5–10]
because the dimensional method constituted by arousal and
valence dimensions can effectively represent the emotions
elicited by pictures, videos, sounds, etc. [11]. In particular,
Hanjalic and Xu [12] use the arousal and valence dimensions
to measure the intensity and type of feeling or emotion that a
user experiences while watching a video. Malandrakis et al.
[4] proposed a database with continuous valence-arousal
scale annotation of intended and experienced emotions over
a continuous time, in which valence and arousal are an-
notated in the range of [−1, 1] by several subjects. +e closer
the valence is to 1, the more pleasant the emotions that the
audience feels, and the closer it is to −1, the more negative
the emotions that the audience feels.+e closer the arousal is
to 1, the more active the audience is, and the closer it is to −1,
and the more passive the audience is. When both are closer
to 0, the audience feels more neutral. Based on this modeling
method, we can measure the emotions that audiences ex-
perience as a range of emotions over time by continuous
valence-arousal scale annotation.

For predicting the intended or experienced emotion on a
continuous valence-arousal scale, Malandrakis et al. [4]
proposed a supervised learning method to model the con-
tinuous affective response by independently using hidden
Markov models in each dimension. Goyal et al. [6] proposed
a mixture of experts- (MoE-) based fusion model that dy-
namically combines information from audio and video
modalities for predicting the dynamic emotion evoked in
movies. Sivaprasad et al. [7] presented a continuous emotion
prediction model for movies based on long short-term
memory (LSTM) [13] that models contextual information
while using handcrafted audio-video features as input. Joshi
et al. [8] proposed a method to model the interdependence
of arousal and valence using custom joint loss terms to
simultaneously train different LSTM models for arousal and
valence prediction. +ao et al. [9] presented a multimodal
approach that uses pretrained models to extract visual and
audio features to predict the evoked/experienced emotions
of videos. +ao et al. [10] presented AttendAffectNet, a
multimodal approach based on the self-attention mecha-
nism that can find unique and cross-correspondence con-
tributions of features extracted from multiple modalities.
However, these methods usually do not take into account the
temporal structure or semantic units of the film, ignore the
changes in the audio-visual information in the subclip, and
have high computational complexity in the feature extrac-
tion process.

Because experienced emotion prediction is more com-
plicated than intended emotion prediction, most researchers
have focused on intended emotion prediction. In 2019, +ao
et al. [9] used the same features and models to predict
intended or experienced emotion, and this was chosen as the
baseline of this paper. For predicting the emotion on a
continuous valence-arousal scale over time, some methods

[6, 7, 9, 10] need to extract image content and optical flow
information from each frame of movies, which has high
computational complexity. Goyal et al. [6] proposed splitting
all movies into nonoverlapping 5-second samples after a
frequency response analysis of the intended and experienced
emotion labels to find a suitable unit for affective video
content analysis. +ese methods use 5 s subclip-level aver-
aging features without considering the temporal and semantic
structure of the movies. +ere are two temporal structure
levels of movies, shots and scenes. As the shot is the minimal
visual unit of a movie [14], a multimodal prediction model
based on video shot segmentation is proposed in this paper.

+is paper focuses on experienced emotion prediction
and evaluates the proposed method on the extended
COGNIMUSE dataset [4, 15]. First, the movies were divided
into short clips by shot boundary detection. +en, the audio
and visual features of each shot clip were extracted and
combined with shot-based audio-visual feature represen-
tation, as we define in Section 2. Finally, the shot-level audio-
visual features were fed into our multimodal deep model to
predict the evoked emotion. +is method obtained a sig-
nificantly better result than the state-of-the-art while sig-
nificantly reducing the number of calculations, with
increases in Pearson correlation from 0.46 to 0.62 for arousal
in experienced emotion and from 0.18 to 0.34 for valence in
experienced emotion. Interestingly, we found that the fea-
ture combination method based on shot fragments can
significantly improve the performance of the method in [9].
+e experimental results show that considering the temporal
structure and semantic units of movies is of great signifi-
cance to predicting experiential emotions.

2. Shot Audio-Visual Feature Representation

To consider a movie’s temporal structure and semantic unit,
the variation in audio and visual information in subclips,
and to reduce the high computational complexity of the
feature extraction process, a multimodal shot audio-visual
feature representation was proposed as follows.

2.1. Video Subset Segmentation Based on Shot Boundary
Detection. A shot is a sequence of frames recorded by the
same camera and is the minimal visual unit of the movie
[16]. +e semantic information in one shot clip does not
change much, but there are apparent changes in one 5 s clip,
as shown in Figure 1. +e semantic variation in the 5-s clip
increases the difficulty of model learning, so we believe that
the segmentation of the video shot subset can obtain higher
accuracy in experienced emotion prediction.

Sidiropoulos et al. [17] jointly exploited low-level and
high-level features automatically extracted from visual and
auditory channels, possessing better shot boundary seg-
mentation, so this method was used to obtain shot subset
segmentation of movies in this paper. +e average value of
the arousal/valence labels of all frames in each shot was used
as the emotion label for each shot subclip, similar to the
emotion label for the 5 s clips in previous studies [6–10],
giving us approximately 5902 samples.
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2.2. Multimodal Emotion Features Extraction. As is known,
the combined effect of the audio-visual messages of movies
evokes emotional responses in the audience, and we hy-
pothesize that the comprehensive effect of audio-visual
information can be approximated by the interaction of
semantic units, so the extracted features need to have the
ability to describe the interaction of each semantic unit in the
movies. In previous studies [6–10], a global average feature
extracted from each 5 s clip was widely used, ignoring the
change in the audio-visual information of each subclip.
+erefore, to capture the interaction of each semantic unit
from the audio and visual information of each shot clip, a
targeted method for extracting and combining the audio and
visual information features of each shot clip was designed as
follows.

First, three keyframes of equal time intervals and one
audio file in .wav format were obtained from each shot
subset, as shown in Figure 2. +ese three keyframes cor-
responded to the beginning, development, and end of the
visual information of each shot clip.

To consider semantic units and reduce computational
complexity, this method needed to distinguish high-level
semantic elements and to replace the extraction of the
optical flow information.+us, inspired by [16], four aspects
were used to represent the shot: action, face, person, and
place. Specifically, this paper utilizes (1) a partial temporal
action detection model based on Fast-RCNN NonLocal-
I3D-50 [14] pretrained on the AVA dataset [18] to obtain the
action features, (2) a multitask cascaded convolutional
network (MTCNN) [19] to detect the faces in each keyframe
and InceptionResnetV1 [20] to extract features of the face,
(3) a cascade region-based convolutional neural network (R-
CNN) [21] that was trained with the B-box annotations in
MovieNet [14] based on the detection codebase MMDe-
tection [22] to detect the people in each keyframe and a
ResNet50 [23] trained with the cast annotations inMovieNet

[14] to extract the person features, and (4) ResNet50 [23]
pretrained on the Places dataset [24] on keyframe images to
obtain place features. Finally, these aspects were combined
into a visual feature representation of each shot clip suitable
for learning the temporal variation in the visual information
in shot subclips.

As we know, the movie’s audio may be speech, music, or
sound effects, etc. But since the duration of a shot clip is too
short, the audio of each shot subset does not have complete
semantic information. To effectively describe the charac-
teristics of various types of sounds, audio features were
extracted using the OpenSMILE toolkit [25] and a pre-
trained VGGish model [26], as in AttendAffectNet [10]. For
OpenSMILE feature extraction, the configuration file
“emobase2010” in the INTERSPEECH 2010 paralinguistics
challenge [27] was used to extract 1,582 features from each
audio of the shot subset with default parameters. +e
extracted feature set included low-level descriptors, in-
cluding the jitter, loudness, pitch, mel frequency cepstral
coefficients (MFCCs), mel filter bank, line spectral pairs with
their delta coefficients, functionals, duration in seconds, and
the number of pitch onsets [28]. For VGGish feature ex-
traction, the pretrained VGGish network on the AudioSet
dataset [29] was used. For each 0.96-second audio segment,
128-d audio features were obtained, and the extracted fea-
tures and overall parts were calculated to obtain the ele-
mentwise averaging to finally obtain a 128-feature vector for
each movie shot excerpt to describe the mid-level and high-
level characteristics of audio. Finally, we obtained the
keyframe-level visual and shot-level acoustic features.

2.3. ShotSegmentLevelFeatures. In this paper, the keyframe-
level visual features and the shot-level audio features are
combined into shot-level features that are suitable for de-
scribing the interaction between semantic units in the audio-

Shot clip

5s clip

Shot1

Shot2

Figure 1: 5 s clip versus shot clip. +ere is little change in the semantic information in the shot clip compared to the 5 s clip.
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visual information of each shot segment. +e process of
feature processing is shown in Figure 3.

For visual features, the keyframes of the shot
Si, i ∈ [1, N] were denoted as Kij, j ∈ [1, 3]. For all four
types of features of each keyframe, the action, face, person,
and place features were denoted in turn as
AcKij, FaKij, PeKij, PlKij , i ∈ [1, N] , j ∈ [1, 3]. To extract
action features, person detection of each keyframe using a
cascade R-CNN [21] was performed first, next a spatial-
temporal action detection model was used, and then a 2048-
dimensional action feature vector of one person for each
keyframe was obtained, denoted as AcKij. +en, the ele-
mentwise averaging of AcKij, j ∈ [1, 3] was calculated to
obtain the shot-level action feature AcKi. When there were
no people in the keyframe, a 2048 zero vector was set as its
action features. +ere could be multiple faces or people in
each keyframe, so after the number of faces and people in all
keyframes was counted, the number of faces and people in
each keyframe with the calculated feature was set to 3.
+erefore, to extract the facial feature, facial detection was
performed first, and 512-dimensional feature vectors for
each of the three faces in each keyframe were extracted and
then concatenated to obtain a 1582-d facial feature vector
FaKij. If the number of faces in the keyframe was less than 3,
the feature of each undetected face was set to a 512-d zero
vector. +e process of extracting the person features was
similar to that of the facial features, but each person had a
feature vector of 256, so a 768-d person feature vector PeKij

was obtained. For the place feature, a 2048-d vector PlKij was
extracted for each keyframe. Finally, all four features were
concatenated as a visual feature representation for each
keyframe. To simplify the operation, the features of the three

keyframes were averaged as a shot visual feature
Aci, Fai, Pei, Pli . For the auditory features, the 1582-di-
mensional features extracted by the OpenSMILE tool and
the 128-dimensional features extracted by pretrained
VGGish were directly concatenated and combined as the
acoustic features of the shot. +en, the shot-level visual
feature was concatenated with the shot-level auditory fea-
ture, and the feature was normalized as a shot-level audio-
visual feature Aci, Fai, Pei, Pli, Vggi, Opi  of shot i.

3. Multimodal Model for Emotion Prediction

+e emotion evoked in an audience is related to the audio-
visual information received at the current moment and the
emotional state reached previously. For predicting the ex-
perienced emotion of viewers, the definition of the problem
needs to be clarified. Given n shot clips, i.e., s1, s2, . . . , sn ,
and (n − 1) labels, denoted y1, y2, . . . , yn−1 , the n − th label
yn of the n − th shot clip sn needed to be predicted. A feature
set xi � Aci, Fai, Pei, Pli, Vggi, Opi  was used to represent
shot si. +erefore, this question translated to a nonlinear
autoregressive exogenous problem. Given the n-d driving
series, i.e., x1, x2, . . . , xn  ∈ Rfd×n, where fd is the di-
mension of the shot-level features of shot si, and the previous
values of the target series y1, y2, . . . , yn−1  with
yi ∈ [−1, 1], nonlinear mapping was needed to learn to
predict the current emotion value yn:

yn � F y1, . . . , yn−1, x1, . . . , xn( , (1)

where F(·) is a nonlinear mapping function that needs to be
learned.

Movie

Shot clips Keyframes & audio

Keyframe1 Keyframe2 Keyframe3

audio file 

Keyframe1 Keyframe2 Keyframe3

audio file 

Figure 2: Preprocessing operation of the shot fragment data.

4 Security and Communication Networks



To solve this problem, an LSTM model incorporating a
temporal attention mechanism is proposed in this paper.
Specifically, four components are included: a nonlinear
multimodal feature fusion and dimensionality reduction
layer, a temporal feature capture layer, a temporal attention
layer, and a sentiment prediction layer, as shown in
Figure 4.

3.1. Feature Fusion and Dimensionality Reduction.
Inspired by the basic structure of the encoder-decoder [30],
an encoder f1(·) was proposed to capture the nonlinear
dimensionality reduction in each feature sequence in the
feature set xi � Aci, Fai, Pei, Pli, Vggi , Opi  and to then
obtain the dimensionality reduction data h1i � f1(Aci), f1

(Fai), f1(Pei), f1(Pli), f1(Vggi), f1(Opi)}. f1(·) is a
nonlinear activation function that could be LSTM or
something else. An LSTM unit was used as f1(·) in this
paper, and the update of the LSTM unit can be summarized
as follows:

inf � σ Wi x1f, . . . , xnf  + bi 

fnf � σ Wf x1f, . . . , xnf  + bf ,

gnf � tanh Wg x1f, . . . , xnf  + bg ,

onf � σ Wo x1f, . . . , xnf  + bo ,

cnf � fnf ⊙ c(n−1)f + inf ⊙gnf,

h1nf � onf ⊙ tanh cnf 

(2)

where Wi, Wf, Wg, andWo and bi, bf, bg, and bo are the
parameters to learn and σ and ⊙ are a logistic sigmoid
function and elementwise multiplication, respectively.
xnf ∈ Aci, Fai, Pei, Pli, Vggi , Opi , so LSTM could be used
to capture long-term dependencies of feature series to de-
scribe the interaction between high-level semantic features.
+en, all dimensionality reduction features were concate-
nated as hicon, so we obtain hicon � f1(Aci)⊕f1(Fai)⊕

f1(Pei)⊕f1(Pli)⊕f1(Vggi)⊕f1(Opi)}, where ⊕ is the
concatenation operators. Batch normalization [31] was used
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Figure 3: Extraction of vision and audio features of a shot.
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to normalize the feature data by recentering and rescaling, as
shown in

h2 �


bs−1
0 hicon − E 

bs−1
0 hicon 

�������
hicon + ε

 . (3)

3.2. Temporal Feature Capture. To simulate the effects of
current and previous audio-visual information on audi-
ences, the features h2 of shots were fed to two layers of LSTM
to incorporate the time dependencies of the shot features,
each with a hidden size of m units, as in Figure 4. In addition,
in this paper, m was set to 30. +erefore, after the two LSTM
layers, we could obtain LSTM2 Ot and LSTM2 h0 as
follows:

LSTM2 Ot � σ Wioδ
LSTM1

h
LSTM1
t + bio + Whght−1 + bho ,

LSTM2 h0 � LSTM2 Ot ⊙ tanh LSTM2 Ct( 

(4)

where the input of the second layer of LSTM is the hidden
state hLSTM1

t of the first layer multiplied by the dropout
δLSTM1 and δLSTM1 is a Bernoulli random variable. Wio, bio,
Whg, and bho are parameters that need to be learned.
LSTM2 Ot and LSTM2 h0 are the output and hidden states
of the second LSTM layer, respectively.

3.3. Temporal Attention. To adaptively learn the influence
weights of different temporal features on this paper’s task, we
introduce the temporal attention mechanism. We assign
LSTM2 h0 to Query and substitute LSTM2 Ot into
Content, as shown in Figure 4. +erefore,

S
k
t � W

T
2 tanh W1 LSTM2 h0; LSTM2 Ot ( , (5)

αk
t �

exp S
k
t 


n
i�1 S

i
t

. (6)

+e parameters that need to be learned are WT
2 and W1,

where αk
t is the attention weight measuring the importance

of the k-th temporal feature at time t. Equation (6) is a
softmax function that ensures that all the attention weights
sum to 1.

+en, the temporal feature LSTM2 Ot changes to

LSTM2Ot � αk
tLSTM2 Ot. (7)

3.4. Sentiment Value Prediction. Finally, we need to obtain
the predicted value of each shot clip. Because the range of
values of the valence and arousal is [−1, 1], we put LSTM2Ot

passing through a fully connected layer with one unit output
first and then through a tanh layer, as shown in Figure 4.+e
calculation process is as

Predict value � tanh W3LSTM2Ot . (8)

Additionally,W3 is a learnable parameter. For simplicity,
the bias term was omitted.

3.5. LossFunction. Two loss functions, Loss 1 (as in equation
(9)) and Loss 2 (as in equation (10)), were chosen and
compared in our experiments.

For the loss function, Loss1 was defined as the mean
squared error (MSE) of prediction:
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Loss1 �
1
n



n

i�1
Valuepred,i − Valueground,i , (9)

where n is the total number of shot clips of the validation set,
Valuepred,i is the predicted value for the i − th shot clip, and
Valueground,i is the ground truth of the i − th shot clip. Loss2
was defined as

Loss2 � loss1 + 1 − p Valuepred,i,Valueground,i   , (10)

where p is the Pearson correlation coefficient (PCC),
computed from the predicted arousal/valence values and the
ground truth.

4. Experiments

4.1. Dataset. As in existing research [4, 6–10], the extended
COGNIMUSE dataset [4, 15], which consists of twelve half-
hour additional Hollywood movie clips, was used. +is
dataset has the intended and experienced emotion labels at
the frame level. Emotion is represented by continuous
arousal and valence values in the range [−1, 1]. +is paper
focused mainly on experienced emotion, which is equivalent
to evoked emotion and was described in terms of valence
and arousal values computed as the average of twelve an-
notations. For comparison with previous work, the results
for intended emotions were reported, representing the in-
tention of the filmmakers, and were annotated in terms of
valence and arousal values, computed as the average of three
annotations done by the same expert at the frame level. In
both cases, the emotion values (valence and arousal), which
ranged between −1 and 1, were quantized into shot emotion
labels as defined in Section 2.1. All movies in the extended
COGNIMUSE dataset were used, including two animated
movies, namely, “Ratatouille” and “Finding Nemo.”

4.2. Evaluation Metrics. To evaluate our proposed method,
leave-one-out cross-validation was used, and the MSE and
PCC between the predicted values and the ground truth for
arousal/valence were chosen as our evaluation metrics, as in
[9, 10]. For leave-one-out cross-validation, we selected each
movie in turn as the validation set and the other movies as
the training set, and the averages of all training results (MSE
and PCC) were used as the overall results. For the evaluation
metrics, the closer the MSE was to 0 and the closer the PCC
was to 1, the better the prediction.

4.3. Shot Clip versus 5 s Clip. First, a preexperiment to briefly
verify and compare the effectiveness of the two segmentation
methods was conducted. To simplify the experiment, this
part used the same features as +ao et al. [9]. We imple-
mented a regression deformation based on the sequence
memory model [9] to predict arousal and valence. In this
model, Adam optimization [32] training was used; the
learning rate of arousal and valence prediction was 0.0005;
the momentum was set to 0.00002, weight attenuation was
not performed, and two losses (Loss 1 and Loss 2) were used
separately. +e fully connected layer for feature reduction

had ten cells. For LSTM, a fixed sequence length equal to 5
and 64 hidden units were used.

As shown in Table 1, under the same model and
hyperparameter settings, the PCC of the shot-based pre-
diction of the experienced arousal is 0.13 larger than that of
the 5 s-segment-based, and the MSE is approximately 0.01
litter than that of the 5 s-segment-based. However, the MSE
of the experienced valence prediction based on the shot
segment is 0.01 larger than that of the prediction based on
the 5 s segment, while the PCC of the experienced valence is
0.006 larger than that of the 5 s segment. +erefore, shot-
based segmentation is more favorable to the experienced
arousal prediction task than 5 s segmentation. For the ex-
perienced valence prediction task, shot-based segmentation
can obtain a better PCC even with a slightly larger MSE.

4.4. Implementation Details. For separate arousal and va-
lence prediction, the model was trained using Adam opti-
mization with learning rates of 0.01 for arousal and 0.05 for
valence. Both momenta were set to 0.005, without weight
decay, and two losses (Loss 1 and Loss 2) were separately
applied. +e models were trained for 500 epochs, each batch
size was 128, and the early stopping patience was 70 epochs.
For the LSTM, the fixed sequence length was set to 5, and
both had 30 hidden units. All models were implemented in
Python 3.6 with PyTorch 1.4 and were run on an NVIDIA
GTX 2080ti.

5. Results and Analysis

5.1. Comparison with State-of-the-Art Results. As experi-
enced emotion prediction is more difficult than intended
emotion prediction, most researchers have focused on
intended emotion prediction. In 2019, +ao et al. [9] used
the same features and models to predict intended or ex-
perienced emotion, respectively, and this was chosen as the
baseline in this paper. +erefore, the model was trained and
validated on the experienced and intended emotion anno-
tations in the COGNIMUSE dataset for effective compari-
son. +e results are summarized in Table 2 for experienced
emotion prediction and in Table 3 for intended emotion
prediction.

As shown in Table 2, the performance of our prediction
method is significantly better than that of+ao et al. [9]. +e
best results are obtained for each forecasting task when
arousal or valence is predicted with Loss1 or Loss2, re-
spectively. In particular, the MSE of the arousal prediction
task decreases from 0.04 to 0.027, and the PCC increases
from 0.46 to 0.62; the MSE of the valence prediction task
changes from 0.06 to 0.063, and the PCC improves from 0.18
to 0.34. As shown in Figures 5 and 6, the curve of the
predicted values always exhibits a sudden large change over
time. When the forecasting model does not have sufficient
fitting power, the overall curve consisting of all the forecast
values flattens out, resulting in a small MSE and a small PCC,
which does not fit the sharp fluctuations in the curve.
+erefore, we prefer methods that give higher PCC values to
prioritize the model itself and to ensure better fitting
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performance. +erefore, Loss1 is more suitable for arousal
prediction tasks, while is better for valence prediction.

As shown in Table 3, our model obtains results com-
parable to the state-of-the-art results for both arousal and
valence in intended emotion prediction. For arousal-
intended emotion prediction, Sivaprasad et al. [7] obtained
the best results, with a PCC equal to 0.84 and anMSE of 0.08.
However, their data excludes the two animated movies from
the COGNIMUSE dataset just as in [6].+e PCC andMSE of
our method are 0.67 and 0.10, respectively, which are the
best results without handcrafted features. For valence-
intended emotion prediction, +ao et al. [10] obtained the
best results, with a PCC of 0.57 and an MSE of 0.17. +e
results of our method are slightly worse, with a PCC of 0.40
and an MSE of 0.17. +is may be because our model is not as
complex as theirs, but despite this, our arousal prediction
performance surpasses theirs, indicating that our feature
combination is more effective. Compared to the model of
equal-level complexity reported by +ao et al. [9], a sig-
nificant improvement is reported for the intended emotion
prediction. Specifically, both arousal and valence prediction
have smaller MSE and larger PCC.

+e arousal and valence dimensions of the experienced
emotion of twomovies, “American Beauty” and “A Beautiful
Mind,” are visualized in Figures 5 and 6, respectively.

As shown in Figures 5 and 6, the predicted result of
arousal is much better than the valence value, which means
that the nonlinear mapping function from audio-visual cues
to valence is more challenging to learn. +ere are clear
opposite trends for the predicted arousal values and ground

truth in some periods. +is phenomenon may mean that
there are different ways in which the same features interact
with each other in various movies and that these ways of
interaction are affected by the specific values of the features.

5.2. Ablation Experiments of Features. To verify the contri-
bution of each visual or auditory feature to the overall effect,
feature ablation experiments were conducted. +is section
was validated using the same model with the same hyper-
parameters as that in Section 4.4.

As shown in Table 4, we subtract one feature each time
we validate, “Action features,” “Face features,” “Person
features,” “Place features,” “VGGish features,” or “Open-
SMILE features,” and use only the visual and auditory
features for prediction. +e experimental results show that
the contribution of each visual or auditory feature to the
overall arousal prediction results is generally comparable.
Although the performance of prediction by visual features
alone is still worse than that by only acoustic features, they
are comparable, indicating that our proposed visual features
have a better ability to describe arousal information. For the
valence prediction task, the performance of prediction by
auditory features alone is much higher than that of visual
features, indicating that the proposed audio feature set has a
better ability to describe valence attributes than the visual
feature set. Without the features of the person, the multi-
model obtains the best PCC, which is 0.37, and a slightly
worse MSE than all features for valence prediction.+is may
be because a variety of different emotions can be evoked for

Table 3: Comparison of state-of-the-art results for intended emotion prediction.

Models
Arousal Valence

MSE PCC MSE PCC
Malandrakis et al. [4] 0.17 0.54 0.24 0.23
Goyal et al. [6] — 0.62± 0.16 — 0.29± 0.16
Sivaprasad et al. [7] 0.08± 0.04 0.84± 0.06 0.21± 0.06 0.50± 0.14
+ao et al. [9] 0.13 0.62 0.19 0.25
+ao et al. [10] 0.124 0.630 0.178 0.572
Ours (loss1) 0.1022 0.6748 0.1654 0.3167
Ours (loss2) 0.1141 0.6582 0.1704 0.4025

Table 1: Comparison of the performance of the two segmentation methods.

Features
Experienced arousal Experienced valence

MSE PCC MSE PCC
5 s features4 (loss2) 0.0476 0.4543 0.0707 0.2145
Shot features4 (loss2) 0.0377 0.5822 0.0820 0.2203
+e best result for each indicator is marked in bold.

Table 2: Comparison of state-of-the-art results for experienced emotion prediction.

Method
Arousal Valence

MSE PCC MSE PCC
+ao et al. [9] 0.04 0.46 0.06 0.18
Ours (loss1) 0.0275 0.6187 0.0490 0.2828
Ours (loss2) 0.0403 0.5569 0.0632 0.3443
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the videos with the same human pose and the current model
is not complex enough to differentiate it.

5.3. Ablation Experiments of LSTM-One-Layer Encoder.
+is section aims to validate the ability to capture the non-
linear dimensionality reduction in each feature sequence in
the feature set using LSTM and its contribution to the overall
arousal and valence predictions. A comparative model was
designed for feature downscaling using a fully connected layer
and for predicting arousal and value using Loss1 or Loss2. As
shown in Table 5, the use of LSTM to capture the nonlinear
dimension reduction in each feature sequence in the feature
set has a better effect on the overall prediction performance.
In particular, theMSE of the arousal prediction task decreases
from 0.0288 to 0.0275, and the PCC increases from 0.5826 to
0.6187; the MSE of the valence prediction task decreases from
0.0751 to 0.0632, and the PCC improves from 0.3276 to
0.3443. +erefore, our LSTM-one-layer encoder helps to
improve the results of all tasks.

5.4. Ablation Experiments of the Time Attention Mechanism.
In this part, we validated the performance of the time at-
tention mechanism. As shown in Table 6, the prediction

performance of the time attention mechanism is signifi-
cantly improved. Specifically, the PCC values for both
arousal and valence emotion prediction improve from 0.574
and 0.296 to 0.618 and 0.34, respectively. +eMSE decreases
from 0.034 and 0.071 to 0.027 and 0.063, respectively, for
arousal and valence. +is proves the effectiveness of the time
attention mechanism.

5.5. Computational Complexity Comparison. In the feature
extraction process, the computational complexity of visual
features is much higher than that of audio features, and the
extraction process of auditory features in existing studies is
similar, with computational complexity on the same order of
magnitude. +erefore, we focus on the computational
complexity of the visual feature extraction process for
comparison. As shown in Table 7, existing studies need to
extract every frame’s features in the video, while the number
of frames to be processed is reduced to 3.21% of the original
number of frames in this paper. Optical flow information
extraction is replaced by action feature extraction, which has
low computational complexity and consumes less time.
+erefore, this method significantly reduces the number of
calculations and time.
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Figure 5: Visualization of the arousal and valence dimensions of the experienced emotion of the movie named “American Beauty.”
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Figure 6: Visualization of the arousal and valence dimensions of the experienced emotion of the movie named “A Beautiful Mind.”

Table 4: Comparison of state-of-the-art results for experienced emotion prediction.

Features
Arousal (loss1) Valence (loss2)

MSE PCC MSE PCC
All features 0.0275 0.6187 0.0632 0.3443

−Action features 0.0291 0.6038 0.0673 0.3259
−Face features 0.0277 0.6136 0.0637 0.3667
−Person features 0.0280 0.6181 0.0653 0.3726
−Place features 0.0280 0.5981 0.0663 0.3315
−VGGish features 0.0290 0.5952 0.0669 0.3444
−OpenSMILE features 0.0295 0.6003 0.0666 0.3345

All_visual_features 0.0316 0.4931 0.0751 0.2694
All_audio_features 0.0297 0.6141 0.0726 0.3356
“−” indicates without the feature.

Table 5: With or without capture changes in audio and visual feature sequences using LSTM.

Model (with Features6)
Experienced arousal (loss1) Experienced valence (loss2)

MSE PCC MSE PCC
Ours without LSTM 0.0288 0.5826 0.0751 0.3276
Ours 0.0275 0.6187 0.0632 0.3443
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6. Conclusion

In this paper, a multimodal prediction model based on video
shot segmentation for predicting affective responses evoked
by movies is presented. Unlike many existing studies, this
paper introduces the shot clip as the minimum emotion
prediction of the video unit and avoids the optical flow
calculation in feature extraction. +is method enables our
model to focus on analyzing each semantic unit’s audio and
visual information in the interaction process. +erefore, the
emotion prediction task performance was significantly
improved, with an increase from 0.46 to 0.62 for arousal and
from 0.18 to 0.34 for valence in experienced emotion.

+e movie was divided into short clips by shot boundary
detection first. +en, three keyframes were extracted from
each shot clip. Four types of features—action, face, person,
and place features—for each keyframe of each shot clip were
extracted. For each shot clip’s audio, we used the Open-
SMILE tool and a pretrained VGGish model to extract audio
features. +en, they were combined as shot audio-visual
feature representations. Finally, the shot audio-visual fea-
tures were fed into our deep multimodal model based on
LSTM incorporating temporal attention to predict emotion.

+e effects of arousal and valence predicted separately
were compared by using our model with two types of loss
functions. Loss1 is more suitable for arousal prediction
tasks, while Loss2 is better for valence prediction. In the
future, we will work on designing scene-level video feature
calculation methods and a better model for mapping the
complex changes in visual and audio information at dif-
ferent temporal levels and segment levels of the movie to
the experienced emotion. Interestingly, the feature com-
bination method based on shot fragments can significantly
improve the performance of the method in [9]. +e ex-
perimental results of this paper reveal the importance of
considering the time structure and semantic unit of movies
for experienced emotion prediction.

Data Availability
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from this website and by contacting the creators of this
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