
Research Article
Toward Identifying APT Malware through API System Calls

Chaoxian Wei ,1 Qiang Li ,2 Dong Guo ,3 and Xiangyu Meng 3

1College of Software, Jilin University, Changchun 130012, China
2College of Computer Science and Technology, Jilin University, Changchun 130012, China
3Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University,
Changchun 130012, China

Correspondence should be addressed to Xiangyu Meng; xiangyumeng@jlu.edu.cn

Received 2 August 2021; Revised 28 October 2021; Accepted 23 November 2021; Published 9 December 2021

Academic Editor: Angel M. Del Rey

Copyright © 2021 ChaoxianWei et al.*is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Self-developed malware was usually used by advanced persistent threat (APT) attackers to launch APTattacks. *erefore, we can
enhance the understanding and cognition of APT attacks by comprehending the behavior of APTmalware. Unfortunately, the
current research cannot effectively explain the relationship between the recognition, detection, and defense of APT. *e model of
similar studies also lacks an explanation about it. To defend against APTattacks and inquire about the similarity of different APT
attacks, this study proposes an APTmalware classification method based on a combination of multiple deep learning algorithms
and transfer learning by collecting malware used in several famous APT groups in public. By extracting the application pro-
gramming interface (API) system calls, with the vector representation of features by combining dynamic LSTM and attention
algorithm, we can obtain API at different APT families classification contributions trained dynamic. *us, we used transfer
learning to performmultiple classifications of the APTfamily. *is study aims to reduce the burden of network security staff from
reviewing a large number of suspicious files when defending against APTattacks. Additionally, it can effectively intercept them in
the initial invasion stage of APT to perform targeted defense against specific APT attacks by combining threat intelligence in
public.*e experimental result shows that the proposed method can achieve 99.2% in distinguishing commonmalware fromAPT
malware and assign APT malware to different APT families with an accuracy of 95.5%.

1. Introduction

Recently, advanced persistent threat (APT) attacks have
been continuously developed, and new types of APTemerge,
posing severe threats and challenges to the network security
environment in the present world. *ey usually obtain huge
financial or technical input, and they often perform long-
term and complex attacks on certain targets [1].*e purpose
is to steal valuable confidential data or perform network
espionage activities, which will cause severe harm; thus,
research on APT detection and prevention is urgent.

Similar to traditional network attacks, APT attackers
must use malware as attack weapons to attack in cyberspace
[2]. However, unlike traditional network attacks, APT at-
tacks will use some independent development malware to
achieve specific purposes against different targets [3]. *is
malware is collectively called APT malware [4]. APT mal-
ware is one kind of advanced malware tailored for special

targets, which has posed even more serious threats than the
traditional malware [2]. Compared with other malware, the
APT-type attacks follow a different attack roadmap [5]; and
APT malware is very different from ordinary malware. *e
primary purpose of APTmalware is to remotely control the
machines and to steal confidential data, rather than to
launch denial-of-service attacks, send spam emails, or cause
damage. It requires a high degree of stealth over a prolonged
duration of operation. For example, in the case of those bots
and worms, the attackers need to use the command and
control servers to remotely control thousands of infected
hosts. But APTattackers do not use the same C&C server to
remotely control so many infected end-user machines, be-
cause it would increase the risk of exposure. *e crafted
malware is only used for the end-user machines which are
valuable to them [6]. APT attackers will evolve their
weapons, making the existing automated security measures
in the face of sudden APTattack unable to accurately identify

Hindawi
Security and Communication Networks
Volume 2021, Article ID 8077220, 14 pages
https://doi.org/10.1155/2021/8077220

mailto:xiangyumeng@jlu.edu.cn
https://orcid.org/0000-0002-8814-269X
https://orcid.org/0000-0001-7510-4718
https://orcid.org/0000-0002-3049-2152
https://orcid.org/0000-0002-2725-0451
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8077220

the suspicious file detected by the system as APT malware
and unable to determine whether these suspicious samples
are related to the APT attacks [7]. Additionally, manual
analysis of samples at present is impractical. When an in-
trusion detection system detects suspicious samples and
issues an alert, it calls network security experts for a long
time to carry out manual analysis to determine whether the
samples belong to particular APT attacks [8]. Due to the
excessive number of alarms, network security experts have
brought great pressure. *erefore, as APT attacks become
more frequent today, accurately identifying APT malware
from suspicious samples has become an imminent problem.

How to distinguish APTmalware from ordinarymalware?
Currently, there are two methods for solving this problem:
dynamic and static analyses [9]. It means training the clas-
sification model by extracting dynamic or static features
[2, 3, 7, 8, 10, 11]. Static analysis technology can inspect
executable programs without actual execution samples; the
main advantage it has is that it is not affected by execution
expenses, whereas dynamic analysis is to observe executable
programs in real or virtual execution environments and
monitor actual malicious acts [12]. However, the time and
resources consumed by dynamic analysis will be a significant
disadvantage compared to static analysis; it is unclear what
environmental APTmalware needs and the time it requires to
observe [7]. Additionally, some researchers have combined
static and dynamic analyses to conduct a mixed analysis [2].
*e aim is to employ the advantages of these two analytical
techniques. In order to make a relatively reasonable expla-
nation of the results, compared with other works, this work
can quantify the influence and weight of a feature on clas-
sification.*e TF-IDFmethod was used in previous studies to
determine the priority and weight of features. Moreover, TF-
IDF is a method based on people’s prior knowledge. It has
cognitive bias; thus, how to improve the priority calculation
method is worth studying.

*e threat intelligence reports published on the network
recently confirmed that APT attacks have a high reuse rate.
Each APT group has its characteristics, and the APT of the
same APTfamily has some similarities.*erefore, most APT
attacks are variants of existing attacks [8, 13]. *e target of
APT attackers in the same organization is often similar and
regular; thus, the behavior of malware and the target of
attack are often regular. Different APT organizations are
interested in different targets. For example, APT33 has only
been found to target the transport system of Saudi Arabia
[13]. *erefore, if the APT malware was found in which
family they belong to, it can be searched for the APT threat
intelligence report information of this family published on
the network and investigate their characteristics. *en,
according to the characteristics of APT, we can take active
and targeted defensive measures [2]. *erefore, it is nec-
essary to analyze the information of malware from different
APT families. Understanding the malicious behaviors of
different APT families can enhance understanding and
resisting APT attacks [2]. To identify families of APT mal-
ware samples, the current work analyzes typical malicious
malware behaviors of different APT families to distinguish
them [2, 14]. However, the number of publicly available

malware samples from each APT family is small, making it
difficult to train a robust classification model through such a
small number of samples [15].

*e study aims to solve the above problem and improve
existing methods by employing the knowledge in the natural
language processing (NLP) field. We also proposed an APT
malware classification method by combining multiple depth
learning algorithms and transfer learning, since the system
call application programming interface (API) information
has a severe effect on malware detection [16], and it supports
a higher level of samples behavior analysis [12, 17].
*erefore, we selected API as the feature by calculating the
priority and contribution degree of each feature. *e
function of calculating the probability that the test sample
belongs to each APT family is realized. According to the
obtained results and threat intelligence report, targeted
defense and detection can be conducted for specific APT
attacks. Finally, we trained and tested APT malware and
ordinary malware samples collected from the network and
successfully tested the accuracy of the classification method.

*us, the contributions of this study are as follows:

(1) *e binary classification task of the APT and ordi-
nary malware is completed by fusing multiple deep
learning algorithms, making the model more active
for training and achieving better results than similar
studies.

(2) *rough the deep learning algorithm, the classifi-
cation contribution and weight of system call fea-
tures are dynamically calculated to obtain the
priority and probability of different APT attacks,
making the model more interpretable and
convincing.

(3) Transfer learning is used to transfer the training
results of binary classification to the multi-
classification task of the APT family to make the
model converge faster and strengthen the general-
ization ability. *us, the problem of the small
number of malware samples in APT is solved.

*e remainder of the paper is organized as follows:
Section 2 introduces related studies. Section 3 provides an
overview of the framework. Section 4 explains the proposed
methodology. In Section 5, we introduce the datasets.
Section 6 presents the experimental and comparative test
results to verify the effectiveness of the proposed method.
Finally, Section 7 presents the conclusion.

2. Related Work

Research on common malware detection technology can be
divided into static-feature-based and dynamic-feature-based
methods. *e software run time behavior is one of the
dynamic features. However, the dynamic-feature-based
methods discussed in most studies are behavior-based [18].

Studies based on static features are as follows: Kang and
Won [19] proposed a method to extract feature data from
files and detect malware using machine learning. *ey
constructed a malware classification model using multiple

2 Security and Communication Networks

DNN, XGBoost, and Random Forest layers. *ey also an-
alyzed its performance and obtained an accuracy of 96.3%. Li
et al. [15] proposed an incremental malware classification
(IMC) framework and an incremental learning method
based on multiclass support vector machines (SVM), which
improved the classification ability of IMCSVM incremen-
tally by learning new malware samples. Baldangombo et al.
[20] presented a static malware detection system to extract
valuable features of Windows portable executable (PE) files
using the static analysis method.

Behavior-based studies are as follows. Lin et al. [21]
developed an SVM classifier for malware classification based
on the behaviors of malicious software collected in a
sandbox environment. *is method combines feature se-
lection and extraction and significantly reduces the feature
dimension. It is used for training and classification.
Mohaisen et al. [22] proposed a behavior-based automatic
malware analysis and marking (AMAL) system to monitor
the use of malware on the file system, memory, network, and
registry. It creates representative features according to the
above situation and uses them to build a classifier trained by
manually reviewed training samples. *ese classifiers can
classify malware samples into families with similar behavior.
Alazab et al. [23] proposed a method to extract and analyze
the characteristics of API calls automatically, attempting to
analyze and classify the behavior of API function calls
according to the malicious intent hidden in any package
program automatically. Amer and Zelinka [24] presented a
Markov chain-based method for malware detection. *ey
introduced word embedding to understand the contextual
relationships between API functions in the malware call
sequence. Gianni et al. [25] proposed a new algorithm based
on repeated subsequence alignment, which uses association
rules to infer malware behavior. *is method takes ad-
vantage of the probability of conversion of two API calls in
the call sequence. It can operate in the dynamic analysis
scenario of tracking API calls at run time.

Currently, the performance of deep learning has
attracted significant attention in the network security field
[26]. Different from the above machine learning methods,
studies on detection using deep learning methods are as
follows. Hou et al. [27] proposed a dynamic analysis method
based on the component traversal. *ey used the deep
learning framework based on graph features to detect newly
unknown Android malware by constructing weighted di-
rected graphs. Hardy et al. [28] investigated how to design a
deep learning architecture based on the stackable autoen-
coder (SAE) model for intelligent malware detection based
on the extraction of Windows API calls from PE files. *e
experimental results show that, compared with the tradi-
tional shallow learning method, this method can further
improve the overall performance of malware detection.
Kolosnjaji et al. [29] constructed a neural network based on
the convolution and cyclic network layer to obtain the best
features for malware classification. Schofield et al. [30]
proposed a convolutional neural network based on Win-
dows system API calls for malware type classification.
Kolosnjaji et al. [31] implemented a neural network con-
sisting of convolution and feedforward neural structures,

representing a layered feature extraction method that
combines the convolution of instruction sequences with
pure vectorization of features from PE file headers.

Reading the above work on detecting ordinary malware
can bring many suggestions and inspiration to the work in
the APT field. Studies on APT detection are as follows.
Milajerdi et al. [32] presented the Holmes system and
designed a high-level chart to effectively utilize the corre-
lation between suspicious information flows generated
during the attacker’s activities for APT detection. However,
this method requires strong prior knowledge, and it is not
easy to deal with complex and variable attacks in APT. Han
et al. [33] presented the UNICORN system based on the
graph method. *ey summarized the execution of the long-
running system with space efficiency to counter the slow-
motion attack of APT occurring in a long period. *e dis-
advantage is that the attacker might poison the dynamic
modeling at run time. Cao [34] presented a framework for
APT detection, PULSAR. PULSAR uses a probability-
graphic model to infer the temporal evolution of attacks
based on the security events observed at run time. Ghafir
et al. [35] proposed the MLAPT system based on machine
learning, which can accurately and quickly detect APT at-
tacks through alarm correlation. However, its limitation lies
in overreliance on the accuracy of alarms. Narayanan et al.
[36] described a novel cognitive network security system that
takes information from different textual sources and stores it
in a common knowledge graph using terms from an ex-
tended version of a unified network security ontology. *en,
the system deduces the knowledge graph of various coop-
erative agents representing the host and network-based
sensors to reduce the load of the security administrator.
However, due to confidentiality reasons, APTnetwork threat
intelligence from various sources is generally difficult to
obtain [2].

Combine malware detection with APT detection: Han
et al. [2] designed a new APT malware detection and cog-
nition framework, APTMalInsight, to identify and recognize
APTmalware using a system call information and ontology
knowledge. *ey proposed an APT malware detection
method based on dynamic behavior characteristics. First, the
dynamic API sequence is extracted from APT malware.
Second, it calculates the classification contribution of API,
and the API sequence is sorted. Finally, the effective de-
tection and family classification of APTmalware are realized.
However, the method to judge the priority of API is based on
prior knowledge, which may lead to a deviation. Laurenza
et al. [3] relied on the static characteristics of malware and
designed a malware classification framework based on the
concept of isolation forest learning. *ey trained each iso-
lation forest with specific APT samples using only static
features. To solve the problem of malware APTorganization
identification, Chen et al. [4] designed a gene model com-
bined with the knowledge graph of malware behavior. *ey
proposed a genetic similarity algorithm for malware APT
organization identification and revealed the possibility of
using genes to trace malware. Laurenza et al. [7] designed a
sample prioritization method, where the known APT ob-
tained from the public report is used to build a knowledge

Security and Communication Networks 3

base for classification. However, it is limited to using only static
features and cannot be analyzed according to the behavior of
APT malware. Sexton et al. [11] established a classification
based on the similarity between programs and known APT
malicious software subroutines, indicating that malicious
programs and benign programs can share a large number of
codes. *ey used only opcodes as static features, which have
limitations. Mart́ın Liras et al. [8] proposed using the static,
dynamic, and network-related characteristics through the
domain knowledge interpretation and choice, as well as the
well-known machine learning techniques to analyze the dis-
criminability of APT-related malware from generic malware
without any known association to APT. However, the machine
learning classification algorithm model is not active.

3. Methodology

3.1. Detection Framework. Figure 1 shows our detection
framework. *e detection framework consists of a data
analysis module, binary classification model, and multi-
classification model. *e detailed information is as follows.

*e data analysis module is used to test the sample data
for the initial data cleansing and exclude some samples that
do not fall within the scope of the classification task, such as
benign samples. *e function of the dichotomous model is
to classify input samples by the trained model, the classi-
fication category with ordinary malware, and APTmalware
two dimensions. *en, the APTmalware samples output by
the binary classification model are taken as the input of the
multiclassification model. *e probability of each sample
corresponding to each APT family is calculated through the
scoring system, making the detection results more intuitive
and helping to judge the possibility of various APT attacks.
*e details of the training model are described below.

3.2. Training Framework. Figure 2 shows the model training
framework. *e training model process consists of data
preprocessing, feature extraction, string segmentation,
various deep learning algorithms, classifiers, and transfer
learning. *e detailed information is shown as follows.

First, the datasets of the common and APT malware are
collected from public. After obtaining the datasets, data are
cleaned, and the API system call features are extracted. To
better express the meaning of the feature, expand the repre-
sentation space of the feature, and solve the out-of-vocabulary
(OOV) problem, we segment the string corresponding to each
API of each sample to obtain the embedding of the segmented
string. *en, the dynamic long short-term memory (LSTM)
algorithm in the NLP domain is used to obtain the embedding
of each API. After that, the attention algorithm was used to
integrate all API under each sample with weight to obtain the
sample representation vector and map the sample represen-
tation vector to a two-dimensional space to get a two-di-
mensional vector. Finally, the softmax binary classification of
APT and common malware was performed.

Different from the TF-IDF method used in similar work
to examine the priority and weight of features
[2, 3, 7, 8, 10, 11], our feature weight is trained based on the

attention algorithm. *erefore, which API has a greater
impact on the sample classification will be given higher
weight by the model. TF-IDF method is a priority deter-
mination method based on the prior knowledge of human
beings, whose prior knowledge may have cognitive bias. Our
method avoids cognitive bias; however, it makes the model
more interpretable and authentic by calculating the classi-
fication contribution of API.

Based on the binary classification model, we propose a
transfer learning method, which embeds different strings in
the optimal binary training model as the initial embedding of
the corresponding strings in multiple classifications to deal
with the softmax multiple classifications of malware in dif-
ferent APT families. However, the model has a fast conver-
gence speed and strong generalization ability. It also solves the
problem of a small number of APT malware samples.

*e model training framework uses different deep
learning algorithms to complete the binary classification tasks
of APT malware, common malware, and the multi-
classification tasks of the APT malware family to make the
model more active for training and calculate the classification
contribution and weight of API on this basis. *en, it can
obtain the priority and probability of different APT attacks,
making the model more interpretable and persuasive.

Figure 3 shows our network structure diagram.

3.3. Data Preprocessing. After obtaining the initial sample
data, the first task is to preprocess the original dataset. First,
parts of ambiguous data samples are screened manually using
the online malware sample analysis function of VirusTotal,
which is the world’s largest online malicious file analysis
website. It allows 75 kinds of antivirus software to identify the
target samples and report the results, including almost all
antivirus software programs worldwide. Suppose that a
sample is analyzed by the VirusTotal website, and only less
than three antivirus software programs identify the sample as
malware. In that case, we consider the sample to have a high
probability of being benign and exclude it from the dataset. If
there are errors in the data samples in the original dataset, the
model will be troubled during the training. To avoid such a
situation, we choose the data preprocessing method to
minimize the uncertainties in the dataset.

Additionally, after the feature extraction, there is a step
to process the dataset. After completing the feature ex-
traction task, we found that feature sequences were the same
as those of some samples, indicating redundant data in the
dataset. We would only retain one sample with the same
feature sequence. *e number of features in some feature
sequences is small and unrepresentative; thus, we decide to
screen out samples with less than ten features and exclude
them from ensuring that the model can be less affected by
uncertain factors in the training process.

3.4. Feature Extraction and Processing. First, pefile is used to
extract API of the samples; pefile is an open-source project
based on Python. It has the advantages of agile development,
convenience, and quick access to various key data structures
of samples.

4 Security and Communication Networks

We selected API as the characteristics of the samples
because attackers can directly, with the native operating
system application API, interact to perform a behavior. *e
native API provides a kernel, calling the underlying oper-
ating system services controlled, such as those related to
hardware, devices, memory, and service processes. *e
operating system uses these native APIs during boot (when

other system components have not been initialized) and
performs tasks and requests during normal operations. *e
functionality provided by native APIs is often exposed to
user-mode applications through interfaces and libraries.
Higher-level software frameworks (such as Microsoft .NET
and MacOS Cocoa) can be used to interact with native APIs.
Attackers may abuse these native API functions as a means

Data
preprocessing

Feature
extraction

String splitting

Embedding
the sliced

string word

Softmax
classifier

Dynamic LSTM

Dynamic LSTM Attention

Softmax
classifierAttention

Common
Malware

APT
Malware

APT
Family 1

APT
Family 1

APT
Family 1

APT
Family 1

Sample data

string

Transfer learning

sampleAPI

Figure 2: Training framework. *e training framework describes the training process and specific steps of the classification model.

Data analysis module

Dichotomous model

Common Malware APT Malware

Multiple classification
model

APT
Family 1

APT
Family 1

APT
Family 1

APT
Family 1

Sample data

Scoring system

Figure 1: Detection framework. *e main function of the detection framework is to detect the input samples.

Security and Communication Networks 5

of performing a behavior. Similar to command and script
interpreters, the native API and its interface hierarchy
provide a mechanism for interacting with and exploiting the
various components of the victim system. *us, it can be
monitored to identify adversary activity.

To better express the meaning of API and solve the OOV
problem, we performed string segmentation on API and
assigned the same embedding to the same string after
segmentation (Figure 4).

When performing NLP or text processing, we usually
have a vocabulary. *e vocabulary is either preloaded, self-
defined, or extracted from the current dataset. Suppose that
we have another dataset with words that are not in our
current vocabulary. Let us say these words are OOV. In this
study, if an API feature of a sample in the test set does not
appear in the vocabulary of the training data, this problem
will be largely avoided using our approach.

3.5. Classification Algorithm. Embedding converts large
sparse vectors in a low-dimensional space that retains se-
mantic relations, that is, to find a mapping or function to
generate an expression in a new space. Positions (distance and
direction) in the vector space can code the semantics into a
good embedding. In this study, we use a Gaussian distribution
to initialize the embedding randomly.*e reason is that a large
amount of data in this study is sparse, and the embedding can
be well analyzed and understood through embedding.

LSTM is an RNN used to solve the gradient disappearance
and explosion problems in the long sequence training process.
For simplicity, LSTM can perform better in longer sequences

and better understand contextual semantic information and
contextual relationship information than ordinary RNN.*us,
it has a better fit in the experimental environment of this study.

RNN has only one transmission state, whereas LSTM
neurons transmit two pieces of information backward in
time dimension: one cell state and one hidden state. *e
hidden state stores mostly “recent memory.” What is stored
in the cell state is mainly “long-term memory.” Figure 5
shows the structure of LSTM.

*ere are three main phases in the LSTM:

(1) Forget phase.*is phase is about selectively forgetting
the input from the previous node implemented using
the Sigmoid layer known as the “forget gate.” It looks
at previous output and current input and prints out a
number between 0 and 1 for each number in the cell
state (previous state), with 1 representing full reten-
tion and 0 representing total deletion.

ft � σ Wf · ht � 1, xt􏼂 􏼃 + bf􏼐 􏼑. (1)

(2) Choose the memory phase. *e input of this stage is
selectively “memorized.” First, the Sigmoid layer,
known as the “input gate layer,” determines which
values we will update. Next, a tanh layer is used to
create candidate vectors. *en, the two vectors are
combined to create an updated value. Here, ∗ is the
new candidate value. In this study, we add the em-
bedding of a new string to the cell state to replace the
old object forgotten in the previous step by updating
the last state value with the following formula:

Subword
Embedding

Slice
Embedding

Subword
Embedding

Slice
Embedding

Subword
Embedding

Slice
Embedding

API
Embedding

API
Embedding

API
Embedding

Subword
Embedding

Slice
Embedding

API
Embedding

Subword
Embedding

Slice
Embedding

API
Embedding

Subword
Embedding

Slice
Embedding

API
Embedding

File
Embedding Sigmoid/So�max

Dynamic Lstm

Dynamic Lstm

Attention

Figure 3: Network structure diagram. *e deep learning network structure combining dynamic LSTM and attention algorithm is used to
train the classification model.

6 Security and Communication Networks

it � σ Wi · ht − 1, xt􏼂 􏼃 + bi(􏼁,

􏽥ct � tanh Wc · ht−1, xt􏼂 􏼃 + bc(􏼁,

ct � ft ∗ ct−1 + it ∗􏽥ct.

(2)

(3) Output phase. *is phase determines what will be
treated as the output of the current state, first by a
Sigmoid layer, to determine which parts to output,
and then by passing the cell state through the tanh
layer and multiplying it by the Sigmoid layer’s
output:

ot � σ Wo ht−1, xt􏼂 􏼃 + bo(􏼁,

ht � ot ∗ tanh ct(􏼁.
(3)

Compared with ordinary LSTM in this experimental
environment, dynamic LSTM combines the sequence and
semantic information of the string segmented by API into a
vector with fixed dimension size. However, if ordinary
LSTM is used, the calculation will be redundant, and the
filled zeros will be repeatedly calculated, leading to errors in
the results.

*e attention mechanism is a method for solving a
problem by imitating human attention. Simply put, the
attention mechanism is to quickly screen high-value in-
formation from a large amount of information. It is mainly
used to solve the problem that it is difficult to obtain the final
reasonable vector representation when the input sequence of
the LSTM/RNN model is long. *e method is to retain the

intermediate results of LSTM, learn them with the new
model, and correlate them with the output to achieve in-
formation screening.

*e attention principle is to calculate the degree of match
between the current input sequence and output vector. *e
higher the degree of match, the higher the point of attention
and the higher the relative score. *e match weight calcu-
lated from attention is limited only to the current sequence
pair, not the overall weight, such as the weight of the net-
work model. We used attention to combine all APIs under
each file with weights to obtain the representation vector of
each sample.

Our attention function is the dot-product attention. *e
essence of the dot-product attention is to address the op-
eration process (Figure 5). *ere are three vectors, Q, K, and
V, representing Query, Key, and Value, respectively. *ey
are obtained from different linear transformations of the
word embedding result.

query � self · linear query(query),

key � self · linear keys(query),

value � self · linear values(query).

(4)

Given a task-related Query vector, Value can be cal-
culated by calculating the attention distribution of Key and
appending it to Value. *is is a manifestation process of the
attentionmechanism alleviating the complexity of the neural
network model. Figure 5 shows the mechanism of attention
algorithm (Figure 6).

Perform all API attention simultaneously.

GetTokenInformation

LookupPrivilegeValueA

LookupAccountSidA

GetCurrentProcess

OpenProcessToken

Get Token Information

Get Current Process

Open Process Token

Lookup Privilege AValue

Lookup Account ASid

Figure 4: Segmentation of the API system call information. Words with the same color in the figure are given the same embedding.

Ct-1

ht-1

ht

Ct

ht

Xt

X X

tanh σ

tanh

σ σ

X +

Figure 5: Interactive neural network layer in LSTM. LSTM can better solve the problems of gradient disappearance and gradient explosion
in the long sequence training process.

Security and Communication Networks 7

Attention(Q, K, V) � softmax tanh

v1

v2

. . .

vn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗ v
T
1 , v

T
2 , . . . , v

T
n􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∗

v1

v2

. . .

vn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� softmax tanh QK
T

􏼐 􏼑􏼐 􏼑V. (5)

To avoid embedding repeated training features and
speeding up the convergence of multiple classification
models, we use the transfer learning method to generalize
the models better. Transfer learning transfers the parameters
of the trained model (pretrained model) to the new model to
help the training of the new model. Considering that most
data or tasks are correlated, we have a strong correlation
between the characteristics of dichotomies and multi-
classification models. *erefore, through the transfer
learning, we can share the model parameters learned with
the new model to speed up and optimize the learning ef-
ficiency of the model instead of learning from zero, as most
networks do. It also solves the problems of the small number
of samples, small number of features, and difficult fitting for
multiclassification.

In this study, the isomorphic inductive transfer learning
method is adopted to solve the problem of different learning
tasks in the source domain and target domain, as well as the
problem of the same feature dimension and different
distribution.

4. Datasets

We collected datasets from public. We collected 10841
samples of common malware (https://github.com/iosifache/
DikeDataset) belonging to the APT1, APT10, APT19,
APT21, APT28, APT29, APT30, Dark Hotel, Energetic Bear,
Gorgon Group, WinNTI, and other APT organizations and
groups of 11 APT malware samples (https://github.com/
cyber-research/APTMalware) and 3,954 APT malware
samples. APT malware’s provider uses open-source threat
intelligence reports from multiple vendors. A number of
threat intelligence reports were collected, and a hash list of
all files was used as intrusion indicators (IoCs) to obtain
target samples from VirusTotal. Table 1 shows the APT
malware family and sample size.

5. Experimental Results and Discussion

*e whole of the code required for our experiment was
written using the Python PyTorch framework. *e experi-
mental environment was Windows 10 operating system,
Intel(R) Core(TM) i7-4720HQ 2.60GHz processor, 16GB
RAM, and GTX970M graphics card. *e data used in the
experiment were 14795 samples of common malware and
APTmalware samples. For comparison with similar studies,
this experiment uses tenfold cross-validation to evaluate the
effect of the model. *e ratio of the training set to the
validation set is 9 :1. *e training time of onefold is 4 hours
and 30 minutes on average.

5.1. Evaluation Indexes. First, we evaluate the effectiveness
of the binary classificationmodel in classifying APTmalware
from common malware. *en, we evaluate the results of the
APT family classification of the multiclassification model. In
evaluating the dichotomy model, positive and negative
samples are unbalanced; thus, the accuracy rate cannot be
used to evaluate the model. Here, we use the precision rate,
recall rate, and F1-score to evaluate the model. *ese
evaluation indexes are defined as follows.

Here, TP is the number of positive samples predicted to
be positive, TN is the number of negative samples predicted
to be negative, FP is the number of negative samples pre-
dicted to be positive, and FN is the number of positive
samples predicted to be negative.

5.2. Analysis of Experimental Results. We use the tenfold
cross-validation method to evaluate the declassification
model. Each folding training is 50 rounds, a total of tenfold.
*en, the average value is taken to obtain the accuracy rate,
precision rate, recall rate, and F1-score of the model. *e
training process is visualized using the TensorBoard

Query

Attention
Value

Key4

Key1

Key2

Key3

Value1

Value2

Value4

Value3

Figure 6: Overview of the mechanism of attention algorithm.

8 Security and Communication Networks

https://github.com/iosifache/DikeDataset
https://github.com/iosifache/DikeDataset
https://github.com/cyber-research/APTMalware
https://github.com/cyber-research/APTMalware

visualization tool. *e accuracy, precision, recall, and F1-
score are 0.99224, 0.98076, 0.98152, and 0.9811, respectively.
*e training process is shown in Figures 7–10.

*e training accuracy of the multiple classification
models of the APT malware family is shown in Figure 11.

*is study can also sort the API family of the test samples
and calculate the importance of the API in the sample for
classification and the probability of classification into each
APT family. As shown in Figure 12, we choose a sample of
APT21 for testing. We can observe the top 20 most im-
portant APIs that the model considers affecting the classi-
fication of this sample. *e sample was judged to have a
99.94% probability of belonging to APT21. *erefore, the
proposed model can effectively determine the ownership of
malware.

5.3. Contrast Experiment. First, classical machine learning
classification algorithms are used to test the dataset. *e test
results are as follows. *e training results of the proposed
models on this dataset are better than the following machine
learning algorithms: KNN, logistic regression, decision tree,
gradient lifting, AdaBoost, Naive Bayes, linear discriminant
analysis, quadratic discriminant analysis, SVM, and poly-
nomial Bayes. We used ten machine learning algorithms,
among which gradient lifting and decision tree achieved
better results than other algorithms. However, the accuracy
of the gradient lifting algorithm is low, only 0.9282, and the
recall rate of the decision tree is only 0.9079. Additionally,
we test the above algorithm on the multiclassification
datasets, and the effect is generally poor. Table 2 shows the
Binary classification evaluation results of classical machine
learning algorithms.

To better illustrate the influence of the attention method
on the experimental results, we compared the proposed
model with the method without attention. We obtained that
the recall rate and F1 value of the model were lower without
attention (Figure 13).

*is study will also use more classification models
using the transfer learning method to compare. As
shown in Figure 14, if you do not use the transfer
learning model, accuracy will drop by 3% to 4%, and the
training time will be longer. In this contrast experiment,
the precision, recall rate, and F1-score are not weighted
average values.

Compared with the research byHan et al. [2], their research
is also to extract the API characteristics of samples. *e dif-
ference is that they used TF-IDF algorithm to calculate the
weight value of each API and sort the API sequence according
to the classification contribution and selected only some APIs
for model training. However, we use dynamic LSTM and at-
tention to sort the APIs. Besides, they adopted a Random Forest
classification algorithm to classify ordinary malware and APT
malware samples. We reproduced their method and conducted
comparative experiments on their method using our dataset.
Figure 15 shows the comparative experimental results. As
shown in the figure, our method is better than the method of

Table 1: APT malware family and sample quantity list.

Sample name Sample size
APT1 405
APT10 244
APT19 32
APT21 106
APT28 214
APT29 281
APT30 164
Dark Hotel 273
Energetic Bear 132
Gorgon Group 961
WinNTI 387

0.995

0.985

0.975

0.965

0.955

0 5 10 15 20 25 30 35 40 45 50

Figure 7: Accuracy of dichotomous model. *e abscissa represents
the number of iterations, and the ordinate represents the value of
accuracy.

0.98

0.96

0.94

0.92

0 5 10 15 20 25 30 35 40 45 50

Figure 8: Precision of dichotomous models. *e abscissa repre-
sents the number of iterations, and the ordinate represents the
value of precision.

Security and Communication Networks 9

0.98

0.94

0.9

0.86

0 5 10 15 20 25 30 35 40 45 50

Figure 9: Recall rates for dichotomous models. *e abscissa represents the number of iterations, and the ordinate represents the value of
recall rates.

0.99

0.95

0.93

0.91

0.89

0.87

0.97

0 5 10 15 20 25 30 35 40 45 50

Figure 10: F1-score of the dichotomous model. *e abscissa represents the number of iterations, and the ordinate represents the F1-score
value.

0.96

0.92

0.88

0.84

0 40 80 120 160 200

Figure 11: Accuracy of multiple classification models. *e abscissa represents the number of iterations, and the ordinate represents the
value of accuracy.

10 Security and Communication Networks

Figure 12: Feature weight display and classification probability. Top 20 most important APIs affecting sample classification are provided,
and the prediction results are also provided.

Table 2: Binary classification evaluation results of classical machine learning algorithms.

Classification algorithm Accuracy Precision Recall F1
KNN 0.9455 0.9268 0.8333 0.8776
Logistic regression 0.9214 0.8097 0.8026 0.8062
Decision tree 0.9679 0.9324 0.9079 0.92
Gradient boosting 0.9214 0.986 0.9298 0.9571
AdaBoost 0.9282 0.9061 0.7193 0.802
Gaussian NB 0.8045 0.6364 0.2456 0.3544
Linear discriminant analysis 0.9179 0.925 0.6491 0.7629
Quadratic discriminant 0.9161 0.9653 0.6096 0.7473
SVC 0.9473 0.9617 0.7719 0.8564
Multinomial NB 0.3187 0.2102 0.8684 0.3385

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

accuracy precision recall F1

use attention
without attention

Figure 13: Whether the model uses the contrast of attention.

Security and Communication Networks 11

Han et al. *is is because the TF-IDF algorithm examines the
priority or weight of features based on prior human knowledge,
and we pay more attention to the impact of data on model
classification.

*e above experiments show that the proposedmethod can
effectively solve the identification problem of common mal-
ware, APT malware, and the ownership problem of the APT
family, demonstrating that there are similarities and connec-
tions between the attack means of different APT families.

6. Conclusions

To detect and defend against APT attacks and explore the
similarity and connection of attack means of different APT
families, this study proposes an APT malware classification
method by combining multiple deep learning algorithms and
transfer learnings.*e experiment indicates that the proposed
method can achieve 99.2% in distinguishing common mal-
ware from APTmalware and assign APTmalware to different
APT families at an accuracy of 95.5%. *e experimental re-
sults show that the proposed method is helpful for the
classification of the APT malware of different families.

A key issue in the malware ecosystem is its fast evolution
and various problems caused by the evolution [37]; sustain-
ability is an important requirement and performance metric;
without addressing sustainability, proposing malware detec-
tors/classifiers is an endless task lacking substantial scientific
advancement; and the model of this article needs to be con-
tinuously updated, continuously collecting APT malware
samples for iteration, because APT attacks have strong reus-
ability. Whenever new APTmalware is collected, the updated
model can effectively defend against such attacks for a period of
time in the future. *is reflects the lack of continuity, because
iteration cannot be carried out automatically, and there is no
guarantee that the model will not be affected by adversarial
examples. How to ensure the sustainability of the model is our
future research direction.

Data Availability

*e APT malware data in this paper can be obtained free of
charge from https://github.com/cyber-research/APTMalware.
*e commonmalware data in this paper can be obtained free of
charge from https://github.com/iosifache/DikeDataset.

accuracy precision recall F1

use transfer learning
without transfer learning

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 14: Whether to use transfer learning comparison for multiple classifications.

accuracy precision recall F1

method in this paper
method in Weijie Han's paper

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

Figure 15: Contrast experiment with Han et al.’s method.

12 Security and Communication Networks

https://github.com/cyber-research/APTMalware
https://github.com/iosifache/DikeDataset

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by the National Natural Science
Foundation of China under Grant nos. 61772229 and
62072208 and International Science and Technology Co-
operation Projects of Jilin Province under Grant no.
20210402082GH.

References

[1] A. Rot and B. Olszewski, “Advanced persistent threats attacks
in cyberspace. *reats, vulnerabilities, methods of protec-
tion,” in Proceedings of the Position Papers of the 2017 Fed-
erated Conference on Computer Science and Information
Systems, Prague, Czech Republic, September 2017.

[2] W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong, “MalInsight: a
systematic profiling based malware detection framework,”
Journal of Network and Computer Applications, vol. 125,
no. 12, pp. 236–250, Article ID e3884, 2019.

[3] G. Laurenza, R. Lazzeretti, and L. Mazzotti, “Malware triage
for early identification of Advanced Persistent *reat activ-
ities,” Digital 6reats: Research and Practice, vol. 1, no. 3,
pp. 1–17, 2020.

[4] W. ChenX. Helu et al., “Advanced persistent threat organi-
zation identification based on software gene of malware,”
Transactions on Emerging Telecommunications Technologies,
vol. 31, no. 12, Article ID e3884, 2020.

[5] F. Li, A. Lai, and D. Ddl, “Evidence of Advanced Persistent
*reat: a case study of malware for political espionage,” in
Proceedings of the 2011 6th International Conference on
Malicious and Unwanted Software, pp. 102–109, Fajardo, PR,
USA, October 2011.

[6] G. Zhao, K. Xu, L. Xu, and B. Wu, “Detecting APTmalware
infections based on malicious DNS and traffic analysis,” IEEE
Access, vol. 3, pp. 1132–1142, 2015.

[7] G. Laurenza, L. Aniello, R. Lazzeretti, and R. Baldoni,
“Malware triage based on static features and public apt re-
ports,” in Proceedings of the International Conference on Cyber
Security Cryptography and Machine Learning, pp. 288–305,
Springer, Beer-Sheva, Israel, June 2017.

[8] L. F. Mart́ın Liras, A. R. de Soto, and M. A. Prada, “Feature
analysis for data-driven APT-related malware discrimina-
tion,” Computers & Security, vol. 104, no. 1, p. 102202, 2021.

[9] N. Udayakumar, S. Anandaselvi, and T. Subbulakshmi,
“Dynamic malware analysis using machine learning algo-
rithm,” in Proceedings of the 2017 International Conference on
Intelligent Sustainable Systems (ICISS), pp. 795–800, IEEE,
Palladam, India, December 2017.

[10] M. Latah, When Deep Learning Meets Security, 2018, https://
arxiv.org/abs/1807.04739.

[11] J. Sexton, C. Storlie, and B. Anderson, “Subroutine based
detection of APT malware,” Journal of Computer Virology &
Hacking Techniques, vol. 12, no. 4, pp. 1–9, 2015.

[12] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine
learning techniques for malware analysis,” Computers & Se-
curity, vol. 81, no. MAR., pp. 123–147, 2019.

[13] *aiCERT, “*reat group cards: a threat actor encyclopedia,”
TLP: WHITE Version 2. 0, pp. 48-49, 2020, https://www.

thaicert.or.th/downloads/files/*reat_Group_Cards_v2.0.
pdf.

[14] I. Rosenberg, G. Sicard, and E. David, “End-to-End deep
neural networks and transfer learning for automatic analysis
of nation-state malware,” Entropy, vol. 20, no. 5, p. 390, 2018.

[15] J. Li, D. Xue, W. Wu, and J. Wang, “Incremental learning for
malware classification in small datasets,” Security and Com-
munication Networks, vol. 2020, no. 20, 12 pages, Article ID
6309243, 2020.

[16] M. Belaoued and S. Mazouzi, “Statistical study of imported
APIs by PE type malware,” in Proceedings of the 2014 In-
ternational Conference on Advanced Networking Distributed
Systems and Applications, pp. 82–86, Bejaia, Algeria, June
2014.

[17] F. O. Catak and A. F. Yazi, A Benchmark API Call Dataset for
Windows PE Malware Classification 2019, https://arxiv.org/
abs/1905.01999.

[18] M. Al-Kasassbeh, S. Mohammed, M. Alauthman, and
A. Almomani, “Feature selection using a machine learning to
classify a malware,” Handbook of Computer Networks and
Cyber Security, Springer, Cham, pp. 889–904, 2020.

[19] J. Kang and Y. Won, “A study on variant malware detection
techniques using static and dynamic features,” Journal of
Information Processing Systems, vol. 16, no. 4, pp. 882–895,
2020.

[20] U. Baldangombo, N. Jambaljav, and S. J. Horng, “A static
malware detection system using data mining methods,” In-
ternational Journal of Artificial Intelligence & Applications,
vol. 4, no. 4, 2013.

[21] C. T. Lin, N. J. Wang, H. Xiao, and C. Eckert, “Feature se-
lection and extraction for malware classification,” Journal of
Information Science and Engineering, vol. 31, no. 3, pp. 965–
992, 2015.

[22] A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: high-
fidelity, behavior-based automated malware analysis and
classification,” Computers & Security, vol. 52, no. Jul,
pp. 251–266, 2015.

[23] M. Alazab, S. Venkataraman, and P. Watters, “Towards un-
derstanding malware behaviour by the extraction of API
calls,” in Proceedings of the 2nd Cybercrime Trustworthy
Comput. Workshop, pp. 52–59, Ballarat, VIC, Australia, July
2010.

[24] E. A. Amer and I. Zelinka, “A dynamic Windows malware
detection and prediction method based on contextual un-
derstanding of API call sequence,” Computers & Security,
vol. 92, Article ID 101760, 2020.

[25] D. A. Gianni, F. Massimo, and F. Palmieri, “Association rule-
based malware classification using common subsequences of
API calls,” Applied Soft Computing Journal, vol. 105, Article
ID 107234, 2021.

[26] K. Saba and G. Reena, A Survey of Cyber Security Operations
Based on Machine Learning & Deep Learning,” Volume VIII,
Issue II, pp. 168–173, 2019.

[27] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4MalDroid: a deep
learning framework for android malware detection based on
linux kernel system call graphs,” in Proceedings of the 2016
IEEE/WIC/ACM International Conference onWeb Intelligence
Workshops (WIW), pp. 104–111, Omaha, NE, USA, October
2016.

[28] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “DL4MD: a deep
learning framework for intelligent malware detection,” in
Proceedings of the International Conference on Data Mining
(DMIN), page 61. 6e Steering Committee of 6e World

Security and Communication Networks 13

https://arxiv.org/abs/1807.04739
https://arxiv.org/abs/1807.04739
https://www.thaicert.or.th/downloads/files/Threat_Group_Cards_v2.0.pdf
https://www.thaicert.or.th/downloads/files/Threat_Group_Cards_v2.0.pdf
https://www.thaicert.or.th/downloads/files/Threat_Group_Cards_v2.0.pdf
https://arxiv.org/abs/1905.01999
https://arxiv.org/abs/1905.01999

Congress in Computer Science, Computer Engineering and
Applied Computing(WorldComp), Las Vegas, NV, USA, 2016.

[29] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep
learning for classification of malware system call sequences,”
in Proceedings of the AI 2016: Advances in Artificial Intelli-
gence, pp. 137–149, TAS, Australia, December 2016.

[30] M. Schofield, G. Alicioglu, R. Binaco, and P. Turner, “Con-
volutional neural network for malware classification based on
API call sequence,” in Proceedings of the 8th International
Conference on Artificial Intelligence and Applications (AIAP
2021), Sydney, Australia, January 2021.

[31] B. Kolosnjaji, G. Eraisha, G.Webster, A. Zarras, and C. Eckert,
“Empowering convolutional networks for malware classifi-
cation and analysis,” in Proceedings of the 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 3838–3845,
IEEE, Anchorage, AK, USA, May 2017.

[32] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and
V. N. Venkatakrishnan, “HOLMES: real-time APT detection
through correlation of suspicious information flows,” in
Proceedings of the 2019 IEEE Symposium on Security and
Privacy (SP), May 2019.

[33] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer,
UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent 6reats, 2020, https://arxiv.org/abs/2001.01525.

[34] P. Cao, On Preempting Advanced Persistent 6reats Using
Probabilistic Graphical Models, 2019, https://arxiv.org/abs/
1903.08826.

[35] I. Ghafir, M. Hammoudeh, V. Prenosil et al., “Detection of
advanced persistent threat using machine-learning correla-
tion analysis,” Future Generation Computer Systems, vol. 89,
no. DEC, pp. 349–359, 2018.

[36] S. N. Narayanan, A. Ganesan, K. Joshi, T. Oates, A. Joshi, and
T. Fin, “Early detection of cybersecurity threats using col-
laborative cognition,” in Proceedings of the 2018 IEEE 4th
International Conference on Collaboration and Internet
Computing (CIC), October 2018.

[37] G. Suarez-Tangil and G. Stringhini, Eight Years of Rider
Measurement in the Android Malware Ecosystem: Evolution
and Lessons Learned, 2018, https://arxiv.org/abs/1801.08115.

14 Security and Communication Networks

https://arxiv.org/abs/2001.01525
https://arxiv.org/abs/1903.08826
https://arxiv.org/abs/1903.08826
https://arxiv.org/abs/1801.08115

