
Research Article
LightSEEN: Real-Time Unknown Traffic Discovery via
Lightweight Siamese Networks

Ji Li ,1 Chunxiang Gu ,1,2 Fushan Wei ,1 Xieli Zhang,1 Xinyi Hu ,1 Jiaxing Guo ,1

and Wenfen Liu 3

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China
2Henen Key Laboratory of Network Cryptography Technology, Zhengzhou 450001, China
3School of Computer Science and Information Security, Guangxi Key Laboratory of Cryptogpraphy and Information Security,
Guilin University of Electronic Technology, Guilin, Guangxi 541004, China

Correspondence should be addressed to Chunxiang Gu; gcx5209@126.com

Received 2 July 2021; Accepted 30 September 2021; Published 18 October 2021

Academic Editor: Weiwei Liu

Copyright © 2021 Ji Li et al. +is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the increase in the proportion of encrypted network traffic, encrypted traffic identification (ETI) is becoming a critical
research topic for network management and security. At present, ETI under closed world assumption has been adequately
studied. However, when the models are applied to the realistic environment, they will face unknown traffic identification
challenges and model efficiency requirements. Considering these problems, in this paper, we propose a lightweight unknown
traffic discovery model LightSEEN for open-world traffic classification and model update under practical conditions. +e
overall structure of LightSEEN is based on the Siamese network, which takes three simplified packet feature vectors as input on
one side, uses the multihead attention mechanism to parallelly capture the interactions among packets, and adopts techniques
including 1D-CNN and ResNet to promote the extraction of deep-level flow features and the convergence speed of the network.
+e effectiveness and efficiency of the proposed model are evaluated on two public data sets. +e results show that the ef-
fectiveness of LightSEEN is overall at the same level as the state-of-the-art method and LightSEEN has even better true
detection rate, but the parameter used in LightSEEN is 0.51% of the baseline and its average training time is 37.9% of
the baseline.

1. Introduction

Network traffic identification refers to classifying net-
work traffic into different sets by observing its charac-
teristics according to specific targets, which is the focus of
network behaviour analysis, network planning and
construction, network anomaly detection, and network
traffic model research [1]. In recent years, with the rapid
development of network technology and the widespread
use of encryption technology in the network, the amount
of encrypted network traffic has gained a fierce increase,
and the issue of encrypted traffic identification (ETI) has
attracted wide attention from researchers.

Currently, ETI in closed environments has been amply
studied. However, for the application in an open-world

environment, there are more practical problems to be
considered, including the challenge of unknown traffic
discovery and model efficiency.

To be deployable to practical applications, an ETI model
needs to discover unknown classes of traffic that were not
anticipated in the training phase. However, most of the existing
models are based on the closed-world assumption, which
means that the training dataset is assumed to contain all the
traffic classes in themodel deployment environment. However,
such assumption cannot be held inmany practical applications.
Consequently, the classifier trained with a closed set is easy to
classify the samples from an unknown class to some class in the
training setmistakenly. To solve this problem, researchers try to
develop models supporting both known class sample classifi-
cation and unknown class sample discovery.

Hindawi
Security and Communication Networks
Volume 2021, Article ID 8267298, 12 pages
https://doi.org/10.1155/2021/8267298

mailto:gcx5209@126.com
https://orcid.org/0000-0001-7439-782X
https://orcid.org/0000-0003-3860-1939
https://orcid.org/0000-0003-2790-7254
https://orcid.org/0000-0002-5846-1454
https://orcid.org/0000-0001-8668-9264
https://orcid.org/0000-0001-5601-8347
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8267298

Recently, a model named SEEN is proposed for un-
known traffic discovery [2], which applies the Siamese
network in the ETI area for the first time. SEEN can classify
known traffic into the correct classes and distinguish un-
known traffic. However, the traffic features that SEEN uses
are relatively rough, and the network structure of SEEN is
rather complicated, which limits its practical application.

Many ETI models with high classification accuracy use
complex neural network structures, and some use models
with a low degree of parallelism (e.g., RNN). +ese models
have strong feature extraction ability, but they need a large
amount of training data. Moreover, the efficiency of these
models is not high enough, and the model update is com-
plex, whichmakes it barely able to deal with the complex and
changeable network environment.

In this paper, we focus on improving the real-time
performance and flexibility of unknown traffic discovery.
Inspired by SEEN and Transformer [3], we try to design
appropriate inputs and neural networks for reducing the
space and time complexity of our task. More precisely, the
contribution of this paper includes the following:

(1) We put forward a lightweight model LightSEEN for
unknown traffic discovery. To the best of our
knowledge, there are few lightweight deep learning
methods in this area. +e overall structure of
LightSEEN is a Siamese network, and we use the
multihead attention mechanism to capture the as-
sociations between packets and promote the degree
of parallelism. Meanwhile, 1D-CNN is introduced
for further feature extraction and integration, and we
reuse part of the network structure to reduce pa-
rameter amount.

(2) We design compact packet-level features as the
network input, meaning that only the most infor-
mative field information and a small amount of
payload are selected. In addition, to reduce the
quality and length requirements of the packet
stream, we try to shrink the number of packets used.

(3) We analyse the efficiency and effectiveness of
LightSEEN with abundant experiments on two
public datasets. In the model, techniques including
ResNet and layer normalization are used to increase
the convergence speed of the model and avoid it
from degradation. Experimental results show that
the effectiveness of LightSEEN is overall at the same
level as SEEN, whereas the parameter number of the
former is 0.51% of the latter, and the average training
time of the former is 37.9% of the latter.

+e rest of this paper is organized as follows. In Section
2, we review the related work on unknown traffic discovery.
In Section 3, we introduce the problem definition and the
architecture of the Siamese network. +e LightSEEN is
presented in Section 4, followed by the corresponding
analysis. In Section 5, we evaluate the efficiency and effec-
tiveness of LightSEEN by conducting comparative experi-
ments on two data sets. Finally, we conclude this paper in
Section 6.

2. Related Work

In this section, under the background of encrypted traffic
analysis, we briefly introduce the machine learning methods
used to discover unknown traffic, which includes conven-
tional machine learning methods and deep learning
methods.

2.1. Conventional Machine Learning Methods. Firstly, we
introduce the conventional machine learning methods for
unknown traffic discovery briefly, mainly including semi-
supervised and unsupervised methods.

Since under most circumstances, labeled samples are
insufficient while unknown flows are sufficient, many
existing results on unknown traffic identification use sem-
isupervised methods. In 2007, Erman et al. [4] firstly pro-
posed a semisupervised classification method for traffic
classification, in which the labeled training data was used to
solve the problem of mapping from flow clusters to actual
classes; thus, it could be used to classify known and un-
known applications. In its subsequent work, Zhang et al. [5]
proposed a robust statistical traffic classification (RTC)
solution on the basis of [4] by combining supervised and
unsupervised machine learning technology to solve the
unknown Zero-Day application challenge in traffic classi-
fication. +is method can identify the Zero-Day application
traffic and accurately distinguish the applications of pre-
defined classes, and its effectiveness was verified by com-
parative experiments. In the same year, Lin et al. [6]
proposed UPCSS to detect unknown protocols, which was
based on flow correlation and semisupervised clustering
ensemble learning. Similarly, Ran et al. [7] proposed a
semisupervised learning system for adaptive traffic classi-
fication in 2017, which adopted techniques including iter-
ative semisupervised k-means and dynamically adding
centers to select the optimal parameters and achieved high
accuracy.

Considering that traffic data of known classes only ac-
counts for a small part of the massive network traffic, re-
searchers also try to extract unknown features from
unlabeled data, namely, using unsupervised learning
methods in network classification. Mapping the extracted
clusters to classes is the main challenge in implementing
these methods. In 2009, Este et al. [8] proposed a method
based on SVM to solve multiclass classification problem,
applied it to traffic classification, and carried out simple
optimization, making the classifier trained with a small
number of hundreds of samples classify traffic from different
topological points on the Internet with high accuracy.
Likewise, in 2018, Fu et al. [9] also proposed the FlowCop
method based on multiple one-class classifiers, which could
not only identify predefined traffic, but also detect undefined
traffic with selected prominent features for each one-class
classifier. Both of the solutions in [8, 9] are based on the
method of multiple one-class classifiers, but the binary
classifiers for each class in this method are heuristics.
Moreover, this method relies on a predefined distance
threshold, which may lead to unsatisfactory results. In 2019,

2 Security and Communication Networks

Le et al. [10] discussed the extent to which the self-orga-
nizing map (SOM) could be applied to network traffic
analysis and malicious behaviors detection in practice.
Experiment results showed that the approach could identify
malicious behaviors both on network and service datasets
used, and that it was also beneficial for security management
with visualization capabilities for network/service data
analytics.

+e conventional machine learning methods have rel-
atively low time and space cost, and they have scored some
achievements in unknown traffic discovery. However, they
suffer from a high dependence on expert experience for
feature selection, which makes it laborious to build the
models and limits their performance.

2.2. Deep LearningMethods. With the rapid development of
deep learning and its wide application in various fields, many
researchers have applied deep learning to unknown traffic
identification.

In 2017, Ma et al. [11] used a CNN model to identify
protocols in the complex network environment according
to the protocol type of the application layer. Experiments
showed that, in the payload information of about 200,000
traffic flows, the accuracy of identifying unknown protocol
traffic was 86.05%. In 2019, Zhang et al. [12] proposed a
method, DePCK, for identifying unknown traffic, which
could divide the mixed unknown traffic into multiple
clusters. Each cluster contained only one application traffic
as much as possible, thus improving the clustering purity.
+is method uses a deep autoencoder to extract features
from traffic and then lets flow correlation guide the process
of pair-constrained k-means. In the same year, Zhu et al.
[13] proposed a method using deep neural networks to
select appropriate protocol flow statistical features with the
help of known application layer protocols. +ey then used
an improved semisupervised clustering algorithm to divide
the protocols into different sets, achieving unknown pro-
tocol classification. In 2020, Wang et al. [14] proposed a
CNN model for unknown protocol syntax analysis
according to the characteristics of the bit-flow protocol
data format. +e model preprocesses the protocol data to
obtain the image format data suitable for CNN and then
lets CNN process the image data to obtain the prediction
results of the unknown protocol. Besides, Zhang et al. [15]
studied how extreme value theory (EVT) could be utilized
in unknown network attack detection systems and brought
out a network intrusion detection method. By fitting the
activation of the known class to the Weibull distribution,
the open-CNN model was constructed to estimate the
pseudo-probability of the unknown class from the acti-
vation score of the known class to achieve the purpose of
detecting unknown attacks. In addition, Yang et al. [16]
proposed a transfer learning method using deep adaptation
networks (DAN). +is method first trains a CNN model on
the unlabeled data set with sampling time-series features,
then jointly trains the extended version of the model on the
labeled and unlabeled samples, uses labeled samples of
known traffic to improve the clustering purity of unknown

traffic. +is method achieves a purity of 98.23% on two
published data sets.

Most of the above works need prior knowledge of un-
labeled traffic, leading to their insufficient capability of fine-
grained identification of unknown traffic. To fix this prob-
lem, Chen et al. [2] firstly applied the Siamese network to
unknown traffic discovery. +eir method, SEEN, can classify
known traffic into correct classes and distinguish unknown
traffic. However, the rough traffic features that SEEN uses
and its bloated network structure make it not suitable for a
realistic environment. Compared with SEEN, the method in
this paper uses simplified input and a carefully designed
lightweight network, which makes it more practical.

3. Preliminaries

In this section, we briefly review the preliminaries used in
our model, including the definition of unknown traffic
discovery and the work process of the Siamese network.

3.1. Problem Definition. Encrypted traffic identification re-
fers to using rules or models to give traffic samples correct
labels. It can be conducted with multiple granularities, in-
cluding packet, flow, and host level [17]. In this paper, we
focus on bidirectional flow analysis. A bidirectional flow is
composed of all packets with the same quintuple values, that
is, source IP, source port, destination IP, destination port
and transport layer protocol, in which the source and
destination are interchangeable [18]. For a flow fi con-
taining N packets, it can be expressed as shown in equation
(1). Typically, a model for traffic identification is trained with
labeled flow data firstly, and the trained model is used to
classify flow samples without label into classes correctly. In
particular, the model may face the unknown traffic discovery
problem in practice.

fi � p
i
1, . . . , p

i
N􏽮 􏽯. (1)

Unknown traffic discovery requires a classifier to reject a
flow from classes unseen during training rather than
assigning it an incorrect label [19]. Given a training set
Dtrain � (f1, y1), . . . , (fn, yn)􏼈 􏼉, where fi is the ith flow
sample and yi ∈ ΩK � CK

i , i � 1, . . . , P􏼈 􏼉 is its corresponding
class label, the goal is to learn a classifierA that can not only
classify the samples from known classes correctly but also
categorize samples from unknown classes as unknown. For a
test sample f∗, whose actual class label is y∗, the ideal effect
of A is shown in the following equation:

A f∗(􏼁 �
y∗, if y∗ ∈ Ω

K
,

unknown, if y∗ ∉ Ω
K

.

⎧⎨

⎩ (2)

3.2. Siamese Network. Siamese neural network is a class of
network architectures that consists of two (or more) identical
subnetworks. +e subnetworks have the same structure with
the same parameters and shared weights, which are syn-
chronously updated. A loss function connect them at the end,
which computes a similarity metric based on the Euclidean

Security and Communication Networks 3

distance between the feature representations produced by the
subnetworks. A commonly used loss function in the Siamese
network is the contrastive loss [20] defined as follows:

L x1, x2, y(􏼁 � α(1 − y)D
2
w + βymax 0, m − Dw(􏼁

2
, (3)

where x1 and x2 are two samples, y is a binary label denoting
whether the two samples are of the same class or not, α and β
are constants, and m is the margin.
Dw � ‖f(x1; w1) − f(x2; w2)‖2 is the Euclidean distance in
the embedded feature space, f is an embedding function
mapping a sample to the feature space via neural networks,
and w1 andw2 are the learned networks weights.

Siamese network aims to let the loss function bring the
output feature vectors of similar inputs closer and push
those of dissimilar inputs away.+en, to decide if two inputs
belong to the same class, one needs to determine a threshold
value on the feature vector distance. If the distance between
the two inputs is smaller than the threshold, they are treated
as similar samples or from the same class. Otherwise, they
are judged as from different classes.

4. The Lightweight Model for Unknown
Traffic Discovery

In this section, we introduce the lightweight model for
unknown traffic discovery we proposed, and Figure 1 dis-
plays the structure of the model. Besides, we illustrate the
details of model training, model validation, model test, and
system update and also analyse the space and time com-
plexity of the model.

4.1. Model Structure. As mentioned in Section 3.2, the Si-
amese network is generally composed of two identical
subnetworks, which are joined by the margin-based loss
function at the end.+erefore, we only need to introduce the
structure of one subnetwork to make the composition of the
whole model clear.

In general, the subnetwork structure here consists of four
parts, that is, preprocessing, feature embedding, attention
module, and dense layer. Moreover, we will explain each part
in detail.

Preprocessing: the purpose of preprocessing is to extract
valuable packet information as features. For a raw PCAP file,
the packets in it can be combined into flows according to the
quintuple. +en, the flow can be preprocessed by extracting
its packet features, which are carefully designed for the
lightweight traffic analysis task.

Considering our lightweight detection task, we choose
features as lean as possible. In detail, firstly, the three-way
handshake is skipped since it can barely provide infor-
mation for traffic classification. Besides, only the first N � 3
packets are picked to get features, which are most likely to
disclose useful information. For each packet, S � 5 fields of
features are concerned, namely, position, timestamp, di-
rection, key flags in IP and TCP header, and packet pay-
load, and the details and meanings of the features are as
follows.

(1) Position (one dimension): it is the sequence number
of a packet in a flow, which provides order
information.

(2) Timestamp (one dimension): it marks the arrival
time of a packet, which provides temporal
information.

(3) Direction (two dimensions): a bidirectional flow
includes packets of two directions, namely, from
source to destination and the reverse direction,
which can be represented as [0,1] and [1,0].

(4) Key flags in IP and TCP header (nine dimensions):
the key flags include ip_len, ip_off, ip_ttl, PSH, URG,
th_seq, th_urp, and th_win.+e ip_len means packet
length, the ip_off means fragment offset, the ip_ttl
stands for Time to Live, the PSH indicates the data
transmission pattern, the URG means urgent data,
the th_seq means the relative sequence, the th_urp is
the urgent data offset, and the th_win means the
window size. Other flags are abandoned since they
do not contribute to the task.

(5) Packet payload (77 dimensions): if the payload is less
than 77 bytes, it will be completed with zero bytes
and conversely truncated to 77 bytes.

4.1.1. Feature Embedding. +e embedding layer converts the
raw packet features into packet vectors that can be better
analysed by the neural networks. Since we have multiple
features with different dimensions, how to integrate them is
worth studying, and there are a wide range of choices. A
recent work on this is [21], in which a method of unifying
different kinds of features’ dimensions was proposed. Be-
sides, feature fusion can also be achieved by neural networks.
However, in this work, to reduce model complexity and
promote efficiency, we choose to concatenate the raw fea-
tures directly as a simple embedding. Let xi, i � 1, . . . , S􏼈 􏼉

denote the raw features obtained from preprocessing and
pi, i � 1, . . . , N􏼈 􏼉 denote the packet vectors generated by
feature embedding; then, we have

pi � x1, . . . , xS􏼈 􏼉, i � 1, . . . , M. (4)

+en, the packet vector pi has a dimension of dp � 90,
and pi, i � 1, . . . , N􏼈 􏼉 will be the input of the attention
module, which has a dimension of d � Ndp � 270.

4.1.2. Attention Module. +e structures of the attention
module and dense layer are shown in Figure 2. +e design of
the attention module is partly derived from the Transformer
encoder, and we adjust the network to support lightweight
unknown discovery. In brief, we leverage the multihead
attention mechanism to capture the interactions between
different packets, reuse the basic block, and introduce 1-
dimensional CNN (1D-CNN) to accumulate information
and decrease the scale of network parameters.

+e attention module mainly consists of three compo-
nents, namely, (1) multihead attention, (2) add & norm, and
(3) 1D-CNN, which will be explained in detail.

4 Security and Communication Networks

(1) Multihead Attention. +e function of multihead attention
is to jointly collect deep-level information of the input from
multiple representation subspaces. We use packet k as an
example to explain how the information delivered and or-
ganized efficiently to produce a new packet vector with deep-
level features. +e number of heads is denoted by H, so the

attention head h ∈ 1, . . . , H{ }. Let σh(·, ·) denote the rela-
tionship between two packets, and αh

k,l denote the attention
weight between packet k and l; then,

αh
k,l �

σh pk, pl(􏼁

􏽐
N
i�1 σ

h pk, pi(􏼁
. (5)

σh(·, ·) can be achieved by inner product or a neural
network, and we choose inner product for better efficiency;
hence,

σh pk,pl(􏼁 �〈Qhpk, K
hpl〉, Q

h
, K

h ∈ Rd′×d
, (6)

where Qh and Kh are transformation matrices mapping the
packet vector from original space Rd into a new space Rd′.
+en, the representation of packet k of head h is

􏽢phk � 􏽘
N

i�1
αh

k,i V
hpi􏼐 􏼑, V

h ∈ Rd′×d
. (7)

And, the packet vector in new space can be obtained by
concatenating the 􏽢phk of all heads:

􏽢pk � Concat 􏽢p1k, . . . , 􏽢pHk􏼐 􏼑. (8)

On the whole, the multihead attention mechanism up-
dates the representation of all packets with the idea of
weighted summation. For each packet, the weight is gen-
erated from its association with all the other packets in
parallel, resulting in much fewer parameters and a much
shorter running time. Besides, a packet is projected into
different subspaces for capturing multiview feature associ-
ations. Since the computation of all the heads is also par-
allelized, it benefits for speeding up the model.

(2) Add &Norm. +e add & norm part uses ResNet and layer
normalization for avoiding network degradation and faster
training. It has been discussed that the ResNet can make it

Flow A

...

...

...

Preprocessing Feature
Embedding

Attention
Module

Dense
Layer

Packet Feature

Flow B

...

...

...Preprocessing
Feature

Embedding
Attention
Module

Dense
Layer

Packet Feature

Shared weight

Flow Feature

Margin Based
Loss

Flow Feature

Figure 1: +e mode structure of LightSEEN.

...

Add & Norm

1D Conv

Multi-Head Attention

Add & Norm

Flatten

Dense Layer

2X

Figure 2: +e construct of the attention module and the dense
layer.

Security and Communication Networks 5

easier for information to flow between layers, including
providing feature reuse in forward propagation and allevi-
ating gradient signal disappearance in back propagation
[22]. +e effect of the ResNet on the representations of
packet k can be expressed as

pk � ReLU 􏽢pk + Wrespk(􏼁, (9)

where Wres ∈ Rd×d is a transformation matrix and ReLU is
an activation function.

+e subsequent layer normalization technique can
normalize the distributions of mid-tier layers, making
gradients smoother and generalization better.

(3) 1D-CNN. +e 1D-CNN part is designed for further
mining the hidden patterns contained by the packet rep-
resentation obtained from previous layers. Besides, com-
pared with the fully connected network, CNN needs much
fewer parameters. Specifically, the kernel size of the 1D-
CNN layer is d and the channel number r � d, making the
input and output dimensions consistent.

+e output of 1D-CNN will be the input of another add
& norm layer, and a basic block is composed of multihead
attention, 1D-CNN and 2 add & norm layers, as is shown in
Figure 2. +e basic block is reused T � 2 times for a better
balance between effectiveness and efficiency.

4.1.3. Dense Layer. Let 􏽥pi, i � 1, . . . , N􏼈 􏼉 denote the output
of the whole attention module, which will be concatenated
into a vector 􏽥f as flow representation, shown in equation
(10). +en, 􏽥f will be fed into the dense layer, as equation (11)
shows, and the output vector f with length L will be the final
flow vector.

􏽥f � Concat 􏽥p1, . . . , 􏽥pN(􏼁, (10)

f � ReLU WD
􏽥f + b􏼐 􏼑, WD ∈ R

L×N d
. (11)

4.2. Model Training and Validation

4.2.1. Model Training. +e model training means using
labeled samples to train the Siamese network, and the first
step is the pairwise dataset generation. Different from other
networks, the input of the Siamese network is a pair of flows
rather than a single data. +erefore, it is necessary to choose
data from the labeled known class dataset to construct a new
dataset containing positive and negative pairs. To be specific,
a positive pair, which is labeled as 0, is a pair of flows that
belong to the same class, and a negative pair with label 1
contains flows from different classes. To avoid the influence
of imbalanced data, the ratio of positive to negative pairs is
about 1 :1. +e model will learn a metric to tell similar and
dissimilar pairs apart through these positive and negative
samples.

Given a pair of flows fi and fj, the true label of the pair
is denoted by lt. Let xi and xj denote the corresponding raw
flow features input to the network, and vi and vj denote the
output of the network. +e function of the network can be

represented as FL(x; θ), where θ denotes the parameters;
then, we have vi � FL(xi; θ) and vj � FL(xj; θ). +e distance
between fi and fj, denoted by Di,j, can be calculated as
follows:

Di,j � D FL xi; θ(􏼁, FL xj; θ􏼐 􏼑􏼐 􏼑 � 􏽘
z

viz − vjz􏼐 􏼑
2⎡⎣ ⎤⎦

1/2

.

(12)

With the pairwise dataset generated and the hyper-
parameter margin m set, the model can be trained for the
binary classification problem. +e margin-based loss func-
tion is shown in Section 3.2, which encourages positive pairs
to be close together in the space of network mapping while
pushing negative pairs apart. Let α � β � 1/2; the loss
function for our model training is shown as follows:

L xi, xj, lt􏼐 􏼑 �
1
2

1 − lt(􏼁D
2
i,j +

1
2
lt max 0, m − Di,j􏼐 􏼑

2
. (13)

4.2.2. Model Validation. +e model validation means vali-
dating that the model can differentiate the positive and
negative pairs with high accuracy. +e positive and negative
pairs are also generated from known classes. However, it is
suggested that the pairs for validation should be avoided
from overlapping with those in the training process. An
appropriate method is generating a group of nonredundant
pairs from the known classes and splitting the group into
training and validation datasets. Besides, a threshold t

should be determined through experience or attempts. Let lt
denote the true label of a pair and lp denote the predicted
label. If the Euclidean distance Di,j of a flow pair (fi, fj) is
beyond the threshold, then the predicted label is lp � 1;
namely, the pair is judged as negative. Otherwise, the pair is
judged as positive with the predicted label lp � 0, as is shown
in equation (14).+en, we can compare lt and lp of each pair,
if they are the same, the judgment of the model is correct.
+e model validation can be used to validate the training
result of the model and adjust the value of t and even the
margin.

lp �
1, if Di,j > t,

0, otherwise.
􏼨 (14)

4.3. Model Test and System Update

4.3.1. Model Test. Model test means using the trained
LightSEEN model for traffic classification and unknown
discovery; that is, it should not only classify the flows from
known classes correctly but also detect flows from unknown
classes. For a flowf, the actual label of f is denoted byΦ(f),
and its predicted label is denoted by φ(f). Recall that ΩK is
the set of known classes labels; then, the known flow dataset
can be expressed by OK

f in equation (15). +e defined dis-
tance between flows is not enough for the task, a distance
between a test flow sample f∗ and a known class CK

i must be
defined. We use the same distance as [2] uses, which is

6 Security and Communication Networks

defined as the average distance between the test sample f∗

and q samples fij, j � 1, . . . , q􏽮 􏽯 randomly chosen from
the class CK

i . +e calculation of the sample-class distance is
expressed by equation (16). +en, there is a known class CK

∗
which is the closest to f∗; let Df∗ denote the distance. If Df∗

is not larger than the preset threshold t, it is decided that f∗

belongs to CK
∗ . Otherwise, f∗ belongs to no known class;

namely, its class is unknown. +e model test algorithm is
shown in Algorithm 1.

O
K
f � f|Φ(f) ∈ ΩK

� C
K
1 , . . . , C

K
P􏽮 􏽯􏽮 􏽯, (15)

D f
∗
, C

K
i􏼐 􏼑 �

1
q

􏽘

q

j�1
D f
∗
, fj􏼐 􏼑,Φ fj􏼐 􏼑 � C

K
i , j � 1, . . . , q.

(16)

+emodel test dataset is made up equally of flow samples
from known and unknown classes, and the related metrics
will be introduced in Section 5.1.

4.3.2. System Update. To update the system, an unsuper-
vised framework should be leveraged to divide the detected
unknown traffic into multiple clusters, which can be used as
a supplement to known classes. +e trained network can be
used as an encoder to convert the original flow data to high-
level feature vectors, which can be clustered by existing
algorithms like k-means. After that, the clusters are iden-
tified through manually labeling and used to complement
the system’s identification area. For instance, if we want to
add a new class C∗ to the known classes, we only need to use
samples from C∗ and known classes to generate positive and
negative pairs, with at least one sample from C∗ in each pair.
+en, we use the generated pairs to retrain themodel, and we
get a model for P + 1 known classes.

4.4. Space and Time Complexity Analysis. For deep learning
models, the space complexity is related to its parameter
amount, and the time complexity depends on its inner
structure. Table 1 shows the space and time complexity of
LightSEEN, and the corresponding analysis is as follows.

4.4.1. Space Complexity. In our method, there is no pa-
rameter in the embedding layer. For the attention module,
the parameters are mainly in the weight matrices, and the
scale is about T × Qh, Kh, Vh,Wres,W1D−CNN􏼈 􏼉, which is
O(THdd′ + Tdr). +e parameter scale of the dense layer is
O(NdL). +erefore, the total space complexity is
O(THdd′ + Tdr + NdL).

4.4.2. Time Complexity. In the attention module, for each
head, the time cost for attention weight calculation is
O(Ndd′ + N2d′) and that for combinatorial feature for-
mulation is O(N2dd′). Besides, the time complexity of the
add & norm, 1D-CNN, and dense layer are O(Hdd′),
O(Nd2r), and O(NdL), respectively. Considering that the

attention module reuse T times, the total space complexity is
O(Tdd′(H + N2) + TNd2r + NdL).

5. Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency of
LightSEEN. Since LightSEEN is built to enhance the real-
time performance and flexibility of deep learning based
unknown traffic discovery, we mainly compare the Light-
SEEN method with SEEN [2].

5.1. Experiment Setup

5.1.1. Datasets and Partition Strategy. We tested the per-
formance of LightSEEN on two extensively used public
traffic datasets, namely, USTC-TFC2016 [23] and
ISCXVPN2016 [24]. As is shown in Table 2, USTC-TFC2016
contains 20 classes of traffic, of which half are malware traffic
classes. +e ISCXVPN2016 dataset includes seven classes of
regular encrypted traffic and seven classes of traffic through
the VPN encrypted tunnel, and we use 12 of them to conduct
experiments.

+e partition strategy for known and unknown sets is the
same as that in [2], namely, some classes are manually set as
unknown classes, including three malware classes and three
normal classes traffic from USTC-TFC2016, two VPN
classes, and two non-VPN classes from ISCXVPN2016.

Experiment Environment and Details: as for the ex-
periment environment, we used PyTorch 1.8 to implement
the structure of LightSEEN. Note that the training and
testing processes were performed on a Linux machine
(Ubuntu 16.04 LTS) with 32GB RAM andGeForce Gtx1080.
+e training process is guided by minimizing the contrastive
loss, and we take the Adam optimizer with β1 � 0.9 and
β2 � 0.999. +e parameters of LightSEEN are shown in
Table 3. +e dropout strategy is applied with a keep pro-
portion of 0.9 for themultihead attention part and 0.6 for the
dense layer. +e learning rate is 0.0002, and batch size in
model training is 128. For the balance of efficiency and
effectiveness, we set the margin m � 6 for USTC-TFC2016
and m � 12 for ISCXVPN2016.

5.1.2. Evaluation Metrics. +e performance of LightSEEN
mainly includes the efficiency and effectiveness of unknown
discovery. To evaluate its efficiency, we count the training
and test time per 100 batches, and the average training and
test time are used as evaluation metrics. As to its effec-
tiveness, four evaluation metrics are used [25]: purity rate
(PR), accuracy (Acc), false detection rate (FDR), and true
detection rate (TDR). To illustrate the metrics, some other
symbols are defined. KP (known positive) denotes the
number of the known class flows correctly identified, KN

(known negative) denotes the number of the known class
flows mistaken for other known classes, UP (unknown
positive) denotes the number of unknown class flows de-
tected, and UN (unknown negative) denotes the number of
unknown flows wrongly classified as known. +en, the
metrics can be computed with these statistics as follows.

Security and Communication Networks 7

From the equations, it is easy to see that the solution with
high PR, Acc, and TDR and low FDR has favorable
performance.

PR �
KP + UP

KP + KN + KU + UP + UN
,

Acc �
KP

KP + KN + KU
,

FDR �
KU

KP + KN + KU
,

TDR �
UP

UP + UN
.

(17)

Besides, the clustering purity (CP) is used to evaluate the
performance of LightSEEN as a feature extractor, which will
be explained in detail in Section 5.5. +e definition of
Clustering Purity is shown in equation (18), where |D| is the
number of samples, Ω � wi, i � 1, . . . , K􏼈 􏼉 is the set of
clusters, and C � ci, j � 1, . . . , J􏼈 􏼉 is the set of classes.

CP(Ω, C) �
1

|D|
􏽘

i�1,...,K

maxj�1,...,J wi ∩ cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (18)

5.2. Selection of Hyperparameters. +ere are two hyper-
parameters that are not used in model training but indis-
pensable for unknown traffic discovery (i.e., k (the number
of compared samples from each class to calculate class
average distance) and t (the threshold for determining
whether the test sample belongs to a certain class)). To obtain
the reasonable range of t, we use the trained model to predict
pairwise Euclidean distances of the two datasets and display
the corresponding histograms in the range [0, 7] in Figure 3.
We set green bars for positive pairs and orange bars for
negative pairs. It can be seen that the distances of positive
pairs are close to 0, and those of negative pairs are mostly far
from 0. +e coincided field of green and orange bars mainly
lies in [0,1.5] for USTC-TFC2016 and [0.5, 2.5] for
ISCXVPN2016; thus, we choose t � 1.2 for USTC-TFC2016
and t � 2.1 for ISCXVPN2016. As to the number of samples
k, experiments show that its influence on the performance of
LightSEEN is small. +erefore, we adopt the same setting as
[2] for the convenience of comparison between LightSEEN
and SEEN, meaning that we set k � 10 for both datasets.

5.3. Effectiveness Analysis. To observe the effectiveness of
LightSEEN under different situations, we change the per-
centage of unknown classes in the model test procedure
from 10% to 50% and compare different models’ perfor-
mance. Figures 4 and 5 show the result comparison among
LightSEEN, SEEN, and a one-class SVM method [8] on the
USTC-TFC2016 and ISCXVPN2016 datasets, respectively.
We set the green bars for LightSEEN, orange bars for SEEN,
and blue bars for one-class SVM. It can be seen that the
comparative advantages among the three methods are
similar on the two datasets.

Table 1: Space and time complexity of the proposed model.

Layer Space complexity Time complexity
Attention module O(THdd′ + Tdr) O(T(N2 + H)dd′ + TNd2r)

Dense layer O(NdL) O(NdL)

All O(THdd′ + Tdr + NdL) O(Tdd′(N2 + H) + TNd2r + NdL)

Table 2: USTC-TFC2016 dataset and ISCXVPN2016 dataset.

Dataset Labels
USTC-
TFC2016

Cridex, Ceodo, Hitbot, Miuref, Neris, Nsis-ay, Shifu, Tinba, Virut, Zeus, BitTorrent, Facetime, FTP, Gmail, MySQL,
OutLook, Skype, SMB, Weibo, and WorldOfWarcraft

ISCXVPN2016 Chat, Email File, P2P, Streaming, VoIP, VPN-Chat, VPN-Email, VPN-File, VPN-P2P, VPN-Streaming, and VPN-VoIP

Input: test flow sample f∗, known class flow dataset OK
f , number of samples for average distance calculation q, threshold t.

(1) Calculate the distance between f∗ and each class D(f∗, CK
i), i � 1, . . . , P􏼈 􏼉;

(2) Find the class with the shortest distance away from f∗, denoted as CK
∗ ;

(3) If D(f∗, CK
∗)≤ t, φ(f∗) � CK

∗ . Otherwise, φ(f∗) � unknown.
Output: the predicted class φ(f∗).

ALGORITHM 1: Model test algorithm.

Table 3: +e parameters of LightSEEN.

Meaning Parameter Value
Number of packets N 3
Times of attention module reuse T 2
Number of headers H 3
Dimension of embedding d/r 270
Dimension of attention head mapping d′ 90
Dimension of flow vectors L 200

8 Security and Communication Networks

positive pairs
negative pairs

0

50

100

150

200

250

300

350
N

um
be

r o
f p

ai
rs

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.00.0
Distances of Positive and Negative Pairs

(a)

positive pairs
negative pairs

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.00.0
Distances of Positive and Negative Pairs

0

50

100

150

200

250

300

350

N
um

be
r o

f p
ai

rs

(b)

Figure 3: Part of the distance histogram of positive and negative pairs from two datasets. (a) USTC-TFC2016. (b) ISCXVPN2016.

LightSEEN
SEEN
One Class SVM

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pu
rit

y
Ra

te

20 30 40 5010
The Percentage of Unknown Classes (%)

(a)

LightSEEN
SEEN
One Class SVM

20 30 40 5010
The Percentage of Unknown Classes (%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y

(b)

LightSEEN
SEEN
One Class SVM

0.00

0.02

0.04

0.06

0.08

0.10

Fa
lse

 D
et

ec
tio

n
Ra

te

20 30 40 5010
The Percentage of Unknown Classes (%)

(c)

LightSEEN
SEEN
One Class SVM

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 D
et

ec
tio

n
Ra

te

20 30 40 5010
The Percentage of Unknown Classes (%)

(d)

Figure 4: Performance comparison of different methods for the USTC-TFC2016 dataset.

Security and Communication Networks 9

To be specific, firstly, both of the purity rates (PR) of
LightSEEN and SEEN are higher than that of one-class SVM
and mostly above 0.9. Although the PR of LightSEEN is
slightly lower than that of SEEN, they are very close, and
both of them are stable with the percentage of unknown
increases.+e situation of the accuracy (Acc) result is almost
the same as that of the PR result; that is, the result of SEEN is
slightly better than LightSEEN on Acc, and both of them
outperform the one-class SVM method. As for the false
detection rate (FDR), SEEN has the lowest bar, LightSEEN’s
bar is slightly higher, and the one-class method’s bar is the
highest. Since a lower FDR means better performance, still
SEEN is the best. However, for the true detection rate (TDR),
LightSEEN is higher than SEEN and the one-class method.
Note that in some reality applications like intrusion de-
tection, the TDR is significantly crucial, meaning that
LightSEEN is the best choice under these circumstances.

In summary, the effectiveness of LightSEEN on evalu-
ation metrics is overall at the same level as SEEN and
sometimes even better, meaning that its effectiveness is
validated.

5.4. Efficiency Analysis. We demonstrate the efficiency of
LightSEEN from three aspects, namely, quantity of pa-
rameters, average training time, and average test time. To
promote the model efficiency, we take measures including
multihead attention and reuse of the basic block in the
attention module. Table 4 shows the comparision results of
efficiency between LightSEEN and SEEN. +e parameter
number of our LightSEEN model is about 648000, which is
0.51% of that of SEEN. Besides, LightSEEN’s average
training time is 37.4ms, which is 37.9% of that of SEEN. And
its average test time is also obviously shorter. +rough the
efficiency analysis results, we can draw the conclusion that
we substantially reduce the scale of model parameters and
training time cost in LightSEEN, whose efficiency has been
validated.

5.5. Unknown Clustering. In this part, we explore the per-
formance of LightSEEN as a feature extractor. After
detecting unknown traffic, we can separate them into dif-
ferent groups through clustering algorithm and update the

LightSEEN
SEEN
One Class SVM

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pu
rit

y
Ra

te

20 30 40 5010
The Percentage of Unknown Classes (%)

(a)

LightSEEN
SEEN
One Class SVM

20 30 40 5010
The Percentage of Unknown Classes (%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y

(b)

LightSEEN
SEEN
One Class SVM

0.00

0.03

0.06

0.09

0.12

0.15

Fa
lse

 D
et

ec
tio

n
Ra

te

20 30 40 5010
The Percentage of Unknown Classes (%)

(c)

LightSEEN
SEEN
One Class SVM

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 D
et

ec
tio

n
Ra

te

20 30 40 5010
The Percentage of Unknown Classes (%)

(d)

Figure 5: Performance comparison of different methods for the ISCXVPN2016 dataset.

10 Security and Communication Networks

model as mentioned in Section 4.3. Moreover, we suggest
that the clustering algorithm should be operated on the flow
vectors output by the network of LightSEEN rather than the
raw flow features.

We compare the clustering purity of traffic data with and
without the processing of the network in LightSEEN, and
Figure 6 shows the corresponding result. +e blue line re-
veals the result of directly applying k-means to the flow
vector composed by concatenating raw packet feature
vectors and the green line for operating on the output of the
trained network instead. It indicates that LightSEEN can
extract deep features that more discriminative than raw
features.

6. Conclusion

In this paper, we propose a lightweight model for unknown
traffic discovery. Specifically, the model takes the cautiously
selected packet features as input, adopts the Siamese network
architecture, and guides the training process by contrastive
loss. To capture the associations between packets and im-
prove the parallel degree of the model, we use the multihead
attention mechanism within the network. Besides, we in-
troduce 1D-CNN, ResNet, and layer normalization, and
reuse the basic modules to facilitate the model convergence
with a limited number of parameters. +e experimental
results show that the model is effective and efficient.

In the future, further work can be done on open-set
traffic recognition. Firstly, the contrastive loss in our model
can be replaced by better loss functions (e.g., circle loss [26]
and ArcFace loss [27]). Furthermore, the model can be
applied to other practical tasks, including intrusion

detection and malicious traffic discovery. When intruders
and attackers carry out actions against information systems,
there will be anomalous traffic, which can be seen as un-
known traffic and detected by unknown discovery systems.

Data Availability

+e USTC-TFC2016 and ISCXVPN2016 data used to sup-
port the findings of this study are included within the article.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported by the National Natural Science
Foundation of China (nos. 61772548 and 61862011) and in
part by the Guangxi Science and Technology Foundation
(nos. 2018GXNSFAA138116 and 2019GXNSFGA245004).

References

[1] M. Roughan, S. Sen, O. Spatscheck, and N. G. Duffield, “Class-
of-service mapping for qos: a statistical signature-based ap-
proach to IP traffic classification,” in Proceedings of the 4th
ACM SIGCOMM Internet Measurement Conference, IMC
2004, A. Lombardo and J. F. Kurose, Eds., ACM, Taormina
Sicily, Italy, pp. 135–148, October 2004.

[2] Y. Chen, Z. Li, J. Shi, G. Gou, C. Liu, and G. Xiong, “Not afraid
of the unseen: a siamese network based scheme for unknown
traffic discovery,” in Proceedings of the IEEE Symposium on

Table 4: +e comparision results of efficiency.

Index LightSEEN SEEN
Quantity of parameters 648 k 126180 k
Average training time (ms) 37.4 98.6
Average test time (ms) 10.5 23.8

LightSEEN Clusterer for USTC-TFC2016
Kmeans for USTC-TFC2016

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
us

te
r P

ur
ity

80 120 160 200 240 280 320 360 40040
The Number of Clusters

(a)

LightSEEN Clusterer for ISCX
Kmeans for ISCX

80 120 160 200 240 280 320 360 40040
The Number of Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
us

te
r P

ur
ity

(b)

Figure 6: Clustering purity comparison of different methods for two datasets. (a) USTC-TFC2016. (b) ISCXVPN2016.

Security and Communication Networks 11

Computers and Communications, ISCC 2020, pp. 1–7, IEEE,
Rennes, France, July, 2020.

[3] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” in Proceedings of the Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, L. Beach, U. S. A. CA,
I. Guyon et al., Eds., pp. 5998–6008, Long Beach, CA, USA,
December, 2017.

[4] J. Erman, A. Mahanti, M. F. Arlitt, I. Cohen, and
C. L. Williamson, “Offline/realtime traffic classification using
semi-supervised learning,” Performance Evaluation, vol. 64,
no. 9-12, pp. 1194–1213, 2007.

[5] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust
network traffic classification,” IEEE/ACM Transactions on
Networking, vol. 23, no. 4, pp. 1257–1270, 2015.

[6] R. Lin, O. Li, Q. Li, and Y. Liu, “Unknown network protocol
classification method based on semi-supervised learning,” in
Proceedings of the 2015 IEEE International Conference on
Computer and Communications (ICCC), pp. 300–308, IEEE,
Chengdu, China, October 2015.

[7] J. Ran, X. Kong, G. Lin, D. Yuan, and H. Hu, “A self-adaptive
network traffic classification system with unknown flow de-
tection,” in Proceedings of the 2017 3rd IEEE International
Conference on Computer and Communications (ICCC),
pp. 1215–1220, IEEE, Chengdu, China, December 2017.

[8] A. Este, F. Gringoli, and L. Salgarelli, “Support vector ma-
chines for TCP traffic classification,” Computer Networks,
vol. 53, no. 14, pp. 2476–2490, 2009.

[9] N. Fu, Y. Xu, J. Zhang, R. Wang, and J. Xu, “Flowcop:
detecting ”stranger” in network traffic classification,” in
Proceedings of the 27th International Conference on Computer
Communication and Networks, ICCCN, pp. 1–9, IEEE,
Hangzhou, China, August, 2018.

[10] D. C. Le, N. Zincir-Heywood, and M. I. Heywood, “Unsu-
pervised monitoring of network and service behaviour using
self organizing maps,” Journal of Cyber Security and Mobility,
pp. 15–52, 2019.

[11] R. Ma and S. Qin, “Identification of unknown protocol traffic
based on deep learning,” in Proceedings of the 2017 3rd IEEE
International Conference on Computer and Communications
(ICCC), pp. 1195–1198, IEEE, Chengdu, China, December
2017.

[12] Y. Zhang, S. Zhao, and Y. Sang, “Towards unknown traffic
identification using deep auto-encoder and constrained
clustering,” in Proceedings of the 2019 19th International
Conference Computational Science - ICCS, J. M. F. Rodrigues,
P. J. S. Cardoso, J. M. Monteiro et al., Eds., vol. 11536,
pp. 309–322, Springer, Faro, Portugal, June, 2019.

[13] P. Zhu, S. Zhang, H. Luo, and Z. Wu, “A semi-supervised
method for classifying unknown protocols,” in Proceedings of
the 2019 IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC),
pp. 1246–1250, IEEE, Chengdu, China, March 2019.

[14] Y. Wang, B. Bai, X. Hei, L. Zhu, and W. Ji, “An unknown
protocol syntax analysis method based on convolutional
neural network,” Transactions on Emerging Telecommunica-
tions Technologies, Wiley, Hoboken, NJ, USA, 2020.

[15] Y. Zhang, J. Niu, D. Guo, Y. Teng, and X. Bao, “Unknown
network attack detection based on open set recognition,”
Procedia Computer Science, vol. 174, pp. 387–392, 2020.

[16] Z. Yang andW. Lin, “Unknown traffic identification based on
deep adaptation networks,” in Proceedings of the 45th IEEE
LCN Symposium on Emerging Topics in Networking, LCN

Symposium 2020, H. Tan, L. Khoukhi, and S. Oteafy, Eds.,
pp. 10–18, IEEE, Sydney, Australia, November 2020.

[17] S. Rezaei and X. Liu, “Deep learning for encrypted traffic
classification: an overview,” IEEE Communications Magazine,
vol. 57, no. 5, pp. 76–81, 2019.

[18] A. Dainotti, A. Pescapè, and K. C. Claffy, “Issues and future
directions in traffic classification,” IEEE Netw, vol. 26, no. 1,
pp. 35–40, 2012.

[19] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and
T. E. Boult, “Toward open set recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 7,
pp. 1757–1772, 2013.

[20] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity
metric discriminatively, with application to face verification,”
in Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2005),
pp. 539–546, IEEE Computer Society, San Diego, CA, USA,
June 2005.

[21] W. Song, C. Shi, Z. Xiao et al., W. Zhu, “Automatic feature
interaction learning via self-attentive neural networks,” in
Proceedings of the 28th ACM International Conference on
Information and KnowledgeManagement, CIKM 2019, D. Tao,
X. Cheng, P. Cui et al., Eds., ACM, Beijing, China,
pp. 1161–1170, November 2019.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in
deep residual networks,” in Proceedings of the Computer
Vision - ECCV 2016 - 14th European Conference, B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds., vol. 9908, pp. 630–
645, Springer, Amsterdam, +e Netherlands, October, 2016.

[23] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware
traffic classification using convolutional neural network for
representation learning,” in Proceedings of the 2017 Inter-
national Conference on Information Networking, ICOIN 2017,
pp. 712–717, IEEE, Da Nang, Vietnam, January, 2017.

[24] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and
A. A. Ghorbani, “Characterization of encrypted and VPN
traffic using time-related features,” in Proceedings of the 2nd
International Conference on Information Systems Security and
Privacy, ICISSP 2016, O. Camp, S. Furnell, and P. Mori, Eds.,
SciTePress, Rome, Italy, pp. 407–414, February, 2016.

[25] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. V. Vasilakos,
“An effective network traffic classification method with un-
known flow detection,” IEEE Transaction Network Service
Management, vol. 10, no. 2, pp. 133–147, 2013.

[26] Y. Sun, C. Cheng, Y. Zhang et al., “Circle loss: a unified
perspective of pair similarity optimization,” in Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, pp. 6397–6406, IEEE,
Seattle, WA, USA, June, 2020.

[27] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, pp. 4690–4699, Computer Vision
Foundation/IEEE, Long Beach, CA, USA, June, 2019.

12 Security and Communication Networks

