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)e growing number of e-voting applications indicates the need in resolving issues that exist in the traditional election model. By
integrating with blockchain technology, we could extend the model’s capabilities by presenting transparency in logic execution
and integrity in data storage. Despite these advantages, blockchain brings in new challenges regarding system performance and
data privacy. Due to distributed nature of blockchain, any new updating request needs to be reflected in all network’s peers before
proceeding to the subsequence requests. )is process produces delay and possibility in request rejection due to update conflict. In
addition, data removal is no longer feasible since each record is protected by immutable hashed link. To overcome these
limitations, the integration model of blockchain and message queue is proposed in this paper. )e design addresses security
concerns in data exchanging patterns, voter anonymization, and proof of system actor’s legitimacy. Performance tests are
conducted on system prototypes which were deployed on two different settings.)e result shows that the system can perform well
in production environment, and introduction of message queue handling scheme can cope with blockchain’s errors in
unexpected scenarios.

1. Introduction

Voting is an act of delegating one’s decision-making power.
Traditional election relies on marking and counting ballot
papers. Even though this model is still widely used in many
nations, the overall procedure is time consuming, inefficient,
and prone to error and electoral frauds [1]. Online voting is
introduced to overcome the limitations, achieve better ef-
ficiency as well as provide convenience to the users. )e
simplest implementation started from a single server where
authentication and vote processing are performed. Despite
the presence of data encrypting schemes, all cryptographic
operations and key storing are done at server side. In sum,
overall system operation remains hidden from the users.

Decentralized Application (DApp) is a new program-
ming approach that allows application to operate on the
distributed computer system or trusted P2P network like

blockchain. Execution of application’s logic is moved to the
client side without central authority governing. Also, data
directly traverse among only trusted app’s clients. Every
transaction must be validated against the consensus and pre-
agreed rulesets. No malicious action beyond logic agreement
shall be carried out. With blockchain, data integrity is
preserved by block hash which represents the entire chain’s
state up to that current point and can be computed by taking
previous block hash as an input. Merkle tree [2], illustrated
in Figure 1, is a data structure for representing structure of
the chain. To validate whether a specific transaction i exists,
inclusion can be proved by checking if the tree root (R) is
equal to hash of the transaction i that concatenates with its
sibling and sequences of sibling of all i’s ancestors (π). Let ϕ
denote position of i node in Merkle tree, verification can be
computed within time complexity of O(log n), and the
equation is defined as follows:
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Since operations on distributed ledger rely largely on an
underlying consensus mechanism, a number of consensus
mechanisms have been proposed, e.g., Proof of Work
(PoW), Proof of Stake (PoS), and Practical Byzantine Fault
Tolerance (PBFT). Differences in mechanisms directly in-
fluence security and performance of blockchain. To avoid
possibility of double spending attack [3] and damages from
block reversion due to chain fork, transaction ordering
service based on Raft consensus [4] was chosen for this
proposed design. With Raft implemented, transactions
processing is ensured to be linearizable as there is only a
single leader per term. Its responsibilities are to ensure that
new updating requests are committed to replicate log and all
followers maintain exactly the same order of log entries. In
addition, the system can tolerate up to n servers failure given
that there are 2n+ 1 servers in total.

Previous research work on implementation of fault-
tolerant e-voting systems [5] addresses system design based
on the assumption that each district function requires dif-
ferent control mechanisms and encounters different amount
of traffic load. )e design enables the system to be scaled at
functional level, which promotes efficient use of resources
and suitable to serve a large-scale election. Nevertheless,
there is still a need for refinement in several issues, such as
weakness in anonymization schemes, security protection for
data transmission over the public Internet, and handling
schemes to cope with unexpected circumstances.

Presenting the queuingmechanism that supports reliable
data delivery, message queue is found to be an attractive
solution as it could be integrated as a middleware for
transaction buffering, error handling, and blockchain’s event
messages listener. Extending the prior study, this paper
proposes an integrated model of e-voting by leveraging a
messaging protocol. )e goal is to overcome technical
challenges appeared in previous work and other existing
e-vote models, which are data privacy, security, and a need
for performance improvement. Refined architecture design
and setups of network components are presented, along with
error handling schemes to ensure delivery of data.

)e subsequent section presents related studies on the
e-voting system and different solution schemes to overcome
limitations in blockchain, followed by the proposed system
design and operation workflow. To elaborate on the intro-
duced concepts, implementation details are presented along
with performance evaluation and security assessment on the
developed prototypes. )e final section summarizes the
research findings and provides recommendations for future
study.

2. Related Works

Helios [6] is one of the earliest implementations of e-voting
systems in which system transparency is promoted by
publicly displaying all votes in encrypted form. Even though
the design can eliminate external parties’ intervention,
voter’s privacy cannot be guaranteed since all ballots need to
be decrypted by the authority who can access to all voter’s
private keys during the tallying process.)us, it is possible to
sneak into individual’s information. Online voting has be-
gun to adopt in many countries [7–11]. For example, in
Estonia [12], the system is developed upon national ID
infrastructure. Eligible voters must authenticate themselves
by dipping ID card and installing a voting application. Once
the vote is casted, personal data will be removed and only the
candidate selection data will be encrypted using with Es-
tonian National Electoral Committee (ENEC)’s public key.
Nevertheless, the analysis study [13] suggests that the system
requires major fixes as multiple security loopholes have been
found (e.g., server-side malware injection and client-side
vote data sniffing). With an advancement in cryptography,
some cryptosystems exhibit homomorphic properties in
which the mathematical operation ∅ on a set of encrypted
payloads shall be equivalent to encryption of the result from
performing operation θ on plaintexts E(a)∅E(b) ≡ E(aθb).
Such a scheme is beneficial in ballot tallying without re-
quiring prior payload decryption. )e study [14] proposes
implementation e-voting based on ElGamal encryption
scheme which possesses homomorphic properties. During
the voting period, voter must construct table of R∗C where
R represents a selection array in which each cell could either
be 0 or 1 and C represents the list of candidates. Vote tallying
can be conducted by performing algebraic multiplication on
encrypted ballots. )e similar concept applies to an
implementation of voting scheme based on Paillier cryp-
tosystem [15]. However, proving whether the ballot format is
valid (each cell is marked by only 0 or 1) requires generation
of all voting possibilities. )us, the scheme is applicable to
the election where voting options are predefined and un-
changed. Even though many studies have put efforts on
voting scheme design, overall operation remains a black box
from user’s perspective. )is leads to an introduction of
decentralized application (DApp) where operation execu-
tion is shifted to the client side. All business logic and
permission ruleset must be pre-agreed prior to initialization
of system process. In addition, an underlying consensus
mechanism ensures that distributed ledgers are synchro-
nized and integrity of each record entry is preserved by the
cryptographic algorithm. With the presence of immutable
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h[h (A) || h (B)] h [ h (C) || h (D)]

h[h[h (A) || h (B)] || h[h (C) || h (D)]]

∗h  =  hash function

Figure 1: Example of Merkle tree data structure.
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audit trails, it attracts adoption in various business fields.
Served as a trusted verification source, blockchain is applied
to improve effectiveness in current banking systems [16–18],
health insurance [19], supply chain management [20], and
right management on digital content sharing platforms
[21, 22]. Despite the aforementioned benefits, blockchain
encounters two major challenges which are privacy and
performance.

Due to immutable property that applies to all record
entries, deletion of data is no longer possible once it has been
stored on the chain. As stated in the article [23] regarding
storing and processing personal data, individual has rights to
withdraw consent and request for personal data erasure.
)us, confidential data are recommended to store off-chain
as to comply with general data protection regulations
(GDPRs) [24]. Nevertheless, many research studies have
sought a way to attain on-chain privacy protection for
sensitive data [25]. Mixing is one of the approaches, which
suggests aggregation of multiple users’ transactions into a
single transaction in order to prevent attacker from ana-
lysing victims’ actions. Several implementations of mixing
include Mixcoin [26] and CoinJoin [27]. Anonymous sig-
nature is another alternative method that presents the
concept of using a representative signature for transaction
signing instead of the actual performer. Utilizing ring sig-
natures for concealing identity, the scheme [28] ensures that
all involved parties can validate the transactions’ authenticity
without gaining further knowledge of the originating source.
Nevertheless, the odds of correct guessing is 1/n, where n
denotes the number of network participants. )e probability
will be incremented as the number of participants is smaller
to 1. Adopting a variant of the TOR and similar to the
concept of Mixnet implementation [29], a study [30] in-
troduces an implementation of the Garlic Routing (GOR) on
a sidechain in which all transactions created on the main
chain are required to route through a sidechain’s smart
contract mesh in order to conceal creators’ identities. )e
more complexity in sidechain topology, the more often the
sender’s address is encapsulated and concealed. Neverthe-
less, the greater complexity of the blockchain logic, the more
computational resources are required for the blockchain to
validate transactions.

Another key issue is performance. Indeed, there are
several factors that contribute to execution competency [31]
such as network latency, consensus algorithm, number of
participating nodes, and smart contract complexity which
are in proportion to the number of read/write operations
needed to be executed. Despite the distributed design of
blockchain that offers high availability, there exists a limi-
tation in handling large volume of transaction. Common
problems that blockchain will encounter in production setup
is transaction rejection due to disagreement in transaction
generation and processing capacity as well as read-write
operation conflicts. To resolve such issues, transaction
queuing and error handling mechanism are required.

With lightweight and P2P communication of messaging
protocol, it enables emergence of distributed system models,
such as device communication in IoT ecosystems. Several
protocols serve to standardize message exchange patterns

such as MQTT [32], AQMP [33], and ZMTP [34]. With the
presence of queueing mechanism, delivery of data is ensured
to be in order and take place exactly once. Due to its
asynchronous nature and publish-subscribe communication
pattern, a message queue has become a popular middleware
for synchronizing states among dispersed services. A study
[35] leverages message queues for providing consistent
updates across databases located in heterogeneous envi-
ronments. Any change to the database will trigger generation
of event messages for acknowledging relevant parties to
perform local updates corresponding to the new changes.
Apart from data synchronization, message queue is intro-
duced for improving reliability and delivery in data trans-
mission, especially when data production and consumption
rate are inharmonious. A study [36] presents use of message
queue in replacement of relational database in a mailing
system. Traditionally, mail queuing pipeline relies largely on
altering rows in relational databases. To prevent the oc-
currence of operational conflict or bottleneck, the system
must avoid large load generation by limiting the number of
concurrent active users. With introduction of Apache Kafka
[37] as a queuing middleware, tasks beyond capacity limits
are added to a queue and held to be processed later without
interrupting core operation pipeline.

Multiple studies have proposed integration models of
blockchain and message queues. Nowadays, many appli-
cations rely heavily on event-driven processing. To avoid
alteration or insertion of falsified events into the message
stream, blockchain has been introduced for validating au-
thenticity of data exchanged over messaging protocols
[38, 39]. On the other way round, message-oriented mid-
dleware services have been deployed as blockchain’s event
listener. Eventeum [40] is one of the implementations for
Ethereum Blockchain [41] in which all the blocks and
transaction events will be propagated to message bus, and
the bus then exposes REST api to application for further
processing. Other products of message streaming middle-
ware are OCI Streaming service [42] and Amazon Simple
Queue Service (SQS) [43, 44] which offer blockchain event
collection and integration with a number of business ser-
vices, such as user notification (SMS and e-mail) or
streaming events directly to business intelligence or analytics
engines. However, these products only facilitate the out-
going messages from blockchain which have low traffic
density, small chance of bottlenecks, and low error conflicts
in contrast to an inward direction which is one of the
concerns stressed in this paper.

3. Proposed Integration Design of
Blockchain-Based E-Voting Systems

To promote ease of adoption to real-world settings and
enhance overall system resilience, the proposed model
emphasizes design towards generality while ensuring data
protection from end to end. )e first part presents system
topology design and setup of key components. )e later part
introduces system operational procedure comprising voter
authentication, ballot data transmission, and ballot verifi-
cation and storing process.
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3.1. System Overview. In the architecture design (Figure 2),
we assume that voters are not technical experts who can host
or run full blockchain nodes. Voters are assumed to reside off-
chain and possess personal devices (i.e., smartphone or PC)
with Internet connectivity. )e authentication process is
expected to be performed off the chain with local personnel
databasemanaged by the responsible authorities. After a voter
is authenticated, he/she is permitted to submit a voting re-
quest. To follow the principle of directness stated in system
design guidelines [45, 46], point-to-point with no broker
messaging protocol is leveraged to ensure that data are
transmitted to the chain without passing any intermediaries.
In the case that peers are not discoverable within the network
(i.e., peers might be located in different networks and do not
own public IPs), then messaging brokers are required to be
configured as a directory service only for the purpose of
facilitating peer discovery [47]. Once data reach the on-chain
node, integrity of data and authenticity of the sender will be
validated against sets of information records stored on
blockchain states. )e following display the records which
consist of (a) list of eligible token seeds, (b) list of used voting
tokens, (c) list of ballots, and (d) lists of nodes’ public keys.

(c) Ballots
(a) Eligible

Token Seeds Transaction
ID

(d) Nodes’ Public Keys

NODE ID Public Key
(b) Used

Voting Token

TS1
TS2
....

.... ....TSn

TE1 NID1

NID2

NIDn

PKNID1

c1 ∈ {Candidates}
c2 ∈ {Candidates}

cn ∈ {Candidates}

PKNID2

PKNIDn

TE2
.... .... ....
TEn

Selected Candidate

Tx_ID1
Tx_ID2

Tx_IDn

Permissioned blockchain is leveraged in order to prevent
unnecessary flow of data to irrelevant parties. To ensure that
the system can operate with high availability, we leverage the
design of a fault-tolerant blockchain network as proposed in
previous research work [5].

3.2. Key Components. )is proposed design introduces three
key actors as defined below.)ese actors are blockchain client
nodes with additional setup of supplementary services. Prior
to chain initiation, each nodewill be assigned to a specific role.
A public key for each node (PK<NODE_ID>) is required to be
published to the blockchain’s shared records to enable key
lookup among network components. Two-level role-based
permissions (displayed in Table 1) are introduced for defining
nodes’ accessibility to system resources.

3.2.1. Authenticator Node. )is node comprises of two
functional components. )e first part is an authenticating
service, which locally connects to the personal database in

order to provide high-security protection on the data.
Another part is the blockchain interface, which stores the
node’s cryptographic credentials and connects authenticator
to the running blockchain network.

3.2.2. Proxy Voter Nodes. In order to provide anonymity to
the voter, voting token (TE) is proposed to represent voting
eligibility instead of referencing to an actual performer. )e
main tasks of this node are to perform token validation,
initiate peer-to-peer connection with trustworthy clients
(voters), and trigger submission of voting transactions on
behalf of the actual voters. Two main services are imple-
mented in this node: messaging sockets and blockchain
interface service. )is type of node can be set up as a cluster
for load-balancing incoming data packets from clients.

3.2.3. Validator Node. )e validator node is responsible for
verifying the election results by ensuring that the number of
created ballots and used tokens always matches. Also, it
facilitates transaction querying in case voters wish to verify
their ballots. As displayed in Table 1, the node is permitted
only to inspect and query blockchain resources for the
purposes of validation. )us, the node plays no role in
modifying the data due to restrictions of the consensus rules.

3.3. System Flow

3.3.1. Authentication and Token Generation. In the begin-
ning, voters are required to authenticate themselves with an
authenticating service. To access to this service, authenti-
cator node must configure a private connection channel and
provide the configuration to all intended voters. Authen-
tication mechanism and strictness level can vary according
to election regulations, which are usually defined by the
election commission of each campaign. Once a voter is
authenticated, the node then invokes a smart contract for
adding a new voter. )e returned transaction ID will be used
as a token seed (TS). )e seed will be recorded to a
blockchain’s list of eligible token seeds and will also be used
for constructing a voting token (TE). Leveraging asymmetric
signature JSON Web Token (JWT) [48] format, TE’s
structure can be divided into three parts, as displayed in
Figure 3. Payload contains two types of data. )e first type is
system data, for example, token expiration date and time.
)ese data help system prescreen packets in order to reduce
unnecessary load. Another type is custom information. )is
part contains an encrypted TS with proxy voter’s public key
(PKPX). Extending asymmetric key encryption, authenti-
cator’s private key (SKAUTH) is used for signature signing.
In order to validate token authenticity, one must decrypt the
signature part with an authenticator’s public key (PKAUTH),
which is retrievable from the blockchain state.

3.3.2. Ballot Data Transmission. Once voters are authenti-
cated and obtain TE from an authenticator, they need to
establish secure connections to the proxy voter prior to
exchanging confidential data. According to Figure 2, a client
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Table 1: Blockchain permissions categorized by node roles and permission types.

Permission types node name Permission on network resources
Permission on logic

List of eligible tokens List of used token Ballot list Nodes’ public key
Authenticator Create and retrieve transaction R/W — — R
Proxy voter Create and retrieve transaction R R/W R/W R
Validator Retrieve transaction R R R R
∗R means Read Permission; W means Write Permission.
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Figure 2: System design and components setup.

Section Content
Header Base64Encoded({

“alg”: <hashing algorithm>,
“typ” : <type of token>})

Payload Base64Encoded({
//example of system data
“iss”: <issuer>,
“exp”: <expiration time>,

//example of custom data
“identifier_key” : ENC(PKPX, TS) })

Signature HashAlg(
Base64Encoded(Header)+ “ . ” + 
Base64Encoded(Payload), SKAUTH)

Figure 3: Structure of voting token.
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can be seen as a remote peer in distributed network. Since
authentication support in messaging protocols is limited to
device and service level, a voting token is introduced to offer
user-level authentication by embedding in the data frame
along with the message stream. To authenticate connecting
peers at the device level, we leverage handshake mechanism
in CurveCP protocol [49] for exchanging 2 sets of key pairs.
)e first is the permanent (long-term) key pair, which is used
for identifying the data source and for generation of the
transient key pair. )e second is the transient (short-term)
key pair, which is used for encrypting exchanged messages.
To prevent any kind of intercepting attacks, the transient
keys will be destroyed and recreated every time and a
connection session is reestablished. For simplicity in ex-
planation, proxy voter nodes and voters are represented as
server and client, respectively. Let permanent public keys of
client and server be denoted as C and S, while private keys
are denoted as c and s. For transient key pairs, let (S′, s′) and
(C′, c′) denote pairs of short-term public and private keys of
server and client, respectively. All voters in the same
campaign are assumed to share a common (C, c) and have
initial knowledge of server’s public key, S. )e server is
assumed to know voter common public key, C, and possess
its initial key pair (S, s). )e communication scheme is
illustrated in Figure 4.

(1) Connection Validation. Following the CurveCP protocol,
upon connection establishment, each voter must generate
his/her own transient key (C′, ′’), encrypted C′ with C and
send to target end. If the receiver can decrypt the packet, it
can then be certain that the connection is from legitimate
peer and returns encrypted S′ in exchange.)e connection is
now established.

(2) Eligibility Verification and Data Transmission. Goal of
this step (2) is to further assure that connection is initiated
from valid entity in an election campaign. Goal of this step is
to further perform authentication at user-level to ensure that
the connecting clients are eligible to vote. Different mes-
saging patterns are introduced for serving the requirement.
Figure 5 displays a socket setup for each end. Server (proxy
voter) must implement 1 REP socket, 1 PUSH socket, and a
pool of PULL sockets while a client (voter) is required to
implement 1 REQ, 1 PUSH, and 1 PULL socket. Prior to
ballot submission, client must provide proof of voting eli-
gibility by sending REQ’s message that contains TE along
with client’s PULL socket configuration. On receiving the
data, the server then validates integrity of the message and
authenticity of TE by verifying TE’s signature as well as
checking if TE is not expired. If TE is valid, encrypted token
seed will be decrypted using its private key (SKPX).)e result
(TS) will be compared against the blockchain’s list of eligible
token seeds and made sure that TE itself is not in the list of
used tokens. If all conditions are met, the server will find and
reserve available address listening by its PULL sockets. )e
address will be returned to the client for further commu-
nication. For ballot data submission, the PUSH-PULL
pattern is leveraged since this process requires altering
blockchain states which often takes some time for data to be

processed. With PUSH-PULL type configured, the message
queue ensures that any late responses will be captured and
persistently maintained until an intended recipient obtains
the data. To submit voting data, the client constructs a
message containing a selected candidate choice and encrypts
it with the transient key. )e message is then pushed to the
address listening by the server’s provided PULL socket.

3.3.3. Ballot Verification and Storing. On receiving a mes-
sage, the server decrypts data and passes it to a blockchain
interface service to convert into blockchain-compatible
transaction format and sign with SKPX. Once the transaction
is published to the network, it will be validated against
permissions at blockchain network layer and business logic
layer. At the network layer (lower level), permission is
defined for limiting activities that affect system resources or
configurations such as adding new members to the chain or
submitting new transactions to the network. Permission at
business logic layer (higher level) governs individual rights
on invoking specific functions on smart contract. Table 1
displays permissions classified by the node’s roles.

Proxy voter is the only type of node that is allowed to
append ballot transactions to blockchain state. Once the
transaction is recorded to the chain, the corresponding TE
will be added to the used token list, and the transaction ID
will be directly sent via PUSH socket to the client as veri-
fiable evidence. Until the terminating request is fired, PUSH/
PULL sockets ensure that a late blockchain’s response of
transaction ID is successfully delivered to the client’s hands.

4. Implementation

To affirm that the design can satisfy all functional re-
quirements, prototypes were developed by utilizing
Hyperledger Fabric [50], an open-source framework for
developing permissioned blockchains, and ZeroMQ [51], a
messaging library that relies on ZMTP messaging protocol,
for facilitating client-to-node communication.

4.1. Blockchain Network Implementation. Hyperledger ver-
sion 1.4 with Raft ordering service was deployed for de-
velopment of blockchain network. )e network was set up
on 2 different environments: a single-host setting and
multihost setting. For single-host setup, the network was
deployed using Docker [52] which is installed on Ubuntu
16.04 LTS machine with 2 CPU cores 2.80GHz and 12GB of
RAM. An architecture composes of three Raft ordering
nodes and two organizations with single peer and single CA
each. LevelDB is set up as peer’s state database. Formultihost
setup (Figure 6), 4 virtual machines (Ubuntu 18.04, 2 CPU
cores, and 4GB of RAM) are set up as Kubernetes [53]
cluster (1 master node and 3 worker nodes). An architecture
is composed of three Raft ordering nodes and two orga-
nizations with two peers and single CA each. Each node is
deployed as a pod along with its corresponding Cluster IP
service. CouchDB is deployed as peer’s state database, and
pod affinity was configured to ensure that the database is co-
located with its corresponding peer node. Hyperledger
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Fabric SDK is deployed as a separated service to enable
external interaction with the blockchain. )e results after
conducting a performance test on both environment settings
are displayed in the evaluation section.

To restrict the capability of each node’s role in inter-
acting with network resources, we override default config-
uration of Hyperledger Fabric’s Access Control List (ACL)
in order to customize the policy. )e following is a code
snippet that defines permission on creating (write) and
querying (read) transactions in the form of reader/writer set:

Policies:
Writers:
Type: Signature

Rule: “OR(“Authenticator.admin,” “ProxyVoter.
client”)”

Readers:
Type: Signature
Rule: “OR(“Verifier.admin, “Verifier.peer,”

“ Verifier.client”)”

To ensure that business logics on smart contract are
invoked by the authorized entities, built-in attribute-based
access control (ABAC) is used for checking each performer’s
credentials and validating against predefined conditions. For
the purpose of implementation, we import “ClientIdentity”
class from “fabric-shim” library in order to retrieve and
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(possesses S, s)

S

Connection initialization with
Generation and Exchange of Transient Keys

Client (Voter)
(possesses C, c)

Initial Knowledge

Attained Knowledge

S′

Initial Knowledge

Attained Knowledge

C′

REP : ENC(C′, message : [available address
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C
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Figure 4: Message exchanges over messaging protocol.
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Server
(Proxy Voter)

PUSH
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PULL

Client
(Voter)

Figure 5: Sockets setup.
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inspect the credentials of transaction actors. )e following is
a code snippet of the smart contract’s token generation
function. Prior to executing the logic, we perform credential
checking if the requesting entity is an “authenticator.”

const ClientIdentity� require(“fabric-
shim”).ClientIdentity;
function addToken(arguments) {

let cid� new ClientIdentity(stub);
if (cid.assertAttributeValue(“node_name”, “authen-

ticator”){
//add new eligibility token.

}
else{ throw new Error(“Invoking Entity is Unau-

thorized”); }
}

4.2. Message Queue Implementation. ZeroMQ, a brokerless
message-oriented networking library based on ZMTP
protocol, is leveraged for enabling P2P data exchanges. To
make sure that connections are established from/to the
legitimated peers, ZeroMQ authentication protocol
(ZAP) [54] is used for authenticating connections against
a set of known peers’ public keys. In order to obtain the
keys, CurveZMQ [55], a protocol based on CurveCP and

the NaCl cryptographic library, is used for generating
256 bit elliptic curve Curve25519 key pairs.

5. Performance Evaluation and
Security Analysis

)is section is divided into three parts.)e first part presents
security analysis on voting tokens, data exchanging schemes
over messaging protocol, and state alteration in the block-
chain. )e second part provides comparative analysis be-
tween different designs of blockchain-integrated e-voting
models. )e final part presents the performance results of
overall system operation.

5.1. Security Analysis

5.1.1. Security on Voting Tokens. Design of voting tokens
extends the asymmetric signature JWT token format. To
verify authenticity and integrity of the token, one must have
permission according to ACL and ABAC to access the list of
public keys stored on the blockchain. To ensure that voting
claim (TS) can be retrieved only by a designated node, the
data are encrypted with PKPX to prevent nodes other than
proxy voter from accessing. In order to limit the token’s
usage duration and to reduce unnecessary processing load,
“exp” field is used for prescreening packets.

4 VMs

Kubernetes Cluster

tx4 tx3 tx2 tx1message queue

External Requests

Org 1

CouchDB

Peer

CouchDB

Peer

Org 2

CouchDB

Peer

CouchDB

Peer

Raft Ordering Service
(3 Orderers)

Hyperledger Fabric SDK

Blockhain Network

NFS Storage
(shared network
configuration,

container images,
crypto materials)
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Figure 6: Blockchain network setup on multihost setting.
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5.1.2. Security on Data Exchanges over Message Queue.
Off-chain data exchange leverages CurveZMQ and ZAP
which present secure data encryption scheme and authenti-
cation mechanism. Introduction of 2 key pairs (permanent
and transient) allows each peer to verify if the connection is
initiated by a known source and to be certain that exchanging
data remain original. Since the transient key is destroyed and
recreated for every new connection, analysing user behaviour
through intercepting and monitoring packets is no longer
feasible. Furthermore, nonce, a random array of arbitrary
numbers, is embedded in every outgoing packet. )erefore,
messages are ensured to be non-replayable. Results from
conducting packet analysis with Wireshark show that the tool
cannot extract any information from captured packets.

5.1.3. Security on Blockchain Network. Supported in Hyper-
ledger Fabric, Access Control List (ACL) is utilized for
defining permissions on network entities at the system level.
)e test was conducted by switching between different roles
and performing transaction submission as well as
attempting to query data from blockchain state.)e result of
mismatch entities to the ACL policy (defined in Table 1)
appears as the following system error.

Error: failed evaluating policy on signed data during
check policy [signature set did not satisfy policy].

In order to validate permission at business logic level,
Attribute-Based Access Control (ABAC) is evaluated with
scenario-based testing, such as letting the proxy voter, who is
allowed to submit transactions according to ACL, and in-
vokes a smart contract function token generation (code
snippet is displayed in the implementation section). )e
result displays a custom error, as follows, since calling this
function is restricted to the authenticator.

Error: Invoking Entity is Unauthorized.
To confirm that Raft ordering service presents linear-

izability to blockchain's state transitions, we deployed
Hyperledger Explorer [56] for monitoring activities in
network (e.g., number of block/transaction creation and size
of local ledger maintained by each peer node). By observing
through each peer’s historical records, the results confirm
that transactions are processed in consecutive manner, there
is no evidence of cyclic behaviour, and the same copy of
ledger is maintained in all peers.

5.2. Comparative Analysis on Blockchain-Integrated E-Voting
Models. An integrated model of blockchain and web service
is found to be the most popular e-voting model at present.
One of the major concerns is an inconsistency in speed of
data production and consumption. Message queues and
HTTP web services are capable of generating requests at
high frequency. By contrast, the capability and speed of
processing transactions by blockchain are limited by the
consensus mechanism. Comparative analysis was conducted
on three different scenarios in order to observe data han-
dling mechanism presented in each design.

Assume that Joe and Mary are eligible voters. Joe uses an
e-voting system that connects to web services, while Mary’s
system is connected to a message queue.

Situation 1. Once users had submitted their votes, the re-
quests were rejected due to unavailability of proxy voter.

In Joe’s case, proxy voter is a web server while Mary’s is
implemented as message queue server. Joe will receive a re-
sponse notifying of server’s unavailability. Sometime later, Joe
needs to retry his submission. As a result, Joe will unexpectedly
obtain privilege in reconsidering his voting choice. For Mary,
her message will remain in the queue on the client side. Once
the server becomes available, her message will be pulled out
from queue for processing. She will receive an acknowl-
edgement once her message has already been processed.

Situation 2. Clients are unavailable after requests have been
submitted.

In this case, Joe and Mary may lose their Internet
connection or encounter unexpected system failure after
they have already submitted their votes. Since the response
from the blockchain is directly sent to Joe’s web browser, the
message will be disregarded due to unavailability of the web
client. Without catching mechanism presented, Joe will not
receive any notification indicating transaction success or
failure. On the contrary, Mary’s response remains in the
queue on the server side. As soon as she becomes available,
her socket will automatically retrieve data (transaction re-
sponse) from the binding socket.

Situation 3. A large number of users are using the system
and generating a large amount of transactions that are
beyond blockchain’s capacity limit. Due to network con-
gestion, two possible cases can occur.

Case 1. Transaction is processed with an unpredictable
delay in returning response.

Due to the synchronous nature of web services, once
request timeout is reached, the web server will terminate
connection with the blockchain and disregard further mes-
sages even though later the blockchain might return a suc-
cessful status (Figure 7). From Joe’s perspective, he has no idea
whether his data have been recorded. As a result, he may retry
submission without noticing that his transactions are now
doubling in record. In addition, there is a possibility that his
second request gains an opportunity to be processed and
recorded before his previous request. For Mary, a message
queue acts as data buffer in order to release data to the chain at
a steady rate and in chronological order. By relieving the
amount of blockchain workload, processing delay and odds of
transaction rejection (Case 2) are expected to be reduced.

Case 2. Transaction is rejected due to blockchain’s pro-
cessing limitation or conflict in altering data state (multiple
transactions try to update on same key address).

In this case, web server will notify Joe with an error
message (Figure 8). In order for his data to be recorded, Joe
needs to compete with others by retrying the submission
until he receives a success response. For Mary in this case, a
message queue will act as a cache which will automatically
resubmit the request until transaction ID that indicates
success is returned (Figure 9). Otherwise, the request
message will not be removed out from queue.
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Enhancing capabilities of blockchain by providing it with
an error handling mechanism, an integrated model of
message queue guarantees that all data packets are delivered
even in the unexpected circumstances.

5.3. Performance Evaluation

5.3.1. Message Queue. Latency and throughput testing was
conducted on a single machine of 4 CPU cores 2.90GHz
with 16GB of memory. Different communication patterns
and socket configurations are deployed to fit different

operational requirements. For voting token validation, we
leverage a Request-Reply pattern in which REQ and REP
sockets were configured at the client and server, respectively.
Displayed as follows, the multipart message is constructed
and sent over tcp://127.0.0.1 : 3000, which is reserved for the
socket’s listening address.

Frame1 Voting Token (TE)

Frame2 Client’s PULL Socket Listening Address

HTTP Clients Blockchain Interface Blockchain

Tx1

Tx2

Processing
Transaction

Response
Discarded

Request Timeout
Connection

Closed

Connection
Closed HTTP Timeout

Timeout Case
Normal Case

Figure 7: Http request handling scheme in the case of connection timeout.

HTTP Clients Blockchain Interface Blockchain

Tx1

Tx2

Processing
Transaction

Request Failure
Connection

Closed

Tx3

Rejection due to
Read/Write Conflict

Transaction Rejection Case
Normal Case

Figure 8: Http request handling scheme in the case of transaction rejection.
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For ballot data submission, we leverage a Push-Pull
pattern in which PUSH and PULL sockets are configured on
the client and server, respectively. A single-framed message
containing voter’s selected candidate ID is sent over the pre-
agreed TCP port.

Frame1 Selected Candidate

For the REQ-REP socket pair, delay is measured in terms of
Round-Trip Time (RTT). )e equation can be written as
RTT� t1+ t2+P, where t1 and t2 are the message transmission
time from sender to receiver and from receiver back to sender,
respectively. P denotes the server processing time, which in this
test is set to be close to zero. )e measuring result shows an
average round-trip time of approximately 168.2917milliseconds.
For the PUSH-PULL socket pair, delay is measured in terms of
latency (L). )e equation can be written as Ln� In−On, where
On denotes the time when n-th message is emitted from PUSH
socket and In denotes the time when the receiving peer obtains
the completemessage data. Average latency in data transmission
between this socket pair is 6.642857milliseconds.

Message throughput can be measured by counting the
number of messages processed within a unit of time. Fig-
ure 10 displays the results after conducting 10 rounds of test
on each socket pair. An average throughput over the REQ-
REP socket is 4,297 messages per second, while the average
of the PUSH-PULL socket is 5,589 messages per second.

5.3.2. Blockchain Network. To measure performance of Raft
in comparison with other types of ordering services sup-
ported in Hyperledger Fabric 1.4, an architecture composing

of 2 organizations with a single peer each was set up.
LevelDB is used as peer’s state database. )e experiment was
conducted on Ubuntu 16.04 LTS with 2 CPU cores 2.80GHz
and 12,288MB of memory. Hyperledger Caliper [57] is
deployed as a performance measuring tool. As displayed in
Table 2, latency in transaction querying of Raft is close to
Solo, a single node ordering service recommended using in
only development environment. For production setting, the
crash fault-tolerant (CFT) multiordering services such as
Kafka and Raft are recommended. According to the results,
Kafka exhibits higher latency due to overhead resulted from
complex Zookeeper ensembles setup. Raft, on the other
hand, outperforms Kafka in both transaction types.

As mentioned in Section 4, two prototyped systems were
developed and deployed on two different settings: on single-
host docker network machine and on multihost Kubernetes
cluster. Hyperledger Caliper is deployed in a separated
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Figure 9: Data handling scheme in message queue (proposed model) in the case of transaction rejection.
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container/pod located within the blockchain network. Ta-
ble 3 displays transaction processing latency of Raft network
in both settings. )e results show that multihost setting
exhibits larger delay on both transaction types. Several ex-
ternal factors contribute to the delay in multihost include
location of each server in the cluster, network transmission
delay, differences in hardware of underlying physical ma-
chines, and so on. Nevertheless, overall performance is in
acceptable level and can be improved by adjusting network
configuration and/or hardware spec.

6. Conclusion

Exploiting distinct properties of blockchain and message
queue, an integrated model for e-voting is proposed with the
goal to protect voter’s privacy and present transparency and
efficiency in overall procedure. In order to preserve voter
anonymity, a single-use token is introduced for representing
one’s eligibility to vote within a specified time period. In order
to distribute the tokens, generation of short-term and long-
term key pairs following CurveCP protocol allows off-chained
data to be transferred securely to the designated receivers.
Once ballot packets reach blockchain nodes, transactional
actions will proceed corresponding with the pre-agreed
consensus. Role-based permissions are defined to restrict
nodes’ capabilities in accessing and altering blockchain states.

Results after performing scenario-based analysis and
performance testing on the prototypes show that the system
can perform well in production environment. In addition,
introduction of message queue as a data buffering and error
handler exhibits competitive advantages over other block-
chain-integrated patterns. Recently, many countries start
digitalizing their core business processes, and global-wide
development of digital identity infrastructure is expected to
be put into practice and officially accepted as identity rep-
resentation. With the use of digital ID in replacement of
central authentication server, reliability in voter authenti-
cation processes will be enhanced as inputting data from
corrupted sources is no longer permitted.
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