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With the advent of the intelligent era, more and more artificial intelligence algorithms are widely used and a large number of user
data are collected in the cloud server for sharing and analysis, but the security risks of private data breaches are also increasing in
the meantime. CKKS homomorphic encryption has become a research focal point in the cryptography field because of its ability of
homomorphic encryption for floating-point numbers and comparable computational efficiency. Based on the CKKS homo-
morphic encryption, this paper implements a secure KNN classification scheme in cloud servers for Cyberspace (CKKSKNNC)
and supports batch calculation.-is paper uses the CKKS homomorphic encryption scheme to encrypt user data samples and then
uses Euclidean distance, Pearson similarity, and cosine similarity to compute the similarity between ciphertext data samples.
Finally, the security classification of the samples is realized by voting rules.-is paper selects IRIS data set for experimental, which
is the classification data set commonly used in machine learning. -e experimental results show that the accuracy of the other
three similarity algorithms of the IRIS data is around 97% except for the Pearson correlation coefficient, which is almost the same
as that in plaintext, which proves the effectiveness of this scheme.-rough comparative experiments, the efficiency of this scheme
is proved.

1. Introduction

With the gradual maturity of various AI algorithms, data has
gradually become the basis of social operation, playing an
essential role in important areas such as economic invest-
ment, social management, scientific and technological de-
velopment, and national security. Large amounts of data are
uploaded to cloud servers from personal front-ends, social
networks, sensor networks, and the Internet for sharing and
analysis. With the development of cloud computing, many
artificial intelligence algorithms derived from large data have
been developed and widely used in various APPs. Major
manufacturers generate recommendation algorithms or
make price decisions by analyzing large data of user be-
havior, such as TikTok, Taobao, small videos recommended
by Meituan for users, commodities, and stores. Drip travel
also analyzes user travel segments to increase prices for older

users. As one of the classic algorithms for big data classi-
fication, the KNN algorithm realizes data classification by
calculating the similarity between the test data set and the
training data set. Because of the simple structure, high ef-
ficiency, and accuracy of the KNN algorithm, it is adopted in
various scenarios; for example, it is used in image recog-
nition, traffic classification, sensor detection, and especially
text classification. Commercial clouds such as Google,
Microsoft, and Amazon also provide related services. With
the popularity and application of cloud computing, large
numbers of users upload local data to cloud servers to enjoy
storage and computing services provided by cloud plat-
forms. However, the security of commercial clouds is often
not fully trusted [1–3]. As shown in Figure 1, various users
and cloud servers transmit various data and classification
results in network space, and the security of data needs to be
protected.
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In recent years, privacy leakage incidents such as
malicious collection and theft of user-sensitive privacy data
by APP have emerged one after another. In 2007, the Na-
tional Security Agency (NSA) and the Federal Bureau of
Investigation (FBI) launched the infamous “Prism” secret
surveillance project, which directly entered the central server
of the US Internet company to mine data and collect in-
telligence; nine international network giants including
Microsoft, Yahoo, Google, and Apple have participated in it.
In 2018, the Z. power risk monitoring platform detected
NASDAQ: HTHT data leak, involving sensitive and private
data of about 500 million citizens. In 2021, China Internet
Network Information Center issued a notice on the illegal
collection and use of personal information by 105 apps
including TikTok. Under this trend, people’s personal data
has gradually become another commodity, and many
manufacturers privately collect or even sell users’ personal
data. In the traditional KNN classification schemes [4–7],
the user uploads the local raw data to the cloud platforms for
storage and calculation, and then, the cloud platforms
compute the similarity between samples and return the
result to the user. However, for some highly confidential
data, such as personal privacy data, commercial confidential
data, medical privacy data, and national security data, once
these data are leaked or stolen, the consequences are un-
imaginable. -erefore, the core issue of this study is to
implement a secure privacy-preserving KNN classification
scheme efficiently and accurately in the cloud environment.
An effective solution for the secure KNN classification
scheme is to encrypt local data through a cryptographic
algorithm and compute the similarity on the ciphertext data.
However, due to the limitation of the encryption algorithm,
the computational overhead and storage overhead brought
by this solution are extremely large compared to plaintext
[8, 9]. First of all, the basic logic operations supported by
general encryption schemes are limited, and iterative al-
gorithms are needed instead. Second, some encryption
schemes are restricted by modulus reduction and can only
support a limited number of multiplications. Finally, tra-
ditional encryption schemes can only encrypt digits or
vectors one by one, requiring a lot of resources to store the

ciphertext. In 2017, Cheon et al. [10] proposed a scheme of
homomorphic encryption, CKKS, which supports real
number/complex number approximations. -is scheme has
the ability of homomorphic encryption for floating-point
numbers and comparable computational efficiency, which
has become a research focal point in the cryptography field,
and is widely used in machine learning and big data analysis.
To keep users’ privacy safely, ensure the security of data and
implement KNN classification safely and efficiently in the
cloud environment, and enable it to maintain computational
efficiency and classification accuracy in plain text fields, as
proposed by this paper, a secure KNN classification scheme
ground on the CKKS homomorphic encryption scheme in
cloud sever for Cyberspace (CKKSKNNC) will be presented.
We realize the computation of the similarity through the
Euclidean distance, Pearson correlation coefficient, and
cosine similarity, at last, to make the secure KNN classifi-
cation can operate in the domain of ciphertext, which can
avoid any user privacy data leakage.

2. Related Work

-e traditional KNN classification scheme is divided into
two types: one is to assign the same optimal K value for every
sample in the test [11–13], and the other is for different test
samples; the experts assign individual K values [14–17]. In
recent years, a lot of categories is designed based on the KNN
algorithm. In 2016, Deng et al. [18] first divided the data set
into several categories by K-means algorithm and then
classified them by KNN, which realized the efficient KNN
algorithm for big data. In 2017, Zhang et al. [19] came up
with a kTree method to effectively implement KNN classi-
fication with different neighbor numbers. In 2020, Zhang
et al. [20] designed two effective cost-sensitive KNN clas-
sifiers to classify unbalanced data. In 2021, Zhu et al. [21]
proposed an ML-KNN integration scheme which can realize
classification algorithm recommendations, and the scheme
can take advantage of the diversity of different data features.
Levchenko et al. [22] implemented a KNN query on a large
time-series database based on iSAX and sketch. In the
meantime, for protecting the users’ private data, researchers
also carry out a lot of research on how to perform KNN
classification on the ciphertext. As early as 2009, Wong et al.
[23] designed an asymmetric vector product preservation
encryption scheme (ASPE) to support KNN calculations on
encrypted data, which supports KNN computation of
encrypted data by retaining a special type of scalar product,
but the scheme assumes that the querying user is fully
trusted, which is not suitable for practical application in
complex network environments. In 2013, Zhu et al. [24]
proposed a secure KNN calculation scheme for encrypted
cloud data, and it does not need to share the key with the
querying user, but they increase the communication over-
head compared to the ASPE scheme. In 2014, Elmehdwi
et al. [25] proposed a secure KNN scheme in an outsourcing
environment based on the Paillier homomorphic encryption
scheme, which can query the data without leaking any in-
formation to the cloud server by using the feature of ho-
momorphic encryption and hides the query and data access
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Figure 1: Data transmission in network space.
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mode of users, but the computing cost is large. In 2015, Xia et
al. [26] proposed a secure dynamic multikeyword ranking
search scheme based on encrypted cloud data, which ach-
ieves sublinear search time and handles document deletion
and insertion flexibly with a special tree-based index
structure. Samanthula et al. [27] proposed a KNN classifi-
cation scheme, which can be used for encrypted data stored
in the cloud based on Paillier and multiparty security
protocol. In 2016 and 2017, based on the Paillier homo-
morphic encryption scheme, similarly, Kim et al. [28, 29]
designed a privacy protection KNN classification algorithm
using the tree index structure and Yao’s garbled code, re-
spectively. However, the KNN classification scheme based
on Paillier homologous encryption scheme is inefficient to
compute, has some limitations in calculation method, and
has a high computation cost. Li et al. [30] presented two
secure and effective dynamic searchable symmetric en-
cryption (SEDSSE) schemes for medical cloud data, they
combined the secure KNN scheme and ABE technology to
design a dynamic searchable symmetric encryption scheme
and a key sharing scheme, and they implement both forward
and backward privacy security and propose an enhanced
scheme to effectively solve the key sharing problem caused
by search encryption using KNN. In 2018,Wu et al. [31] used
Paillier and ElGamal encryption schemes to implement a
secure KNN classification scheme on a semantically secure
hybrid encrypted cloud database. Later, Liu et al. [32]
proposed a privacy protection KNN classification scheme in
the dual cloud model based on secret sharing and additive
homomorphic cryptography. In 2020, Parvin et al. [33]
developed an electronic medical record analysis system on
the blockchain based on KNN and LDA algorithms to
automatically and safely share medical data sets among
medical experts. In the same year, in order to realize the
classification of large-scale ciphertext data in distributed
servers, Yang et al. [34] proposed a vector homomorphic
encryption (VHE) scheme through constructing key
switching matrix and noise matrix and constructed a secure
distributed KNN classification algorithm (seed KNN) based
on it. Recently, Kim et al. [35] proposed an index-based
KNN query processing algorithm and improved query
processing efficiency through Yao’s garbled code and data
packaging technology. Liu et al. [36] achieved secure KNN
classification by a secure and efficient query processing
(SecEQP) scheme, which encodes location information
through a projection function and implements location-
based query processing based on the encrypted geospatial
data stored in the cloud.

3. Preliminaries

3.1. CKKS Homomorphic Encryption Algorithm. In 2017,
Cheon et al. [10] proposed a scheme of homomorphic
encryption, CKKS, which supports real number/complex
number approximations. -is article mainly analyzes
the CKKS homomorphic encryption algorithm. As shown
in Figure 2 which is drawn referring to Cheon’s Report
[10], the following describes the main algorithm flow of
CKKS.

Set safety parameters λ, and choose the power of two
integers N. Set distributions χkey, χerr, χenc for key, learning
with errors, and encryption on R � Z[X]/(XN + 1) indi-
vidually. To get a basic integer p and the number of levels L,
set the modulus of the ciphertext ql � pl(1≤ l≤ L), where l is
the level of ciphertext, then create an integer P at random,
and output pp � (N, χkey, χerr, χenc, L, ql):

(1) KeyGen(params)⟶ (pk, sk, ks, rkr, ck). Ran-
domly generate s⟵ χkey, and set private
keysk⟵ (1, s). Randomly generate a⟵U(RqL

)

and e⟵ χerr, set pk⟵ (−as + e, a) ∈ R2
qL
. Ran-

domly generate a′⟵U(Rq2/L) and e′⟵ χerr, and
set evk⟵ (−a′s + e′ + qLs2, a′) ∈ R2

q2/L.
(2) Encrypt(m, pk)⟶ ct. Randomly generate

r⟵ χenc and e0, e1⟵ χerr; output the ciphertext
ct � r · pk + (m + e0, e1)(mod qL).

(3) Decrypt(ct, sk)⟶ m. For ciphertext of level l,
compute and output the plaintext
m′ � 〈ct, sk〉(mod ql)′.

(4) Add(ct, ct′)⟶ ctadd. For the ciphertext ct, ct′ of
the same level l, compute and output the addition
result ctadd � ct + ct′(mod ql).

(5) Multks(ct, ct′)⟶ ctmult ct �(c0, c1), ct′� (c0′, c1′) ∈
R2

ql
. Compute (d0, d1, d2) � (c0c0′, c0c1′ + c0′c1, c1c1′)

(modql); output the result of ciphertext multipli-
cation ctmult � (d0, d1) + P− 1 · d2 · sk (mod ql).
Given that the CKKS encryption scheme has a nature
of being homomorphic, the cloud server computes
ciphertext equivalent to plaintext, which would
ensure both privacy of the user and the efficiency of
the encryption.

3.2. K-Nearest Neighbor. Proposed by Cover and Hart in
1968, KNN came into the public view quite some time ago
[37], and it ranks among the simplest algorithms for ma-
chine learning. Due to its simple structure and remarkable
classification performance, it became one of the most
popular algorithms in the data mining and statistics fields,
granting it a seat among the top ten data mining algorithms
[6], and is used very commonly in classification, regression,
and missing value interpolation and other fields [38–40]. At
present, many algorithms for machine learning have been
developed to better determine the value of k in the KNN
algorithm and the distance measurement algorithm. Being
one of the most classic data mining classification technology
algorithms, the main idea of the KNN nearest neighbor
classification algorithm is to establish the category objects to
be classified, based on the category of themajority of samples
in a certain range adjacent to the object to be classified. -e
working principle of the KNN nearest neighbor classifica-
tion algorithm is to compare the sample waiting for clas-
sification with the others which are of established categories
in the database, and to compute the similarity between these
two sets of different samples, and select the k samples of
known categories with the closest similarity to the sample to
be classified. According to the voting rule (minority obeys
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the majority), the category of the sample to be classified falls
in rank with the category which has the highest proportion
of the k-nearest samples. Suppose that we have samples of
known categories [(X1, Y1), (X2, Y2), . . . , (Xn, Yn)], whereX
represents the characteristic index of the sample, and Y
represents the category label of the sample. For a given
sample X′ to be classified, we select the k samples with the
highest similarity in the vicinity of X′, and these samples
vote for the category of X′ according to their own category.
-e category label with themost votes is called category Y′ of
X′, as shown in Figure 3.-e green dots represent samples to
be classified, and the blue squares and red triangles represent
the other two samples of known categories. When k� 3, the
proportion of red triangles in the nearest neighboring range
is 2/3, and the green dots are judged as red triangle samples.
When k� 5, the proportion of the blue square in the nearest
neighbor is 3/5, and the green dot is judged as a blue square
sample.

-e KNNmethod is more suitable than other methods in
the sample to be classified with more intersections or
overlaps in the class domain. -ere are many methods for
calculating similarity in the KNN algorithm, such as the
Euclidean distance, cosine similarity, Pearson correlation,
Manhattan distance, and Chebyshev distance. -e most
commonly used method is the Euclidean distance.

3.3. Ciphertext Matrix Transpose Operation. Since this
scheme is implemented in the TenSEAL homomorphic en-
cryption library, although TenSEAL provides the ciphertext
matrix multiplication function mul and the inner product
function dot, it does not provide a ciphertext transpose function.
-erefore, this part will introduce the process of transposing
ciphertext matrix in the TenSEAL homomorphic encryption
library. TenSEAL provides a very useful function reshape; its
function can be expressed as Am×n � A1×m∗n.reshape([m, n]).
Suppose that there is a ciphertext matrix Am∗n. First, the
transition matrix Dm∗n×m∗n is generated, and the transposition
process can be shown in Figure 4.

It can be seen that Am×n is converted to A1×m+n through
reshape([1, m + n]). Afterward, the internal elements are
rearranged through dot(Dm+n×m+n) and finally transposed
through reshape([n, m]).

3.4. Symbols andParameters. In order to show the algorithm
in this article more intuitively, we briefly introduce the
related symbols that are often used in this article, as shown in
Table 1. -e vectors are illustrated in lowercase bold letters
and the matrices are shown in uppercase bold letters. Add
enc_ in front to indicate the ciphertext form of the data.

4. System Models

4.1. Proposed Model. According to Figure 5, the
CKKSKNNC protocol model designed in this paper is
composed of two parts, namely, the user (USER) and the
cloud service provider (CSP). Among them, CSP can provide
remote storage and computing services for users, which is
“honest and curious”. Users have a large amount of local
data and enjoy the services provided by CSP. -e division of
labor of each part is as follows:

(1) USER: generate public and private keys locally,
encrypt data and upload them to CSP, and decrypt
ciphertext computation results

(2) CSP: provide remote storage and services for
computing for USER, with capable storage and

Homomorphic operations
(encrypted computation)

(pt-ct/ct-ct)
add,multi,rescale,rotation,etc.

encoding

decoding

(pk)
encrypt

(sk)
decrypt

Scaling factor

Scaling factor

Plaintext

Plaintext Ciphertext

Ciphertext

Message

Message

Figure 2: Ciphertext matrix transpose operation.

Figure 3: KNN algorithm example.
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computing capabilities, taking charge for
storing the ciphertext data uploaded by USER,
calculating the similarity between the encrypted
sample to be classified and other ciphertext
samples, and returning the ciphertext result to
USER

First of all, USER generates public and private keys
locally, encrypts locally known samples of classes, and sends
them to CSP. CSP accepts the ciphertext samples sent by
USER and stores them. When USER receives a new sample
to be classified, USER encrypts the sample to be classified
locally and delivers it to the CSP. -e CSP accepts and

1

0
0

0

1
0

0

0
0

0 0 1
0
0
0
1

a b
c d

a b c d

a c b d
a c
b d

2∗2 reshape ([1,4]) 1∗4

dot ()

2∗2

reshape ([2,2])

1∗4

Figure 4: Ciphertext matrix transpose operation.

Table 1: Notations.

Symbols Description
X Known category sample
X Standardized data sample
Y Category label of known category sample
X′ Sample to be classified
Y′ Category label of sample to be classified
xij, i ∈ [1, n], j ∈ [1, m] -e j-th feature index of the i-th sample
(pk, sk) Public and private key
result Similarity
d Euclidean distance
p Pearson correlation coefficient
c Cosine similarity

Cloud Server Provider

Decrypted
RESULT

User

DATA

Public Key

CKKS_Encrypt( )

CKKS_Decrypt( )

Encrypted
DATA

CKKSKNNC

Encrypted
RESULT

Secret Key

NETWORK

Figure 5: CKKSKNNC protocol model.
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computes the similarity between the encrypted sample to be
classified and other ciphertext samples in the server and
sends the ciphertext computation result to USER.-e USER
accepts the computation result from the CSP and decrypts
them. -en, the USER selects the nearest k samples and
obtains the category label of the sample to be classified
according to the voting rule.

4.2. Security Model. Since the CSP is “honest and curious”,
the transmission network may also be subject to malicious
attacks. -erefore, we list the following security issues that
may occur when users upload data to the cloud server for
KNN classification:

(1) CSP may strictly abide by the designed protocol, but
it can infer other additional information through the
information legally received in the process of the
protocol

(2) CSP attempts to steal USER’s public and private keys
and relies on stored ciphertext data samples to try
and decipher the USER’s plaintext data samples and
private keys

(3) During the transmission process between the user-
uploaded ciphertext data and the ciphertext result
returned by the cloud server, data samples may be
maliciously intercepted by hackers and be used to
crack the user’s sensitive data

5. System Algorithm

5.1. CKKSKNNC Framework. Assuming that the user has
sample data [(X1, Y1), (X2, Y2), . . . , (Xn, Yn)], which is
known categories to be uploaded locally, where
Xj � (x1, x2, . . . , xm)T, the system protocol framework is
shown in Figure 6.

According to the protocol framework, the protocol al-
gorithm is made up of two phases, namely, the data ini-
tialization phase and the classification phase. -e specific
operation procedures are listed as follows:

(1) Data initialization:

(a) First, USER standardizes the characteristic index
of local data samples; compute
xij � xij − xj/

�������
var(xj)


, i ∈ [1, n], j ∈ [1, m],

where xj � 1/n 
n
i�1 xijrepresents the average

value of the j-th characteristic index, var(xj) �

1/n − 1
n
i�1 (xij − xj)

2 represents the standard
deviation of the j-th characteristic index, then the
standardized data is a [(X1, Y1), (X2, Y2), . . . ,

(Xn, Yn)], the average value of its characteristic
index is 0, the variance is 1, and it is dimen-
sionless. b. USER generates public and private
keys locally (pk, sk) and encrypts the charac-
teristic index and category labels in the original
data and standardized data, respectively,
get(enc_X, enc_Y)and(enc_X, enc_Y), and up-
load both to CSP for storage.

(2) Classification

(a) After receiving the new sample X′ to be classi-
fied, USER first standardizes its characteristic
index to obtain X′, then uses the public key pk to
encrypt it to obtain enc_X′, and sends the
encrypted result to the CSP as a query matrix.

(b) After receiving the query matrix, the CSP
computes the similarity enc_result in the ci-
phertext between the sample waiting for classi-
fication and others that are of other known
categories and returns it to USER.

(c) USER decrypts enc_result, selects the top k
samples with the highest similarity, and obtains
the category label Y′ of the sample to be classified
according to the voting rule.

5.2. Security Similarity Calculation. In the process of data
mining and data analysis, there are many methods to
measure the differences between samples. In the
CKKSKNNC protocol, this paper uses the Euclidean dis-
tance, Pearson correlation coefficient, and cosine similarity
to measure the similarity between samples.

5.2.1. Euclidean Distance. -e Euclidean distance [41] is the
most popular similarity measurement method. It has been
widely used in various scenes such as face recognition. -e
traditional Euclidean distance computation method is to
directly calculate the absolute distance between each point in
the multidimensional space and the Euclidean distance
between samples through the matrix inner product [42].
Two methods for calculating the Euclidean distance are
introduced below. Method 1: since the ciphertext encrypted
by the CKKS homomorphic encryption algorithm cannot be
directly squared, the distance is not squared, and the ci-
phertext distance between the sample to be classified and the
sample of the category is

enc_d1 � enc_X′ − enc_X( 
2

� 
n

i�1
enc Xi
′ − enc Xi( 

2
.

(1)

As the distance grows smaller, the similarity of the
samples becomes higher. Method 2: before uploading data,
USER computes X∗′ � (1, X′T X′, XT

)T and
X∗ � (XT

, X, 1 − 2XT
)T, respectively, and uploads data to

CSP after being encrypted. CSP can directly compute the
ciphertext distance between two samples through the inner
product:

encd2 � enc XT

∗enc X∗′

� encX′
TencX′ + enc XTencX − 2enc X′TencX

� encX′ − encX 
2
.

(2)

-e result of this method is the same as that of the first
method. Although it increases the computational com-
plexity, it can be batch-processed computation.
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5.2.2. Pearson’s Correlation Coefficient. Since the magnitude
of the different characteristic index of the sample has a
greater impact on the Euclidean distance, in some appli-
cations, people often choose the Pearson correlation coef-
ficient [43] that is not sensitive to the magnitude to measure
the similarity between samples. -e data sample has been
standardized before uploading to the CSP; the computation
process is as follows:

enc p �
(enc X − enc X)

T enc X′ − enc X′ 

||enc X − enc X|| enc X′ − enc X′







,

�
enc XTenc X′

n − 1

(3)

5.2.3. Cosine Similarity. -e angle cosine similarity is like the
Pearson correlation coefficient and insensitive to the magni-
tude of the characteristic index. It is often used in the

computation of text similarity, but it needs to be computed on
the original data. It measures the similarity by calculating the
cosine of the angle between both samples in the vector space.
And the method pays more attention to what is different from
the direction of one vector to another, rather than the distance
measurement. Similarly, because the CKKS ciphertext cannot
be directly used for square rooting, the cosine similarity
computation process in the protocol is as follows:

enc c �
enc X′Tenc X
enc X′





||enc X||

⎛⎝ ⎞⎠

2

,

�
enc X′Tenc X 

2

enc X′Tenc X″  enc XTenc X 

.

(4)

In terms of actual implementation, the CKKS ciphertext
cannot be directly performed division operations, so the CSP
will actually return the two values of (enc X′Tenc X)2 and

Encrypt local data:
Encrypt:

Generate the private
and public key pair:

KeyGen:

Standardization:
Data Standardization:

USER CSP

�e encrypted data:

Standardization&Encrypt:
Standardize and encrypt
samples to be classified:

�e encrypted samples to be classified:

�e encrypted samples to be classified:

Tags:
Decrypt and
get Tags:

Classification

Initialization

Storage

Similarity:
Calculating
the similarity
in ciphertext:

[(X1,Y1),(X2,Y2),...,(Xn,Yn)]~ ~ ~

(Pk,sk)

(enc_X,enc_Y)

(enc_X,enc_Y)

~
(enc_X,enc_Y)

~
(enc_X,enc_Y)

~
enc_X′

~
enc_X′

~
enc_X′

enc_result

Y′

Figure 6: CKKSKNNC protocol framework.
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(enc X′Tenc X′)(enc XTenc X) to the USER, and the
USER will decrypt it and perform the division on the
plaintext.

5.3. Batch. Assume that CSP stores ciphertext samples of
known category [(enc X1, enc Y1), (enc X2, enc Y2), . . . ,

(enc Xn, enc Yn)], when USER uploads multiple ciphertext
samples to be classified [enc X1′, enc X2′, . . . , enc Xq

′], CSP
needs to compute the similarity between each sample to be
classified and each sample of a known category, and the
encryption method is determined by the method of calcu-
lating the similarity.

5.3.1. Euclidean Distance. When CSP uses the Euclidean
distance method 1 to compute similarity, batch processing
cannot be performed. USER needs to encrypt each sample
separately, and CSP needs to separately compute the ci-
phertext similarity between each sample to be classified and
all of the other samples of known categories and returns the
similarity matrix enc D1 � [enc dij], i ∈ [1, n], j ∈ [1, q],
where enc_dij is the similarity between the i-th known
category sample and the j-th sample to be classified. When
CSP uses the Euclidean distance method 2 to compute
similarity, USER can directly encrypt the plaintext matrix
of the sample to be classified and obtain the
ciphertext matrix enc X′ � [enc X1′, enc X2′, . . . , enc Xq

′],
CSP computes[(enc X∗)1, (enc X∗)2, . . . , (enc X∗)n],

[(enc X∗′)1, (enc X∗′)2, . . . , (enc X∗′)q], and similarity
matrix is enc D2 � [enc dij] � (enc X∗)

T(enc X∗′), i ∈
[1, n], j ∈ [1, q], where enc_dij is the similarity between the
sample of i-th from a known category and the sample of j-th,
which is yet to be classified.

5.3.2. Pearson’s Correlation Coefficient. Similar to the
above, CSP computes the similarity matrix enc P �

[enc pij] � (enc X)T(enc X′)/
������
(n − 1)


∗

������
(q − 1)


, i ∈

[1, n], j ∈ [1, q], where enc_pij is between the sample of i-th
from a known category and the sample of j-th, which is yet to
be classified.

5.3.3. Cosine Similarity. When CSP uses cosine similarity to
compute similarity, CSP first generates unit diagonal
matrix Λn×n

1 和Λ
p×p
2 , vector e1 � [1, 1, . . . , 1]1×n, ande2 �

[1, 1, . . . , 1]1×p; then, compute the distance matrix
L � (enc XTenc X).mul(Λn×n

1 ).dot(e1) and L′ � (enc X′T

X′)enc.mul(Λn×n
2 ).dot(e2). Finally, compute the similarity

matrix enc C � [enc cij] � (enc XTenc X′)2/LTL′, i ∈ [1,

n], j ∈ [1, q], where enc_cij is the similarity between the
sample of i-th from a known category and the sample of j-th,
which is not yet classified; CSP returns (enc XTenc X′)2and
LT&L′ to the USER.

6. Security Analysis

According to the protocol model of CKKSKNNC, since the
CSP is ‘honest and curious’, the USER’s private key is only
stored locally, and the CSP is only in charge of storing data

and computing the user-uploaded ciphertext data; both the
public and the private central information of the USER
cannot be obtained. -e security definition of the semi-
trusted model is listed as follows.

Definition (security of semitrusted model): assume
function f(x, y), where f1(x, y) and f2(x, y) are, re-
spectively, the first and second elements of f(x, y). Assume
that Γ is a two-party protocol used to compute f(x, y).
PARTY1(x, y) is a role that implements the Γ protocol,
where PARTY1(x, y) � (x, r, p1, p2, . . . , pt), x represents
input, r represents randomness, and pi represents the i-th
data accepted. Also PARTY1(x, y) � (y, r, p1, p2, . . . , pt) is
available. If there exists probabilistic polynomial-time al-
gorithms V1 and V2, such that

V1 x, f1(x, y)( ⟼PARTY1(x, y),

V2 y, f2(x, y)( ⟼PARTY2(x, y),
(5)

where computational indistinguishability is represented by
⟼ , it is said that computing f(x, y) is secure when Γ
protocol is against semitrusted adversary.

Theorem 1. Under the semihonest model, CKKSKNNC is
provably secure. CSP fails to obtain any helpful information
from the stored data set or query matrix.

Proof. In the protocol, the data set and query matrix that
CSP can obtain are transmitted in the ciphertext.-e view of
CSP is PARTY � (e1, e2, . . . , en), where ei are all ciphertexts
and n is the number of ciphertext data that CSP can access.
We can design a simulator V to simulate the USER view and
then set V � (r1, r2, . . . , rn), where ri are all random
numbers. Since CKKS homomorphic encryption scheme is a
semantically secure encryption scheme, V is computation-
ally no different from PARTY. -us, under the semihonest
model, CKKSKNNC is provably secure, and CSP cannot
gain any helpful information from the stored data set and
query matrix. □

Theorem 2. Assume that CSP and other attackers cannot
perform key recovery attacks on stored or stolen ciphertext
data and computation results, so they cannot recover the
user’s original data and keys.

Proof. According to the protocol algorithm, in the trans-
mission process, USER’s sample data, category label, and
query matrix are all transmitted in the form of CKKS ci-
phertext. Its security is protected by the CKKS homomor-
phic encryption scheme, which grants security, and security
is resolved by its own algorithm. -erefore, the CSP cannot
restore the original user data and keys through the stored
user data and intermediate computation results. In the
process of returning the result, the similarity computation
result is transmitted to the user in ciphertext for decryption,
so the attacker cannot recover the user’s original sensitivity
from the intercepted ciphertext data during the process of
transmission and the data in the stolen cloud server data. In
addition, no matter what method is used to compute the
similarity, multiplications only need 3 times at most.
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-erefore, the CKKSKNNC protocol algorithm does not
have additional special requirements for the parameters of
the CKKS encryption scheme. □

7. Experimental Test

With the aim of well testing the potency of the scheme in a
proposition, we conduct our experiments on Windows10
operating system with Intel® Core™ i7-7700HQ CPU @
2.80GHz/16GB RAM, using PyCharm 2020.1.1× 64 to call
TenSEAL-0.1.4 library to implement the CKKS encryption
scheme, take poly_ modulus_ degree� 8192, coeff_ mod_
bit_ sizes� [50, 30, 30, 50], scale� 30 as the parameter of
CKKS homomorphic encryption scheme, and test on IRIS
data set.

7.1. Efficiency of Similarity Calculation. In this part, we test
the computational efficiency of different similarity algo-
rithms. We randomly selected 100 groups of IRIS data set as
the known class samples and randomly selected the
remaining 10, 20, 30, 40, and 50 groups of samples as the
samples to be classified to form the test set, recorded the time
to compute the similarity on the ciphertext, and recorded the
results of 30 experiments, and the average value is regarded
to be the final experimental data. -e computational effi-
ciency of the four similarity algorithms is shown in Figure 7.

In this part, we did not record the time to compute the
transposition of the ciphertext matrix, because we make
matrix transposition default as preprocessing work. It shows
that as the number of samples to be classified in the test set
increases, the computation costs of the four similarity al-
gorithms increase linearly. Among them, the Euclidean
distance 2 has the highest computation efficiency, and cosine
similarity computation has the lowest efficiency because it
performs more cipher multiplications. But it is worth
mentioning that the ciphertext in the Euclidean distance 1
uses the CKKS_Vector data type, and other methods use the
CKKS_Tensor data type. -e storage overhead of different
test sets is shown in Table 2 (unit: byte).

It shows that, with the rising amount of samples, the
ciphertext data set of CKKS_Vector type occupies a linear
increase in memory and occupies more memory than the
same number of ciphertext data sets of CKKS_Tensor type,
while the ciphertext data set of CKKS_Tensor type occupies a
constant memory change. -erefore, when dealing with big
data, try to avoid using the Euclidean distance 1 and cosine
similarity to compute the similarity.

7.2.Accuracy of SimilarityCalculation. In this part, we take a
random number of samples to be classified between 35 and
45 as the data set and test the classification accuracy of the
four similarity algorithms when k� 3, 5, 7, and 9, respec-
tively. We record the results of 30 experiments and take the
average value as the final experimental data. -e compu-
tation accuracy of the four similarity algorithms is shown in
Figure 8.

It shows that the accuracy of the Euclidean distance and
cosine similarity is stable at about 97%, but the accuracy of

the Pearson correlation coefficient is as low as about 65%.
-erefore, when doing the KNN classification algorithm, try
to avoid using the Pearson correlation coefficient to compute
similarity degree.

7.3. Comprehensive Performance Comparison. Because the
mature security KNN classification schemes applied in the
market are ground on the Paillier homologous encryption
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Figure 7: Computation efficiency of four similarity algorithms in
different test sets.

Table 2: Storage costs for different sample sizes.

Type\samples 10 20 30 40 50
CKKS-vector 192 264 344 432 528
CKKS-tensor 56 56 56 56 56
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Figure 8:-e accuracy of the four similarity algorithms in different
k values.
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scheme, we test the efficiency and accuracy of computing the
Euclidean distance in the Paillier and CKKS homologous
encryption schemes with the same encryption parameters
and in plain text. It should be emphasized that since the
CKKS scheme is implemented in the TenSEAL homologous
encryption library, which encapsulates the seal encryption
library based on C++ into a dynamic library called python,
the speed of the CKKS scheme depends on the efficiency of
the sealed library in C++. -erefore, we did a comparative
experiment in C++ with the Paillier homologous encryption
scheme by calling NTL and GMP libraries with encryption
parameter |N|� 1024. First, we compare the computational
efficiency of the three schemes. We randomly selected the
remaining 10, 20, 30, 40, and 50 groups of samples as the test
set to be classified and calculated the similarity time as
shown in Figure 9.

Clearly, the efficient CKKS schemes are more com-
putational and closer to plain text than the Paillier
schemes, and CKKS can support batch processing of data.
In the encryption mode, the CKKS scheme can
directly encrypt the data matrix, while the Paillier scheme
can only encrypt numbers one by one and does not
support floating-point operation. -en, we put together,
in comparison, the accuracies of the three different
schemes. We take a random number of samples to be
classified between 35 and 45 as a dataset and test the
classification accuracy of the four similarity algorithms at
k � 3, 5, 7, and 9, respectively. -e result can be found in
Figure 10.

It is evident that whether the CKKS scheme or the
Paillier scheme is used for security calculation, the calcu-
lation accuracy is not different from that calculated directly
in plain text. We then tested the storage costs of the three
schemes in datasets with different sample sizes, as shown in
Table 3 (in bytes).

As the number of samples goes up, the encrypted dataset
of the CKKS scheme occupies the least memory and remains
unchanged, but the Paillier scheme and the plain scheme
occupymorememory and increase linearly.-e secure KNN
classification algorithm that chooses the CKKS scheme to
process large data has absolute advantages.

8. Conclusions

To protect sensitive privacy data of cloud servers and users
during transmission while meeting classification accuracy
and computational efficiency requirements of classification
algorithms, this paper implements a secure KNN classifi-
cation scheme in ciphertext domain for Cyberspace
(CKKSKNNC), based on the KNN classification scheme and
CKKS algorithm. We use the TenSEAL homomorphic en-
cryption library to implement the CKKS homomorphic
encryption scheme and select two schemes of the Euclidean
distance, Pearson correlation coefficient, and cosine simi-
larity as the algorithm for calculating similarity in the KNN
classification algorithm and test the computational effi-
ciency, storage cost, and classification accuracy of the four
similarity algorithms on IRIS data set.-rough experimental
tests, we found that the Euclidean distance Scheme 1 has the
largest storage cost, the computation efficiency of cosine
similarity is the lowest, and the classification accuracy of
Pearson’s correlation coefficient is the lowest. Nevertheless,
the specific algorithm used as the similarity algorithm varies
depending on the specific data.
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Figure 9: Computing efficiency of two encryption schemes in
different test sets.
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Figure 10: -e accuracy of three schemes in different k values.

Table 3: Storage costs for different sample sizes.

Type\samples 10 20 30 40 50
CKKS-tensor 56 56 56 56 56
Paillier 144 224 304 384 464
Plaintext 144 224 304 384 464
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