
Research Article
Latency-Aware Computation Offloading for 5G Networks in
Edge Computing

Xianwei Li and Baoliu Ye

Hohai University, Information Department, School of Computer and Information, Nanjing 21106, China

Correspondence should be addressed to Xianwei Li; lixianwei@njxzc.edu.cn

Received 30 July 2021; Revised 27 August 2021; Accepted 4 September 2021; Published 22 September 2021

Academic Editor: Xuyun Zhang

Copyright © 2021 Xianwei Li and Baoliu Ye. .is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the development of Internet of .ings, massive computation-intensive tasks are generated by mobile devices whose limited
computing and storage capacity lead to poor quality of services. Edge computing, as an effective computing paradigm, was
proposed for efficient and real-time data processing by providing computing resources at the edge of the network..e deployment
of 5G promises to speed up data transmission but also further increases the tasks to be offloaded. However, how to transfer the data
or tasks to the edge servers in 5G for processing with high response efficiency remains a challenge. In this paper, a latency-aware
computation offloading method in 5G networks is proposed. Firstly, the latency and energy consumption models of edge
computation offloading in 5G are defined..en the fine-grained computation offloadingmethod is employed to reduce the overall
completion time of the tasks. .e approach is further extended to solve the multiuser computation offloading problem. To verify
the effectiveness of the proposed method, extensive simulation experiments are conducted. .e results show that the proposed
offloading method can effectively reduce the execution latency of the tasks.

1. Introduction

With the development of wireless communication tech-
nology and the Internet of .ings (IoT), a variety of
emerging applications, such as intelligent access control
based on facial recognition, path planning, and virtual re-
ality, meet the needs of people and provide great conve-
nience [1, 2]. However, these applications are usually
resource-hungry and delay-sensitive while the physical
limitations and the computing power of the mobile devices
cannot undertake such applications [3, 4]. Mobile cloud
computing is seen as an effective solution to provide com-
puting resources for resource-constrained mobile devices. By
offloading computing-intensive tasks to resource-rich cloud
data centers for execution, the computing capabilities of
mobile devices can be greatly expanded [5, 6].

5G is a major leap in the development of mobile
communications [7]. 5G networks deploy ultra-dense dis-
tributed networks in small cell infrastructures to provide
continuous connectivity [8, 9]. However, this does not mean

that the requests of many users can be satisfied at the same
time, because most of the computing tasks of applications
are deployed in centralized data centers for execution. With
the explosive growth of IoT devices in the 5G era, there will
be massive computing tasks to be migrated to cloud data
centers for executing, causing extreme pressure for the
Internet and bringing high network latency. At the same
time, the long distance between mobile devices and cloud
data centers will also cause unpredictable delays [10–12].

In 5G mobile edge computing, how to offload applica-
tion services reasonably and content to the edge network is a
key issue. Compared with traditional cloud data centers,
edge servers are constructed by machines with limited re-
sources and use appropriate strategies to offload services to
edge servers [13–15]. In 5G, multiple heterogeneous edge
servers can be deployed in the edge network to provide
computing services to different users [16, 17]. As a new
network paradigm, Software Defined Network (SDN)
can realize the logical centralized control of distributed
user equipment [18]. Each user equipment transmits its

Hindawi
Security and Communication Networks
Volume 2021, Article ID 8800234, 15 pages
https://doi.org/10.1155/2021/8800234

mailto:lixianwei@njxzc.edu.cn
https://orcid.org/0000-0001-8734-5682
https://orcid.org/0000-0003-1065-449X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8800234

task-related information to the SDN controller at the be-
ginning that can take appropriate methods from a global
perspective to determine where and when to perform these
tasks belonging to different users [19, 20].

Considering the increasing complexity of IoT applica-
tions in the 5G era, the tasks of a single application are often
composed of a series of subtasks. Initially, the task is
decomposed into multiple subtasks to support multi-
threaded processing and improve the efficiency of task ex-
ecution [15]. Most of the existing research treats tasks as a
whole and ignores the connection of internal subtasks. Using
subtasks as the unit of computation offloading and per-
forming fine-grained computation offloading, the parallel
processing of certain subtasks can be realized, thereby
further reducing the delay of tasks [16, 21].

Based on the above observation, a latency-aware com-
putation offloading method is proposed. .rough analyzing
the dependencies between subtasks, the method rationally
arranges scheduling between subtasks and executes fine-
grained computation offloading to solve the delay problem
caused by increasing computing demands. Specifically, the
main contributions of our work are as follows:

(i) Propose a latency-aware computation offloading
method in 5G networks which effectively reduces
the overall completion time of the tasks.

(ii) Sovle the multiuser computation offloading prob-
lem by extending fine-grained computation off-
loading method with designed algorithm.

(iii) .rough extensive simulation experiments, our
proposed offloading method can effectively reduce
the execution latency of the tasks.

.e rest of the paper is organized as follows: Section 2
describes related work. In Sections 3 and 4, the goal of
reducing the delay of tasks is raised and the algorithms for
computing offloading decision-making are proposed. Ex-
periments are conducted in Section 5. In Section 6, we
conclude this paper.

2. Related Work

In recent years, many IoT applications need to be offloaded
to the cloud data center for processing..e emergence of 5G
has accelerated this process and further increased the de-
mand for computation offloading [22]. To solve this
problem, edge computing, as an effective computing para-
digm, is widely used in 5G networks for computing off-
loading. By providing computing and storage resources at
the edge of the network, task waiting time is reduced and
user experience is better [23–25].

Most of the current research on edge computing off-
loading focuses on optimizing certain specific goals through
reasonable computing offloading strategies. Jararweh [26]
proposed a framework based on edge computing, using the
expanded computing power of edge computing and 5G to
effectively manage and optimize the energy cloud system,
while improving its reliability and safety. Li et al. [27] studied
Mobile Edge Computing (MEC) of Unmanned Aerial

Vehicle (UAV) and maximized energy efficiency of un-
manned aerial vehicles to achieve the smallest UAV energy
consumption by optimizing UAV trajectory, user trans-
mission power, and computing load distribution. Merluzzi
et al. [28] proposed an energy-saving algorithm for dynamic
computing offloading in multiaccess edge computing sce-
narios, using limited block length and reliability constraints
to consider Ultra Reliable Low-Latency Communication
(URLLC). .e proposed algorithm is based on stochastic
optimization, which achieves the best balance between
service delay and energy spent on mobile devices while
ensuring the target probability of service interruption. Yang
et al. [29] built a multi-UAV-assisted mobile edge com-
puting system to provide computing offloading services for
terrestrial IoT nodes with limited local computing capa-
bilities. To balance the load of UAVs, a multi-UAV de-
ployment mechanism based on Differential Evolution (DE)
is proposed. It uses a near-optimal algorithm to solve the
decisions of computation offloading. It guarantees coverage
constraints and satisfies the IoT node Quality of Service
(QoS) while achieving load balancing of these drones.

.e 5G network based on edge computing has advantages
in effectively offloading large-scale traffic, which is a promising
architecture to alleviate the conflict between transmission
performance and Quality of Experience (QoE). However, due
to the mutual interference between wireless channels in the 5G
network, it is difficult to provide satisfactory services to mobile
users with existing solutions. .erefore, the optimal method of
edge offloading in the 5G network has caused more and more
research. Cao et al. [30] proposed a reliable and efficient
multimedia service optimization framework. First, a reliable
video service mechanism was constructed to help mobile users
to distinguish between credible and economical services.
Second, an effective wireless resource allocation strategy was
established, using the Stackelberg model and other potential
game models to achieve low-latency and energy-efficient video
service optimization. In addition, Yang proposed a joint op-
timization scheme for task sharing and resource allocation in a
5G communication network based on edge computing. First,
three modes for processing computationally intensive tasks are
proposed, including local computing, fuzzy node computing,
and edge node computing. For these three computing modes,
the problem of computing task offloading is transformed into a
joint optimization problem of time and energy consumption,
and the authors used the interior point method to solve this
problem. Yang [31] studied the computing offloading and
subcarrier allocation problems in the MEC system based on
multicarrier NOMA and used a deep reinforcement learning
method for online computing offloading to solve this problem
and greatly improve the computing speed of the MEC system.

For edge computing offloading, latency is a key indi-
cator, and latency-aware edge computing offloading issues
have gradually become a current research hotspot [32, 33].
To solve the problem how to generate the best mix of suitable
microservices for applications in the mobile edge computing
environment, Xia et al. [34] first attempted to study the Data,
User, and Power Allocation problem in the edge environ-
ment and proposed a two-stage game theory decentraliza-
tion algorithm to achieve the Nash equilibrium as the

2 Security and Communication Networks

solution, which maximizes the user’s overall data rate. Harris
et al. [35] defined the problems of virtual network function
placement and distribution and provided algorithms with
guaranteed performance to realize the placement of delay-
sensitive services in appropriate network locations according to
the specific needs and related requirements of each service. In
response to the need for Mobile edge orchestrator (MEO) to
expand capacity on many devices, Nguyen et al. [36] proposed
a fuzzy-logic based MEO that separates tasks from mobile
devices and maps them to the cloud servers and edge servers,
reducing the delay of task processing. Specially, the fuzzy-based
MEO was employed to make multi-criteria decision-making
which selects the appropriate host to perform tasks by con-
sidering multiple parameters in the same framework and find
the optimal task segmentation strategy.

Although there was some work dedicated to solving the
optimization problem of edge computing offloading in 5G,
there is still relatively little work on latency-aware edge
computing offloading while network delay is a key re-
quirement for some delay-sensitive programs..erefore, the
delay-aware edge computation offloading method takes
delay as the main optimization goal and reduces the total
delay of task execution as much as possible to meet the needs
of delay-sensitive tasks in 5G.

3. Models and Problem Definition

.e delay and energy consumption models of edge com-
putation offloading in 5G network are analyzed in this part,
followed by the problem definition. .e main symbols used
in this section with their descriptions are shown in Table 1.

3.1. %e Delay Model. Due to different task migration
strategies, the delay of completing the task is also different,
so the time delay is computed separately according to dif-
ferent computation offloading methods. Figure 1 illustrates a
system framework for edge computing. In this framework,
we consider a scenario where “S edge servers as providers of
computing resources cover N mobile devices” has been
changed to “S edge servers, as providers of computing re-
sources, cover N mobile devices.” Each mobile device can
execute the task locally according to the specific situation or
upload the task to edge servers, but only one migration
strategy can be selected for a task.

For tasks executed locally, since data transmission is not
performed, the time delay includes only the local execution
delay. For the subtask ti,j on the specific user equipment ui,
the calculation method of local execution delay is as follows:

T
local
i,j �

ci,j

fi

, (1)

where fi represents the computing capability of the user
equipment ui.

For tasks that need to be migrated to the edge server, the
time delay is divided into three parts: transmission delay,
execution delay, and queuing delay. .e computation
method for the transmission rate ri,j between a certain user
equipment ui and the edge server ej is as follows:

ri,s � B log2 1 +
hi,spi

σ +
N
i′�1,ai�a

i′
hi′ ,spi′

⎛⎝ ⎞⎠, (2)

where B is the channel bandwidth, hi,s represents the channel
gain between user equipment i and edge server s, pi represents
the transmission power of user equipment ui, σ represents the
basic noise power of the transmission channel, and

N
I′�1,ai�a

I′
hI′ ,spI′ represents the wireless interference caused

by other user equipment that transmits tasks to ej.
.e transmission delay of sending the subtask ti,j from

the user equipment ui to the edge server es is as follows:

T
trans
i,j � di,j ·

1
ri,s

. (3)

Since the computing power of different edge servers is
different, the execution time of tasks on different edge
servers is also different. .e execution delay of tasks ti,j is as
follows:

T
exec
i,j �

ci,j

f
s
i

, (4)

where fs
i represents the computing power of the edge server

es.
.e queuing delay of task ti,j depends not only on the

execution completion time of the predecessor task, but also on
themigration strategy of tasks on other devices..erefore, the
queuing delays obtained by various algorithms are different
and since the start time and end time of each subtask are not
fixed, they change according to the execution of the specific
task. Two variables EST and EFTare defined for each subtask
to represent the objective function. EST(j, s) represents the
earliest execution time when the j-th subtask is offloaded to
the edge server es while EFT(j, s) represents the earliest
completion time of the j-th subtask in the edge server. .e
value 0 of EST is set for the first subtask which means that the
subtask should be executed on the user’s device.

.e EST and EFT computations of other subtasks are
computed recursively since the first subtask. To compute
the EST of a subtask, the offloading strategy of all pre-
decessor tasks of the subtask must have been determined
and the computation must base on the completion time of
the precursor task. Specifically, the EST of a subtask is as
follows:

EST(j, s) � max T
avail
s , max EFT j′(+ Cj,j′ j′ ∈ pred(j)(,

(5)

where Tsavail represents the time that the edge server es is idle,
and Cj,j’ represents the data transmission delay from the
subtask ti,j’ to ti,j’, expressed as

Cj,j′
�

0, ai,j � ai,j′
,

T
trans
i,j′ , otherwise.

⎧⎪⎨

⎪⎩
(6)

After the scheduling strategy of the subtask is deter-
mined, the EFT of the subtask is computed according to the
execution time of the task:

Security and Communication Networks 3

EFT(j) �
EST(j, 0) + T

local
i,j , ti,jare executed locally,

EST(j, s) + T
exec
i,j , otherwise.

⎧⎪⎨

⎪⎩

(7)

For a task ti, its completion time is determined by the EFTof
its last completed task. .e computation method is as follows:

T
finish
i � EFT(last) + T

local
last . (8)

Since the last task is usually to collect and process
computation results, it is generally executed locally on the
user device, and Tlocal

last is used to represent the execution
time of the last task, so as to obtain the end time of the
entire task.

3.2. %e Energy Consumption Model. .e energy con-
sumption of the user equipment ui mainly includes two
parts, which are the execution energy consumption caused
by the execution of tasks on the user equipment and the

transmission energy consumption of offloading the tasks to
the edge server.

If the task ti,j decides to be executed locally, the execution
energy consumption is as follows:

E
local
i,j � δi · ci,j, (9)

where δi is the energy consumption of per unit CPU cycle of
the user equipment ui.

If task ti,j decides to migrate to the edge server es for
execution, the corresponding transmission energy con-
sumption is as follows:

E
trans
i,j � pi · di,j ·

1
ri,j

. (10)

.e total energy consumption of task ti is determined
according to the different migration strategies of each
subtask. Set a binary variable flagj to indicate whether the j-th
subtask is to be migrated. .e computation method is as
follows:

Data center

Edge
servers

User devices

Figure 1: .e architecture of computation offloading for 5G networks in edge computing.

Table 1: Symbols and corresponding descriptions.

Symbol Description
ci,j .e number of CPU cycles required to execute ti,j
di,j Input data volume of subtask ti,j
Tlocal

i .e execution delay of the subtask ti,j in the local execution
Ttrans

i,j Transmission delay of subtask ti,j
Texec

i,j Execution delay of subtask ti,j after migration
fi .e computing power of the user’s device ui
ri,j Transmission rate between ui and ej
B .e bandwidth of the transmission channel
hi,j Channel gain between user equipment i and edge server j
Elocal

i,j Execution energy consumption of subtask ti,j executed locally
Etrans

i,j Transmission energy consumption of subtasks
EST .e earliest start time when the subtask gets the execution
EFT Earliest completion time of subtask execution

4 Security and Communication Networks

flagj �
0, ti,j are executed locally,

1, ti,j are executed in edge servers.
⎧⎨

⎩ (11)

.e total energy consumption of task ti is as follows:

E
total
i �

M

j�1
flagj · E

trans
i,j + 1 − flagj · E

local
i,j . (12)

3.3. Problem Definition. .is research aims to find a set of
edge computing offloading strategies to minimize the time
delay while meeting the constraints of user equipment on
energy consumption. .e problem is formalized as

min
N

i�1
T
finish
i , (13)

s.t. E
total
i ≤Li, (14)

where Li represents the battery power of the user equipment
ui. Equation (14) indicates that the energy consumption of
the user equipment to perform tasks cannot exceed the
power of the user equipment.

4. Algorithm Design

In this section, based on the problem of computing off-
loading in the edge network proposed in the previous
chapter, a delay-aware optimization algorithm is pro-
posed. Because the execution effect of the entire task
depends on the scheduling strategy of each subtask and the
dependencies between the subtasks, a method for selecting
the optimal offloading strategy for each subtask is pro-
posed, and then the optimal scheduling strategy for the
entire task is obtained. To better cope with the computing
offloading needs of multiple users, the proposed com-
puting offloading strategy selection algorithm is further
expanded, so that it can solve the problem of computing
offloading decision-making in a multitasking environ-
ment. At the same time, to cope with the possible delay in
the unknown network environment, the proposed method
is further improved.

4.1. %e Subtask Selection Algorithm. How to choose the
most suitable subtasks for computational offloading requires
solving the following two problems. First, because different
subtasks have different benefits for computing offloading,
how to determine which subtasks can be offloaded from the
topological graph of the computing task. Second, what kind
of subtask offloading combination can provide greater po-
tential performance. .erefore, it is necessary to analyze the
topological structure diagram of the subtasks to obtain the
opportunity for computing offloading. Due to the interde-
pendence between different subtasks, the first thing to be
solved is to sort each subtask to determine the order of
scheduling. At the same time, there are multiple parallel
subtasks in a task. How to sort these parallel subtasks and

determine the scheduling priority also has a certain impact
on reducing the delay of the entire task.

Using da,b represents the amount of data transmitted
from subtask ti,a to subtask ti,b, and the communication
delay ωa,b between edges (a, b) can be expressed as

ωa,b �

da,b ·
1

ra,b

, ta and tb scheduling strategies are different,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

Obviously, when two consecutive subtasks are executed
at the same place, there is no need for data transmission
between two subtasks, so the communication delay is zero.
.erefore, the mean value of the communication delay
between the two subtasks can be expressed as

ωa,b � da,b ·
1

2ri,a

. (16)

Similarly, the average execution delay of a subtask ti,j can
be expressed as

Ti,j �
T
exec
i,j + T

local
i,j

2
. (17)

It is the average of the delays of local execution and
migration to edge server execution.

According to these two mean values, the computing
method of scheduling priority for a certain subtask ti,j is
defined, which is specifically expressed as

prior(j) � Ti,j + max ωj,j′ + prior j′(j′ ∈ pred(j)(,

(18)

where pred(j) is the predecessor subtask set of ti,j. prior(j)
represents the scheduling priority of subtask ti,j. Obviously,
the value of priority(0) for the first subtask of the task is 0.
.e lower the priority value, the higher the scheduling
priority of the subtask.

After determining the scheduling sequence, to select the
optimal computation offloading method for each subtask, an
algorithm for shortest time-to-completion first of the sub-
task is proposed which chooses a suitable offloading strategy
based on computing volume and its predecessor subtask.
Sort from high to low according to the previously computed
scheduling priority and select the subtask with the highest
scheduling priority among the unscheduled subtasks to
process. For each subtask, the EFT executed locally and the
EFT offloaded to the edge server according to (7) are
computed firstly, and the delay of two schemes and the
energy consumption constraint of the user equipment at this
time are compared to select the optimal offloading strategy
for the subtask.

.e Algorithm 1 describes the specific process of
selecting a subtask scheduling strategy. .e EFP first inputs
the directed acyclic graph representing the entire task and
the relevant parameters needed to compute the EFTand then
computes the values of scheduling priority of all the input
subtasks. After all the prior values are obtained, the prior
values are sorted in a nonincreasing manner. At this time,

Security and Communication Networks 5

the task with the lowest prior value will be scheduled first
(line 2–5). .e decision-making process of the specific
offloading strategy for a single subtask is shown (line 6–14).
By looping through each subtask, the earliest end time EFT
of the local execution task and the offloading task to the edge
server is computed for each task and according to the value
of the two EFTs, decide whether to offload to the edge server
for the subtask. At the same time, it is necessary to limit the
number of subtasks executed locally to meet the energy
consumption constraints of user equipment. .e loop is
ended when the migration strategy is determined for each
subtask, and the output result at this time is the computation
offloading strategy of task ti.

4.2. %e Offloading Strategy Selection Algorithm. In 5G
network, multiple users often need to offload delay-sensitive
tasks to the edge server at the same time to obtain computing
resources of the edge server to improve task execution ef-
ficiency. .e shortest completion time priority algorithm
proposed in Section 4.1 is only designed to select the best
offloading strategy for a single task. To better cope with the
computing offloading needs of multiple users, the com-
puting offloading strategy selection algorithm is further
expanded, so that it can solve the problem of computing
offloading decision-making in a multitasking environment.

First, because there are multiple edge servers which
provide computing resources in a multitasking environ-
ment, it is necessary tomake decisions on each edge server to
select themigration strategy with the least delay. Secondly, in
the migration process of multiple users, signal interference
will also be brought to the data transmission channel, and a
decision must be made in consideration of the interference
between users. Considering the above problems, the EFP
algorithm is further extended to make it possible to solve the
problem of edge computing offloading in a multi-user
environment.

For a specific scheduling strategy of a task ti, specifically
for a task with j subtasks, of_i � {a1, a2, . . ., aj}, where a_n
represents the offloading strategy corresponding to the n-th
subtask, if an � 0, the subtask will be executed locally; oth-
erwise, it will be offloaded to the corresponding edge server.
For users who need to compute offloading at the same time,
list all possible migration strategies for all users, and then
compute the delay currently for each possible migration
strategy, and then compare to get the optimal offloading
strategy. For a specific migration strategy, first, according to
the determined strategy, record the number of tasks that will
be offloaded to an edge service, and update some variables
that change with the environment during the offloading
process, such as the task’s transmission rate ri,s.. After that,
the EFP algorithm proposed in Section 4.1 is called. For a
user’s task, first the scheduling priority of the subtasks within
each task is computed, and then the offloading strategy of the
subtasks is determined according to the priority to place the
task in local or offloading tasks to edge servers to achieve
lower latency. After computing the delay of each subtask, the
total delay for a computing offloading strategy can be ob-
tained. After comparing the experiments of all feasible

offloading strategies, the computing offloading strategy with
the least delay is selected as the output of the algorithm.

Algorithm 2, referred to as MEFP, describes the specific
process of edge computing offloading decision-making in a
multiuser environment. Firstly, enumerate all possible mi-
gration strategies according to the set U of all users to be
offloaded at a certain time. .en by using a set to store tasks
to be migrated to the same edge server in each migration
strategy, all possible migration strategies that convenient to
update the transmission interference between different tasks
are looped through. .en for each user’s specific tasks, the
transmission rate is updated according to the network status,
and the EFP algorithm is called to decide whether to migrate
(line 3–10). After the decision is completed, the total task
execution delay under the offloading strategy is obtained.
After traversing all possible migration strategies, the mi-
gration strategy with the smallest total delay is selected and
output as the result (line 11–13).

4.3. %e Shortest Completion Time Priority Algorithm. .e
offloading strategy selection algorithm proposed in Section
4.2 provides the most optimized computing offloading
strategy in a multiuser environment. However, when
limited resources lead to high resource contention rate,
some unreasonable decisions are made due to lack of
overall network information. For example, there are many
tasks waiting to be executed on the edge server at the same
time while the client is not aware and still migrates tasks to
the edge servers. Due to the long queuing delay, the exe-
cution delay of the entire task may be longer than executed
locally, which occurs more frequently when the computing
resources are insufficient.

To solve such problems, based on the Carrier Sense
Multiple Access (CSMA) used in computer networks, a
multiuser shortest completion time priority algorithm in a
resource contention environment is proposed. In the
CSMA algorithm, instead of directly sending data packets
when detecting that the channel is idle, the sender refuses
to send with a certain probability to avoid conflicts. Similar
strategies are adopted to avoid conflicts in computing
migration requirements when multiple tasks compete for
edge server computing resources. After the comparison of
execution time of processing task locally and migrating
task to the edge server, the task migration is rejected with a
certain probability. Because executing the task locally can
prevent multiple tasks from waiting for the computing
resources, reducing queuing delay and task execution
delay.

.e computation method of the transfer probability
possibility(j) of subtask ti,j can be expressed as

possibility(j) �
T
local
i,j − T

exec
i,j + T

trans
i,j

T
queue
i,j + τ

, (19)

where T
queue
i,j represents the waiting time at the edge server, τ

represents a small time constant.
When the difference between the delay of local execution

and the delay of task migration execution is larger than the

6 Security and Communication Networks

waiting delay, the migration probability value at this time is
at most 1 when the task must be offloaded to the edge server.
On the contrary, when the local execution delay is less than
the execution delay of the task migration, the migration
probability value is 0 when the task is executed locally.

.e migration probability of a task changes linearly with
the waiting delay and the difference between the local ex-
ecution delay and the migration execution delay. .e larger
the waiting delay of the last execution, the more congested
the network conditions at this time, at which case the
probability of task being executed locally is larger than being
executed in edge servers. When the waiting delay is small,
the probability of the task being computed and offloaded is
greater. When the computing task is simple and the per-
formance difference between the local and offloading to the
edge server is not big, the computing task will have a greater
probability to be executed locally to avoid the situation
where multiple tasks are waiting to be executed at the edge

server at the same time. When the computing task is more
complex and the performance on the edge server is sig-
nificantly better than the local execution, the computing task
will be offloaded to the edge server. For the subtasks that use
the EFP algorithm to determine the offloading strategy and
need to perform computing offloading, it is necessary to
further determine whether the task should be offloaded to
the edge server according to the calculated probability.

Algorithm 3 describes the execution process of the
multiuser shortest completion time priority algorithm in a
resource contention environment. All possible migration
strategies are enumerated and the EFP algorithm is
employed to make decisions. .en the probability of
selecting migration is computed at this time (line 1–8). If the
random number generated is greater than the probability,
the migration is rejected, and the task is executed locally.
Otherwise, the task is still offloaded to the edge server (line
9–17). At the end of the algorithm, according to the delay of

Inputs: G� (T, DP), M, ri,j, fi, f s
i , Li

Output: Decision (i)
(1) i� 0
(2) for i� 0 to M do
(3) Compute the prior values of each subtask ti,j according to formula (17)
(4) end for
(5) non-increasing sorting of the prior values of all subtasks
(6) while existing subtasks that have not confirmed scheduling strategies
(7) Select the subtask ti,j with the highest priority
(8) Computing the EFT(j) of the task according to formula (7)
(9) if EFT(j)local< EFT(j)edge and Etotals

i < Li
(10) .e subtask ti,j still executed locally
(11) else
(12) Offload ti,j to edge server
(13) end if
(14) end while

ALGORITHM 1: Shortest time-to-completion first EFP.

Inputs: E, U, Gi � (Ti, DPi), M, ri,s, fi, Li
Output: Optimal offloading strategy ofmin for multiusers

(1) List all optional offloading strategies OF� {of1, of2, . . ., ofN }
(2) for ofi in OF do
(3) for aj in ofi do
(4) for ek in E do
(5) Create a set Uk for each users with aj � ek
(6) Update the transfer rate ri,s of each tasks
(7) end for
(8) for ti in Uk do
(9) Call EFP algorithm
(10) end for
(11) end for
(12) Compute the total execution delay Tifinish for offloading strategy ofi
(13) end for
(14) Select the offloading strategy ofmin with minimal execution delay

ALGORITHM 2: Shortest time-to-completion first with multiusers MEFP.

Security and Communication Networks 7

the corresponding computing offloading strategy, the off-
loading strategy with the smallest delay is obtained as the
output result for all users who seek to computation off-
loading (line 20–22).

5. Experiment Evaluation

A series of experiments to simulate the process of multiuser
edge computing offloading in 5G are carried out to verify the
effectiveness of the proposed method. Firstly, experimental
configuration like parameter settings is introduced, and then
comparison schemes are selected to simulate the environ-
ment under different number of tasks and edge servers.
.rough comparison, the advantages of the proposed
p-MEFP algorithm are shown obviously.

5.1. Experimental Configuration. .e experiment simulates
an environment with multiple edge servers that can provide
computing resources at the same time, and there are mul-
tiple user devices randomly distributed around these edge
servers in the network environment, and each user device
has a set of tasks that consist of several subtasks; a single-
edge server can perform multiple subtasks at the same time
according to its own computing capabilities. To verify the
feasibility of the proposed method for multiple tasks, the
directed acyclic graph of the task is randomly generated
within a certain range. .e size of each subtask is randomly
generated in [50KB, 1000KB], and the required CPU cycles
vary randomly from 50M cycles to 1000M cycles. .e
specific parameters and corresponding values in the ex-
periment are listed in Table 2.

To achieve comparison, another two-edge computing
offloading algorithms implemented are introduced as
follows:

(1) Benchmark: For each subtask in the task, according
to the order of execution, all tasks are migrated to the
edge server for execution, the task is not executed
locally, and finally the execution structure of the task
is transmitted back to the user device.

(2) CEFO1 [38] is an SDWN-based edge computing
offloading method. .rough the task data uploaded
by each user device, the SDWN central controller
determines the specific migration strategy for each
task. First, enumerate all the optional offloading
decisions. For each offloading scheme, the task graph
of users which are offloaded to the same server is
regarded as an integrated DAG graph through the
combination of graphs, and the delay of each dif-
ferent offloading scheme is computed, and finally the
offloading scheme with the minimumwaiting time is
selected as the offloading strategy.

5.2. Experiments Results. In this section, the performance of
the proposed p-MEFP algorithm and the other two com-
parison algorithms Benchmark and CEFO are compared in
detail from different user numbers and different edge
servers, showing the effectiveness of the three methods in
reducing execution delays. At the same time, compare the
effectiveness of the p-MEFP algorithm for different task
types. .e experimental results are shown in Figures 1–9.

Inputs: E, U, Gi � (Ti, DPi), M, ri,s, fi, Li,
Output: Optimal offloading strategy ofmin for multiusers
(1) List all optional offloading strategies OF� {of1, of2, . . ., ofN}
(2) for ofi in OF do
(3) for aj in ofi do
(4) for ek in E do
(5) Create a set Uk for each user with aj � ek
(6) for ti in Uk do
(7) Update the transfer rate ri,s of each tasks
(8) Call EFP algorithm
(9) if Decision(i, j) !� 0
(10) Compute migration probability possibility(j)
(11) random�Random(0, 1)
(12) if random≥ possibility(j) and< Li
(13) Execute ti,j locally
(14) else
(15) Offload ti,j to edge server
(16) end if
(17) end if
(18) end for
(19) end for
(20) end for
(21) Compute the total execution delay Tifinish for computing offloading strategy ofi
(22) end for
(23) Select the offloading strategy ofmin with minimal execution delay

ALGORITHM 3: Shortest Time-to-Completion First with multiusers under low resource p-MEFP.

8 Security and Communication Networks

5.2.1. Performance under Different Number of Users. .is
part compares the average task delay of each method after
the simulation experiment of Benchmark, CEFO and
p-MEFP under different resource contention environments.
By changing the layout of the number of edge servers in the
network environment and adjusting the capacity of each
edge server, the network environment is set to a high
contention environment (the number of edge servers is 2,
and each edge server can perform at most 1 task), medium
contention environment (the number of edge servers is 5,
and each edge server can perform up to 2 tasks), and low
contention environment (the number of edge servers is 8,
and each edge server can perform up to 4 tasks).

Figure 2 shows the comparison of the average task
queuing delay of different methods in a high resource
contention environment. In an environment of high re-
source contention, as the number of tasks increases, the
queuing delay is increasing rapidly, and the queuing delay
gap of the method is obvious. When the number of tasks is
30, the maximum difference is 60ms, and when the number
of tasks is 50, the average queuing delay gap is up to 100ms,
indicating that the p-MEFP method can reduce the queuing
delay of the task well.

Figure 3 shows the average task delay of the three al-
gorithms under different number of tasks in a high con-
tention environment. In a high contention environment, the
number of edge servers that can provide computing re-
sources is relatively small, and the use of edge servers for
tasks is more obvious. It can be reflected from the figure that
when the number of tasks is small, the execution effect of the
three methods is similar, and the p-MEFP method is only
slightly better. With the continuous increase in the number
of tasks, the situation of users competing for edge servers
becomes more and more serious, and the queuing delay
accounts for an increasing proportion of the total delay. As
the gap in queuing delay becomes larger, the average task
delay difference of the three methods gradually becomes
larger. When the number of tasks is 10, the difference be-
tween optimal and worst performance is only 10ms. When
the number of tasks is 30, the difference is 40ms, but when
the number of tasks is 50, the average delay of p-MEFP is
reduced by nearly 70ms compared to CEFO and is 80ms less
than Benchmark. It is extremely effective in reducing delay,
and it significantly reduces execution delay. .rough
comparison, as the number of users continues to increase,
the performance of p-MEFP gets better, which shows the
effectiveness of p-MEFP in reducing task delay in a high
resource contention environment. At the same time, with
the increase in the number of tasks, the increase in delay is
very fast. For every 10 additional tasks in p-MEFP, the

increase in delay is within 100ms, while for Benchmark, the
increase in delay even reaches nearly 130ms. Finally, when
the number of tasks is 50, the delay of p-MEFP is 383ms,
while the delay of the other two methods is about 450ms. In
comparison, p-MEFP greatly improves the execution effect
of the task and reduces the task delay. Comparing Figures 1
and 2, the largest proportion of the task delay at this time is
the queuing delay, and p-MEFP can greatly reduce the
queuing delay, and thus has a better delay performance.

Figure 4 shows the comparison of the average queuing
delay of different methods in the medium resource con-
tention environment. Initially, the queuing delay of the three
methods is similar. When the number of tasks reaches 40
and even more, p-MEFP can reduce the queuing delay of
nearly 20ms and 30ms compared with the other two re-
spectively and has a great advantage in reducing the queuing
delay. It proves that our method can achieve good results
under the pressure of a large number of tasks.

Figure 5 shows the effectiveness of Benchmark, CEFO
and p-MEFP in reducing the average task delay in a medium
resource contention environment. In the case of medium
resource contention, when the number of tasks is small, the
difference between the three is only 6ms, and as the number
of tasks continues to increase, the difference gradually be-
comes larger, but the largest difference is only about 20ms,
but in all scale tasks, p-MEFP still has certain advantages. As
the number of tasks continues to increase, the advantages of
p-MEFP are becoming more and more obvious. In terms of
the value of delay, the execution delay of tasks in a medium
resource contention environment is significantly less than
that in a high resource contention environment, and as the
number of tasks increases, the rate of increase in delay is
relatively stable, and the increase rate remains within 40ms.
And at this time, the queuing delay still accounts for a large
proportion of the total execution delay of the task, so the
reduction of the queuing delay can still greatly improve the
execution effect of the task and reduce the execution delay of
the task.

Figure 6 shows the comparison of the effectiveness of the
three methods in reducing task queuing delay in a low
resource contention environment. When the computing
resources in the environment are abundant because there is
more space in the edge server, it can accommodate more
tasks to be executed at the same time. Currently, the queuing
delay accounts for a relatively small proportion of the total
delay and the impact of different migration strategies on the
delay Smaller. For queuing delay, p-MEFP has no advantage
in queuing delay due to the large number of idle edge
services at the beginning, but the difference is also about
1ms. As the number of tasks continues to increase, the

Table 2: Parameters and values.

Parameters Values
Basic noise power of the transmission channel σ[40] 100 dBm
Task transmission power p[40] 150mW
CPU frequency of edge server f s

i [40] 20GHZ
CPU frequency of user equipment fi [40] 10GHZ
Task execution power [37] 650mW

Security and Communication Networks 9

average queuing delay is significantly lower than the other
two methods where tasks use the p-MEFP method.

Figure 7 is a comparison of the effectiveness of the three
methods in reducing the average total delay in a low resource
contention environment. Obviously, as the number of tasks
increases, the average delay of tasks increases, which is
caused by a large number of tasks queuing at the edge. When
the number of tasks is low, p-MEFP can reduce task delay,
but has no obvious advantage compared to other methods.
Because in the case of sufficient resources and few tasks, the
delay will be small. As the number of tasks increases, the
effectiveness of p-MEFP gradually exceeds the other two
methods.

5.2.2. Performance under Different Number of Edge Servers.
.is part compares the average task delay of the three al-
gorithms of Benchmark, CEFO, and p-MEFP under dif-
ferent edge server numbers. .e comparison of the average
task delay of Benchmark, CEFP, and p-MEFP with different
edge server numbers is shown in Figure 8.

When the number of edge servers is 2, the delay of
p-MEFP is less than 400ms, while the delays of the other two
comparison methods are more than 450ms. .e effective-
ness of p-MEFP is more obvious. It can reduce the delay of
nearly 100ms compared with Benchmark and nearly 50ms
compared with CEFO. When the number of edge servers is
small, p-MEFP has a 30–50ms advantage over the other two

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50
Number of tasks

A
ve

ra
ge

 q
ue

ui
ng

 d
el

ay
 o

f t
as

ks
 (m

s)

p-MEFP
CEFO
Benchmark

Figure 2: Comparison of the average queuing delay in a high resource contention environment.

0

100

200

300

400

500

10 20 30 40 50
Number of tasks

A
ve

ra
ge

 d
el

ay
 o

f t
as

ks
 (m

s)

p-MEFP
CEFO
Benchmark

Figure 3: Comparison of the average delay in a high resource contention environment.

10 Security and Communication Networks

methods. With the increase in the number of edge servers,
the advantages of p-MEFP gradually decrease, but the overall
p-MEFP has a certain optimization effect compared with the
other two methods, which can reduce the average delay of
task execution. When the number of edge servers is 5, the
task execution delay of p-MEFP is 17ms and 22ms less than
the other two methods, respectively. For the task execution
delay of less than 200ms at this time, the delay reduction
effect is still obvious. After the number of edge servers is
further increased to 8, the computing resources are sufficient

at this time, and the requirements of computation offloading
can be fully met, which is nearly 300ms lower than when the
number of edge servers is 2..e average task execution delay
obtained by several comparison methods is not much dif-
ferent, and they are all reduced to about 120ms. .e
p-MEFP method only reduces the execution delay by about
7ms compared with other methods.

On the whole, p-MEFP still maintains its effectiveness in
reducing latency, and it can be seen that the number of edge
servers has a great impact on the latency of task execution.

0

20

40

60

80

100

120

140

160

180

10 20 30 40 50
Number of tasks

A
ve

ra
ge

 q
ue

ui
ng

 d
el

ay
 o

f t
as

ks
 (m

s)

p-MEFP
CEFO
Benchmark

Figure 4: Comparison of the average queuing delay in a medium resource contention environment.

0

50

100

150

200

250

10 20 30 40 50
Number of tasks

A
ve

ra
ge

 d
el

ay
 o

f t
as

ks
 (m

s)

p-MEFP
CEFO
Benchmark

Figure 5: Comparison of the average delay in a medium resource contention environment.

Security and Communication Networks 11

With the continuous increase of edge servers, the average
execution latency of tasks will be reduced to one-third of the
original.

5.2.3. Performance of Directed Acyclic Graphs for Different
Tasks. Since the tasks discussed in this article may be
decomposed into multiple subtasks, and the parallelism of
the subtasks will have a certain impact on the execution
effect of the task, in this section, experiments are carried
out on different task directed acyclic graphs to compare
the differences that the parallelism of the subtasks on the

task execution effect. Due to the specific discussion of the
directed acyclic graph of the task, five specific tasks with
inconsistent parallelism were selected for experiments.
.e directed acyclic graph of the five tasks is shown in
Figure 9. Task type 1 is the serial execution of five subtasks,
and each subtask must wait for the completion of its
predecessor task. Subtask 2 and subtask 3 of task type 2
can be executed in parallel, and subtask 4 can be executed
only after they are all completed. Subtask 2, subtask 3, and
subtask 4 of task type 3 can all be executed in parallel, and
subtask 5 can only be executed after all three subtasks are
completed. Task type 4 and task type 5 are similar; in that

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50
Number of tasks

A
ve

ra
ge

 q
ue

ui
ng

 d
el

ay
 o

f t
as

ks
 (m

s)

p-MEFP
CEFO
Benchmark

Figure 6: Comparison of the average queuing delay in a low resource contention environment.

0

20

40

60

80

100

120

140

160

10 20 30 40 50
Number of tasks

A
ve

ra
ge

 d
el

ay
 o

f t
as

ks
 (m

s)

p-MEFP
CEFO
Benchmark

Figure 7: Comparison of the average delay in a low resource contention environment.

12 Security and Communication Networks

one subtask can be executed in parallel with two other
serial subtasks. For these five types of tasks, five groups of
tasks with the same amount of computing tasks but dif-
ferent task topologies are selected, and the execution
results of these five groups of tasks are compared sepa-
rately to reflect the execution effects of different methods
on tasks with different topologies.

Figure 10 shows the comparison of the average task
delays obtained after three methods are used to compute and
offload a set of tasks with several 20 different directed acyclic
graphs in the same network environment. From the figure, it
can be clearly seen that the task execution effect of task type 3

is significantly better than other task types, and the task with
the highest task execution delay is the task of task type 1. For
the task of task category 1, the 5 subtasks can only perform
serial work, so the execution delay is the highest. In task type
3, up to 3 subtasks can be processed in parallel at the same
time. By migrating the parallel processing tasks to different
edge computing servers, the computing tasks of the three
subtasks can be processed at the same time. It can be seen
from the experimental results that the higher the degree of
parallelism of the task, the more obvious the optimization
effect after computing offloading, and the lower the delay
obtained.

100

150

200

250

300

350

400

450

500

2 3 4 5 6 7 8

A
ve

ra
ge

 d
el

ay
 o

f t
as

ks
 (m

s)

Number of edge servers

p-MEFP
CEFO
Benchmark

Figure 8: Comparison of the average delay of three algorithm with different number of edge servers.

1 2 3 4 5

(a)

1
2

3
4 5

(b)

1

2

3

4

5

(c)

1

2 3

4

5

(d)

1

2

3 4
5

(e)

Figure 9: Directed acyclic graph participating in computing offloading task. (a) Task type 1. (b) Task type 2. (c) Task type 3. (d) Task type 4.
(e) Task type 5.

Security and Communication Networks 13

6. Conclusion

In this paper, the delay and energy consumption of edge
computing offloading in the 5G network are analyzed firstly,
according to which the goal of minimizing task delay has been
proposed. A delay-aware offloading strategy, reducing the
overall completion time of IoT applications by decomposing a
computing task into several subtasks, is proposed which is
expanded for multiuser situations. At the same time, the al-
gorithm has been optimized for possible resource contention.
To verify the performance of the proposed method, simulation
experiments have been carried out..e results have shown that
compared with the existing work, the proposed work can ef-
fectively reduce the overall task delay.

Data Availability

.e basic data included in this study are provided in the
supplementary information files.

Conflicts of Interest

.e authors declare no conflicts of interest.

Supplementary Materials

.e task requests data used in this study are stored in six files
in the supplementary materials, which have the same format,
and the number ranges from 50 to 300, respectively. In
detail, the first to fifth columns in each piece of data are the
task id, workflow id, start time, end time, and path length in
sequence. (Supplementary Materials)

References

[1] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation
based on deep reinforcement learning in IoT edge

computing,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 6, pp. 1133–1146, 2020.

[2] C. Shu, Z. Zhao, Y. Han, and M. Geyong, “Multi-user off-
loading for edge computing networks: a dependency-aware
and latency-optimal approach,” IEEE Internet of %ings
Journal, vol. 7, no. 3, pp. 1678–1689, 2019.

[3] Z. Chang, L. Liu, X. Guo, and S. Quan, “Dynamic resource
allocation and computation offloading for IoT fog computing
system,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 5, pp. 3348–3357, 2020.

[4] A. Samanta and Z. Chang, “Adaptive service offloading for
revenue maximization in mobile edge computing with delay-
constraint,” IEEE Internet of %ings Journal, vol. 6, no. 2,
pp. 3864–3872, 2019.

[5] J. Zheng, Y. Cai, Y. Wu, and X. S. Shen, “Dynamic compu-
tation offloading for mobile cloud computing: a stochastic
game-theoretic approach,” IEEE Transactions on Mobile
Computing, vol. 18, no. 4, pp. 771–786, 2018.

[6] X. Xu, Z. Fang, J. Zhang et al., “Edge content caching with
deep spatiotemporal residual network for IoV in smart city,”
ACM Transactions on Sensor Networks, vol. 17, no. 3, pp. 1–33,
2021.

[7] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and
D. Sabella, “On multi-access edge computing: a survey of the
emerging 5G network edge cloud architecture and orches-
tration,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 3, pp. 1657–1681, 2017.

[8] Z. Ning, K. Zhang, X.Wang et al., “Intelligent edge computing
in internet of vehicles: a joint computation offloading and
caching solution,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 99, 2020.

[9] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Col-
laborative mobile edge computing in 5G networks: new
paradigms, scenarios, and challenges,” IEEE Communications
Magazine, vol. 55, no. 4, pp. 54–61, 2017.

[10] Z. Ning, P. Dong, X. Wang et al., “Mobile edge computing
enabled 5G healthmonitoring for Internet of medical things: a
decentralized game theoretic approach,” IEEE Journal on

0

20

40

60

80

100

120

140

1 2 3 4 5

A
ve

ra
ge

 q
ue

ui
ng

 d
el

ay
 o

f t
as

ks
 (m

s)

Task type

p-MEFP
CEFO
Benchmark

Figure 10: .e average delay of computing offloading for different task types.

14 Security and Communication Networks

https://downloads.hindawi.com/journals/scn/2021/8800234.f1.zip

Selected Areas in Communications, vol. 39, no. 2, pp. 463–478,
2020.

[11] H. Yang, Y. Liang, J. Yuan, Q. Yao, A. Yu, and J. Zhang,
“Distributed blockchain-based trusted multidomain collab-
oration for mobile edge computing in 5G and beyond,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 11,
pp. 7094–7104, 2020.

[12] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge
intelligence: multiaccess edge computing for 5G and internet
of things,” IEEE Internet of %ings Journal, vol. 7, no. 8,
pp. 6722–6747, 2020.

[13] Y. Zhai, T. Bao, L. Zhu, M. Shen, X. Du, and M. Guizani,
“Toward reinforcement-learning-based service deployment of
5G mobile edge computing with request-aware scheduling,”
IEEEWireless Communications, vol. 27, no. 1, pp. 84–91, 2020.

[14] X. Xu, Q. Huang, Y. Zhang, S. Li, L. Qi, and W. Dou, “An
LSH-based offloading method for IoMTservices in integrated
cloud-edge environment,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 16, no. 3s,
pp. 1–19, 2021.

[15] Y. Liu, S. Wang, Q. Zhao et al., “Dependency-aware task
scheduling in vehicular edge computing,” IEEE Internet of
%ings Journal, vol. 7, no. 6, pp. 4961–4971, 2020.

[16] L. Chen, J. Wu, J. Zhang, H. N. Dai, X. Long, and M. Yao,
“Dependency-aware computation offloading for mobile edge
computing with edge-cloud cooperation,” IEEE Transactions
on Cloud Computing, p. 1. In press, 2020.

[17] M. Wang, T. Ma, T. Wu, C. Chang, F. Yang, and H. Wang,
“Dependency-aware dynamic task scheduling in mobile-edge
computing,” in Proceedings of 2020 16th international con-
ference on mobility, sensing and networking (MSN), pp. 785–
790, IEEE, Tokyo, Japan, December 2020.

[18] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, “Adaptive
transmission optimization in SDN-based industrial internet
of things with edge computing,” IEEE Internet of %ings
Journal, vol. 5, no. 3, pp. 1351–1360, 2018.

[19] X. Xu, D. Zhu, X. Yang, S. Wang, L. Qi, and W. Dou,
“Concurrent practical byzantine fault tolerance for integra-
tion of blockchain and supply chain,” ACM Transactions on
Internet Technology, vol. 21, no. 1, pp. 1–17, 2021.

[20] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge
computing benefit from software-defined networking: a
survey, use cases, and future directions,” IEEE Communica-
tions Surveys & Tutorials, vol. 19, no. 4, pp. 2359–2391, 2017.

[21] J. Yan, S. Bi, Y. J. Zhang, andM. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-
user task dependency,” IEEE Transactions on Wireless Com-
munications, vol. 19, no. 1, pp. 235–250, 2019.

[22] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with
edge computing in IoTnetworks via machine learning,” IEEE
Internet of %ings Journal, vol. 7, no. 4, pp. 3415–3426, 2020.

[23] B. Shen, X. Xu, L. Qi, X. Zhang, and G. Srivastava, “Dynamic
server placement in edge computing toward internet of ve-
hicles,” Computer Communications, vol. 178, pp. 114–123,
2021.

[24] P. Zhou, K. Shen, N. Kumar, Y. Zhang, M. M. Hassan, and
K. Hwang, “Communication-efficient offloading for mobile
edge computing in 5G heterogeneous networks,” IEEE In-
ternet of %ings Journal, vol. 99, p. 1, 2020.

[25] R. S. Pereira, D. D. Lieira, M. A. C. D. Silva et al., “RELIABLE:
resource allocation mechanism for 5G network using mobile
edge computing,” Sensors, vol. 20, no. 19, p. 5449, 2020.

[26] Y. Jararweh, “Enabling efficient and secure energy cloud using
edge computing and 5G,” Journal of Parallel and Distributed
Computing, vol. 145, pp. 42–49, 2020.

[27] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen,
“Energy-efficient UAV-assisted mobile edge computing: re-
source allocation and trajectory optimization,” IEEE Trans-
actions on Vehicular Technology, vol. 69, no. 3, pp. 3424–3438,
2020.

[28] M. Merluzzi, P. D. Lorenzo, S. Barbarossa, and V. Frascolla,
“Dynamic computation offloading in multi-access edge
computing via ultra-reliable and low-latency communica-
tions,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 6, pp. 342–356, 2020.

[29] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu,
“Multi-UAV-Enabled load-balance mobile-edge computing
for IoT networks,” IEEE Internet of %ings Journal, vol. 7,
no. 8, pp. 6898–6908, 2020.

[30] T. Cao, C. Xu, J. Du et al., “Reliable and efficient multimedia
service optimization for edge computing-based 5G networks:
game theoretic approaches,” IEEE Transactions on Network
and Service Management, vol. 17, no. 3, pp. 1610–1625, 2020.

[31] S. Yang, “A joint optimization scheme for task offloading and
resource allocation based on edge computing in 5G com-
munication networks,” Computer Communications, vol. 160,
pp. 759–768, 2020.

[32] Z. Zhu, G. Han, G. Jia, and L. Shu, “Modified DenseNet for
automatic fabric defect detection with edge computing for
minimizing latency,” IEEE Internet of %ings Journal, vol. 7,
no. 10, pp. 9623–9636, 2020.

[33] H. Tian, X. Xu, T. Lin et al., “DIMA: distributed cooperative
microservice caching for internet of things in edge computing
by deep reinforcement learning,” World Wide Web, pp. 1–24,
2021.

[34] X. Xia, F. Chen, Q. He et al., “Data, user and power allocations
for caching in multi-access edge computing,” IEEE Trans-
actions on Parallel and Distributed Systems, p. 1, 2021.

[35] D. Harris, J. Naor, and D. Raz, “Latency aware placement in
multi-access edge computing,” in Proceedings of 2018 4th
IEEE conference on network softwarization and workshops
(NetSoft), pp. 132–140, IEEE, Montreal, Canada, June 2018.

[36] V. D. Nguyen, T. T. Khanh, T. Z. Oo, N. H. Tran, E. N. Huh,
and C. S. Hong, “Latency minimization in a fuzzy-based
mobile edge orchestrator for IoT applications,” IEEE Com-
munications Letters, vol. 25, no. 1, pp. 84–88, 2020.

[37] Y. Han, Z. Zhao, J. Mo, C. Shu, and G. Min, “Efficient task
offloading with dependency guarantees in ultra-dense edge
networks,” in Proceedings of 2019 IEEE Global Communica-
tions Conference (GLOBECOM), pp. 1–6, IEEE, Waikoloa, HI,
USA, December 2019.

[38] C. Shu, Z. Zhao, Y. Han, and G. Min, “Dependency-aware and
latency-optimal computation offloading for multi-user edge
computing networks,” in Proceedings of 2019 16th Annual
IEEE International Conference on Sensing, Communication,
and Networking (SECON), pp. 1–9, IEEE, Boston, MA, USA,
June 2019.

Security and Communication Networks 15

