
Research Article
Efficient Ciphertext-Policy Attribute-Based Encryption
Constructions with Outsourced Encryption and Decryption

Hassan El Gafif and Ahmed Toumanari

Laboratory of Applied Mathematics and Intelligent Systems Engineering (MAISI), National School of Applied Sciences (ENSA),
Agadir 80999, Morocco

Correspondence should be addressed to Hassan El Gafif; hassan.elgafif@edu.uiz.ac.ma

Received 5 September 2020; Revised 14 November 2020; Accepted 27 April 2021; Published 18 May 2021

Academic Editor: Chalee Vorakulpipat

Copyright © 2021 Hassan El Gafif and Ahmed Toumanari.-is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

-e invention of the Ciphertext-Policy Attribute-Based Encryption scheme opened a new perspective for realizing attribute-based
access control systems without being forced to trust the storage service provider, which is the case in traditional systems where
data are sent to the storage service provider in clear and the storage service provider is the party that controls the access to these
data. In the Ciphertext-Policy Attribute-Based Encryption model, the data owner encrypts data using an attribute-based access
structure before sending them to the storage service, and only users with authorized sets of attributes can successfully decrypt the
generated ciphertext. However, Ciphertext-Policy Attribute-Based Encryption schemes employ expensive operations (i.e., bilinear
pairings and modular exponentiations) and generate long ciphertexts and secret keys, which makes them hard to implement in
real-life applications especially for resource-constrained devices. In this paper, we propose two Ciphertext-Policy Attribute-Based
Encryption Key Encapsulation Mechanisms that can be provided as services in the cloud, minimizing the user’s encryption and
decryption costs without exposing any sensitive information to the public cloud provider. In the first scheme, the ABE Service
Provider is considered fully untrusted. On the other hand, the second scheme requires the ABE Service Provider to be semi-trusted
(Honest-but-Curious) and does not collude with illegitimate users. Both schemes are proved to be selectively CPA-secure in the
random oracle. -e theoretical and experimental performance results show that both our first and second schemes are more
efficient than the reviewed outsourced CP-ABE schemes in terms of user-side computation, communication, and storage costs.

1. Introduction

In the past, businesses were suffering from the overheads of
dealing with their IT infrastructure installation and man-
agement. Nowadays, they can easily minimize these costs by
externalizing their activities to one of the existing cloud
solutions and paying only the amount of resources they
consumed. -is new paradigm is beneficial for both users
and cloud providers, and this is what makes cloud services
continue to attract more enterprises and individual users,
helping them to start or improve their businesses easily.
Cloud Storage is one of the services offered by cloud pro-
viders to help companies and individuals store, manage, and
share data efficiently. Nevertheless, when outsourcing data,

data owners are also outsourcing the control over their data.
-erefore, this creates data security and confidentiality
challenges against a third party who comprised the cloud
server to steal data or even against a curious cloud provider
[1]. Hence, data owners should encrypt data before out-
sourcing them to make sure that only authorized users can
decrypt and gain access to the data.

Cryptosystems in traditional public cryptography are
one-to-one ciphers, meaning that the data owner should
retrieve the public key of all the authorized users and encrypt
a copy of his data for each user with the corresponding
public key. For example, if a data owner wants to share a
document with 100 users, he must create 100 copies of the
document, retrieve 100 public keys, and encrypt each copy

Hindawi
Security and Communication Networks
Volume 2021, Article ID 8834616, 17 pages
https://doi.org/10.1155/2021/8834616

mailto:hassan.elgafif@edu.uiz.ac.ma
https://orcid.org/0000-0002-0790-9116
https://orcid.org/0000-0001-5709-1503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8834616


with the public key of the corresponding user. -us, this
solution is not practical since it produces huge computation,
storage, and communication overheads.

In 2005, Sahai andWaters [2] proposed a Fuzzy Identity-
Based Encryption (FIBE) scheme with a new model that is
not based on users’ public keys or identities (as in Identity-
Based Encryption schemes), but instead, their model is using
attributes to encrypt data and to generate secret keys. In this
model, a Trusted Authority (TA) generates users’ secret keys
based on their sets of attributes, and data owners specify a set
of attributes and a threshold (which is the minimum number
of attributes in the encryption set of attributes that should
exist in the user’s set of attributes) and encrypt data using
this set of attributes and threshold. Only users with a
number of attributes existing in the encryption set of at-
tributes that is greater than the threshold will be able to
decrypt the ciphertext using their secret keys.

Later on, two main variants of FIBE were proposed.
Goyal et al. proposed the Key-Policy Attribute-Based En-
cryption (KP-ABE) scheme [3] where the data owner en-
crypts data with a set of attributes and users’ secret keys are
generated based on an access policy that is associated with
them. Bethencourt et al. presented the Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) scheme [4] where the
data owner encrypts data with an access policy and users’
secret keys are generated based on their sets of attributes.

-e computation overhead in ABE schemes is the most
challenging part that makes them hard to be adopted in real-
life applications. -is is due to the number of expensive
modular exponentiations and pairing operations that in-
creases linearly with the size of the access policy.

Many contributions were proposed to optimize this
computation overhead. Some of these contributions used
different techniques to minimize the number of these op-
erations in the encryption and decryption phases [5, 6] or to
split them into two phases: in the first phase, most of the
expensive operations are performed offline before knowing
the message, and the second phase rapidly assembles the
ciphertext [7, 8]. Others replaced the expensive modular
exponentiations and pairing operations with the lightweight
elliptic curve additions and point-scalar multiplications
[9–11]. However, these solutions are still hard to be
implemented in the applications where devices are resource-
constrained such as the Internet of -ings (IoT) and
Wireless Sensor Networks (WSN). Computation out-
sourcing is another direction that achieved better results. In
this solution, a big part of the encryption and decryption
computation is outsourced to the cloud without revealing
any sensitive information to the cloud providers that can
help them reveal the plaintexts.

1.1. Our Contribution. Based on [4], we propose two CP-
ABE with Outsourced Encryption and Decryption (CP-
ABE-OED) Key Encapsulation Mechanisms (KEM) where
the public ABE Service Provider performs all the encryption
and decryption expensive operations leaving only one
modular exponentiation and simple multiplications to be
executed by the user when encrypting or decrypting data.

-e first scheme is suitable for the applications that consider
the cloud service provider untrusted. On the other hand, the
second scheme requires that the ABE Service Provider is a
semi-trusted party that cannot collude with unauthorized
users. Both schemes achieve provable CPA-security selec-
tively in the random oracle.

1.2. Organization. -e rest of our paper will be organized as
follows. In Section 2, we will discuss the related work. Next,
we define the preliminaries in Section 3. Later on, we present
our 1st and 2nd CP-ABE-OED KEMs and their security
analysis in Section 4. Section 5 is dedicated to showing and
analysing the performance results. Finally, we conclude our
paper in Section 6.

2. Related Work

In 2011, Green et al. [12] proposed the first outsourced CP-
ABE scheme, which is selectively CPA-secure. -ey out-
sourced a big part of the expensive decryption operations in
Waters’s large universe construction [13] to a decryption
proxy (e.g., Cloud Server), leaving only one modular ex-
ponentiation to be executed by the user. In the registration
phase, the Trusted Authority (TA) generates a public
transformation key TK and a secret decryption key z for
each user. To decrypt a ciphertext CT, the user sends his TK
to the decryption proxy which transforms CT to a short
ElGamal-style [14] ciphertext. -en, using the decryption
key z, the user decrypts the transformed ciphertext. To
decrypt an ABE ciphertext containing 100 attributes, it takes
nearly 30 seconds of sustained computation on a 412MHz
ARM-based iPhone 3G with 128MB of RAM using the
original CP-ABE scheme [13], while it requires only 60
milliseconds using Green et al.‘s scheme [12]. Besides,
thousands of lines of code, dedicated to determining how a
key satisfies the access policy, were removed from the user’s
side. For instance, in libfenc [15], about 3000 lines are
dedicated to access policy handling, excluding dependencies.
An improved scheme is also provided in [12] that is se-
lectively secure in the Replayable Chosen-Ciphertext Attack
(RCCA) security model using Fujisaki and Okamoto tech-
niques [16].

Afterward, many contributions added the notion of
verifiability (i.e., the ability to verify the correctness of the
transformation performed by a proxy) to the mechanism of
decryption outsourcing [17–21]. In 2016, Mao et al. [21]
proposed a generic construction that transforms any (se-
lectively) CPA-secure ABE scheme with outsourced de-
cryption (e.g., Green et al. [12]) into a (selectively) CPA-
secure ABE scheme with verifiable outsourced decryption.
In contrast with [17] that separately encrypts an extra
random message (which is used to commit to the true
message), [21] is encrypting the true message and a random
message together. It then commits the random value to the
message using a commitment scheme that satisfies the
hiding and binding properties (at least computationally). In
the decryption phase, the user receives the partially
decrypted ciphertext from the decryption proxy and the

2 Security and Communication Networks



commitment from the storage server and runs the revealing
algorithm of the commitment scheme to verify the cor-
rectness of the transformation. -e authors showed that the
instantiation of this construction in the standard model
using Green et al.‘s small-universe, backward-compatible,
and selectively CPA-secure CP-ABE scheme with out-
sourced decryption [12] and Pedersen Commitment [22] as
the underlying commitment scheme is more efficient than
Lai et al.‘s scheme [17]. -ey also proposed a second generic
construction to transform any (selectively) CPA-secure ABE
scheme with outsourced decryption, that has ciphertext
verifiability (i.e., the possibility to verify whether a normal
ciphertext will be recovered into the same plaintext under
two different decryption keys with two specific attributes) or
delegatability (i.e., the capability to use a key to derive
another inferior key), into a (selectively) RCCA-secure ABE
scheme with verifiable outsourced decryption. -ey claimed
that this is the first RCCA-secure construction that does not
rely on a random oracle. In this construction, they combined
a secure encapsulation scheme, a strong one-time message
authentication code, and a secure commitment scheme.

Obviously, the previous schemes are not suitable for IoT
applications where lightweight devices encrypt data and not
only decrypt them (e.g., Wireless Sensor Networks) because
the encryption cost produced in these schemes is still high.
Accordingly, outsourcing the encryption operations in ad-
dition to the decryption operations became a new direction
[23–27].

Based on [4], Zhou et al. proposed a CP-ABE scheme
with outsourced encryption and decryption [23]. -ey
outsourced a big part of the encryption operations by
subdividing the access policy T into two parts: TDO (data
owner’s access tree) and TESP (Encryption Service Provider’s
access tree) such that T � TESP ANDTDO. -e data owner
generates a random number s ∈ Zp and a random 1-degree
polynomial qR(x), where qR(0) � s, qR(1) � s1 and qR(2) �

s2 and computes C � M.e(g, g)α.s and C � gβ.s. -en, he
generates the ciphertext components Cy and Cy

′ for his sub-
tree TDO in the same way as CP-ABE [4] using s2 as the

shared key and sends C, C, Cy, Cy
′􏽮 􏽯

y∈YDO
, TDO, TESP, s1􏼚 􏼛 to

the Encryption Service Provider (ESP). Similarly, ESP
computes the ciphertext components Cy and Cy

′ for TESP
using s1 as the shared key. -e final ciphertext is

CT � T � TESP∧TDO, C, C, Cy, Cy
′􏽮 􏽯

y∈YESP ∪YDO
􏼚 􏼛. -e de-

cryption outsourcing is achieved using almost the same key-
blinding technique of Green et al. [12]. However, an
untrusted ESP can reveal the encrypted data by colluding
with unauthorized users with sets of attributes that satisfy
TDO.-erefore, this solution is suitable only for applications
where the ESP is at least semi-trusted.

In 2014, Asim et al. [25] proposed a new CP-ABE scheme
where they outsourced a part of the encryption operations to
a semi-trusted proxy A and they outsourced the decryption
phase to a semi-trusted proxy B following the same tech-
nique employed in [12]. Using an encryption secret key
generated by the Trusted Authority, the proxy A computes
g􏽢s and uses it as the access policy root’s secret to generate the

access policy’s leaf nodes’ components g􏽢sj . Afterward, it
multiplies each leaf node’s component with the corre-
sponding attribute component 􏽥Cj � H1(aj)

− s in the par-
tially encrypted ciphertext received from the host. -e
authors claim that their construction is secure in the generic
group model under the assumption that proxy A and proxy
B will not collude with unauthorized users and will not
collude with each other. However, unauthorized users with
at least one attribute (ax) that exists in the access policy can
reveal the plaintext using the partially encrypted ciphertext
􏽦CT and the ciphertext generated by proxy A (CT). For each
leaf node j of the access policy, the attacker retrieves 􏽥Cj �

H1(aj)
− s from 􏽦CT and Cj � g􏽢sj · H1(aj)

− s from CT and
computes g􏽢sj � Cj/ 􏽥Cj. -en, he executes PolicyGeneration
function backward to retrieve g􏽢s and computes
As � (e(C

⌣
, D1 )/e(g􏽢s · H1(ax)− s, D2) · e(C

⌣
, D3

x))z. Finally,
the attacker reveals the plaintext M � C⊕H2(As). In ad-
dition, their scheme is not correct (i.e., given an SK of a set of
attributes S that satisfies the access policy τ,
Dec(Enc(M, τ), SK)≠M). In the PolicyGeneration phase,
they used g􏽢s (instead of 􏽢s) as the shared key to get the shares
g􏽢sj . However, in the decryption phase they used the poly-
nomial interpolation on 􏽢sj, which will result in a value that is
different than g􏽢s and, as a result, the decryption output will
be different than M.

Subsequently, Zhang et al. [26] presented a fully out-
sourced CP-ABE scheme that, for the first time, achieves
outsourced key generation, encryption, and decryption si-
multaneously. In their system, two Key Generation Service
Providers (KGSP1, KGSP2) help TA to generate Interme-
diate Secret Keys (ISKs), and two Encryption Service Pro-
viders (ESP1, ESP2) help users to generate Intermediate
Ciphertexts (ITs). Decryption outsourcing is achieved using
the same key blinding used in Green et al.‘s scheme [12]. -e
extra communication costs that had arisen from outsourced
key generation and encryption are offline, meaning that TA
and users can communicate with the cloud servers in their
spare time. -e system is proved to be secure under the
assumption that two KGSPs (ESPs) do not collude with each
other, so the final combined ISK (IT) should be information-
theoretically hidden from two servers. It is selectively CPA-
secure against corrupt users colluding with KGSP1, ESP1,
and SSP and corrupt users colluding with KGSP2, ESP2, and
SSP who can obtain the conversion key at Decryption
Service Provider.

Other contributions proposed outsourced CP-ABE
schemes using trusted parties such as fog nodes [28] or a
trusted private cloud provider [29].

3. Preliminaries

3.1. Bilinear Maps [4]. Let G and GT be two multiplicative
cyclic groups of prime order p. Let g be a generator of G and
e be a bilinear map, e : G × G⟶ GT, that has the following
properties:

(i) Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have
e(ua, vb) � e(u, v)a.b

(ii) Non-degeneracy: e(g, g)≠ 1

Security and Communication Networks 3



We say G is a bilinear group if the group operation in G

and the bilinear map e : G × G⟶ GT are both efficiently
computable.

3.2. Access Structure [30]. Let P1, P2, . . . , Pn􏼈 􏼉 be a set of
parties. A collection A⊆ 2 P1 ,P2 , ..., Pn{ } is monotone if
∀B, C : if B ∈ A and B⊆C thenC ∈ A. An access structure
(respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets
of P1, P2, . . . , Pn􏼈 􏼉; i.e., A⊆ 2 P1 ,P2 , ..., Pn{ }∖ ∅{ }. -e sets in A

are called the authorized sets, and the sets not inA are called
the unauthorized sets.

In our context, we will use a monotone access structure
where the attributes play the role of the parties, which means
that the access structureA will contain the authorized sets of
attributes.

3.3. Linear Secret Sharing Scheme (LSSS) [13]. A secret-
sharing schemeΠ over a set of parties P is called linear (over
Zp) if the following is satisfied:

(i) -e shares for each party form a vector over Zp.

(ii) -ere exists a matrix M with l rows and n columns
called the share-generating matrix for Π. For all
i � 1, . . . , l, the i’th row of M, we let the function ρ
define the party labeling row i as ρ(i). When we
consider the column vector v � (s, r2, . . . , rn), where
s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp

are randomly chosen; then M.v is the vector of l

shares of the secret s according to Π. -e share
(M.v)i belongs to party ρ(i).

It is shown in [30] that every linear secret sharing-
scheme according to the above definition also enjoys the
linear reconstruction property, defined as follows: suppose
thatΠ is an LSSS for the access structure A. Let S ∈ A be any
authorized set, and let I ⊂ 1, . . . , l{ } be defined as
I � i : ρ(i) ∈ S􏼈 􏼉. -en, there exist constants wi ∈ Zp􏽮 􏽯

i∈I
such that, if λi􏼈 􏼉 are valid shares of any secret s according to
Π, then 􏽐i∈Iwi.λi � s.

Furthermore, it is shown in [30] that these constants wi􏼈 􏼉

can be found in time polynomial in the size of the share-
generating matrix M.

We note that we use the convention that vector
(1, 0, 0, . . . , 0) is the “target” vector for any linear secret
sharing scheme. For any satisfying set of rows I in M, we will
have that the target vector is in the span of I. For any
unauthorized set of rows I, the target vector is not in the span
of the rows of the set I. Moreover, there will exist a column
vector w such that (1, 0, 0 . . . , 0) · w � −1 and Mi · w � 0
for all i ∈ I.

Using standard techniques [30], one can convert any
monotonic Boolean formula into an LSSS representation. An
access tree of l nodes will result in an LSSS matrix of l rows.
We refer the reader to the appendix of [31] for a discussion
of how to perform this conversion.

3.4. CPA-Security Game

(i) Setup. -e challenger runs the Setup algorithm and
gives the public parameters PK to the adversary.

(ii) Phase 1. When the adversary A queries the de-
cryption key and the transformation key on S, the
challenger passes S on to the key generation oracle
to get the corresponding decryption key and
transformation key and then returns the result toA.

(iii) Challenge. -e adversary A submits the access
structure (M∗, ρ∗) (which is not satisfied by any of
the sets of attributes S passed in phase 1) to be
challenged on and requests the challenge Key∗. -e
challenger flips a random coin b ∈ 0, 1{ }. If b � 0, it
returns CT∗ toA, where the first element in CT∗ is a
random Key∗. If b � 1, it returns CT∗ to A, where
the first element in CT∗ is a well-constructed Key∗.

(iv) Phase 2. Phase 1 is repeated with the restriction that
the adversary cannot obtain a decryption key for a
set of attributes that satisfies (M∗, ρ∗).

(v) Guess. -e adversary outputs 0 if Key∗ is random
and 1 if Key∗ is a well-constructed key.

4. Our Proposed Constructions

4.1. 5e 1st Proposed CP-ABE-OED Key Encapsulation
Mechanism. In this scheme, the ABE Service Provider is
considered to be an untrusted party.

4.1.1. 5e Construction. (1) Setup Phase. In this phase, we
execute the function setup(λ) that takes as input a security
parameter λ, which determines the size of the groups.
setup(λ) chooses a bilinear group G of prime order p with a
generator g and a bilinear map e : G × G⟶ GT.

It also defines a hash function H1 : 0, 1{ }∗ ⟶ G

mapping each attribute (described as a binary string) to a
random group element, and a hash function
H2: 0, 1{ }∗ ⟶ Zp.

Afterward, it generates two random numbers α, β ∈ Zp.
-en, it secretly stores the master key MK � gα, β􏼈 􏼉 and
publishes the public parameters:

PK � G, g, e(·, ·), H1(·), H2(·), h � g
β
, e(g, g)

α
􏽮 􏽯. (1)

(2) Registration and Key Generation Phase. In Figure 1,
Alice and Bob represent two users. Bob plays the role of the
data owner and Alice plays the role of the data receiver. In
the registration phase, both Alice and Bob behave in the
same way.

First, the Trusted Authority (TA) registers Alice and Bob
and associates a set of attributes to each of them (SA for Alice
and SB for Bob) and executes KeyGen(U,MK, Si).

KeyGen(U,MK, Si) is defined as follows:

(i) First, it generates the encryption key EKi � si where
si is picked randomly in Zp, and the decryption key
DKi � zi where zi is a random number in Zp.

4 Security and Communication Networks



(ii) Afterward, it computes the user’s parameters as

follows: UPi �
UPi,u,1 � g1/H2(u‖si)

UPi,u,2 � H1(u)1/H2(u‖si)
􏼨 􏼩

∀u∈U
.

(iii) It also computes the Transformation Key (TKi).
First, it chooses a random number ri ∈ Zp and for
each j ∈ Si it picks ri,j ∈ Zp randomly. -en, it
computes

TKi �

Si

Di � g
(α+ri)/β·zi

∀j ∈ Si:
Di,j � g

ri/zi · H1(j)
ri,j/zi

Di,j
′ � g

ri,j/zi

⎧⎨

⎩

⎫⎬

⎭

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(iv) Finally, it outputs (EKi, DKi,UPi, TKi ).

TA sends (EKi, DKi) securely to the user i and sends
(UPi, TKi) publically to the ABE Service Provider.

(3) Encryption Phase. As shown in Figure 2, the en-
cryption phase consists of two steps. In the first step, Bob
uses its encryption key EKB and an l × n LSSS access
structure (M, ρ) and calls the function
Encrypt(PK,EKB, (M, ρ)).

Encrypt(PK, EKB, (M, ρ)) is defined as follows:

(i) First, it generates a random column vector
v � (s, y2, y3, . . . , yn) ∈ Zn

p to share the encryption
exponent s.

(ii) For each i ∈ 1, 2, . . . , l{ }, it computes λi � Mi · v

where Mi is the ith row of M.
(iii) -en, it generates

preCT �

(M, ρ)

C � h
s

∀i ∈ 1, 2, . . . , l{ } : C
pre
i � H2 ρ(i) ‖ sB( 􏼁.λi

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(2)

(iv) Finally, it outputs preCT.

Afterward, Bob sends preCT to the ABE Service
Provider.

In the second step, the ABE Service Provider executes the
function OutEncrypt(PK,UPB, preCT) after receiving
preCT.

OutEncrypt(PK,UPB, preCT) performs the following
instructions:

(i) For each i ∈ 1, 2, . . . , l{ }, it computes

Ci � UPC
pre
i

B,ρ(i),1 � g
1/H2 ρ(i)‖sB( )􏼒 􏼓

H2 ρ(i)‖sB( ).λi

� g
λi ,

Ci
′ � UPC

pre
i

B,ρ(i),2 � H1(ρ(i))
1/H2 ρ(i)‖sB( )􏼒 􏼓

H2 ρ((i)‖sB( ).λi

� H1(ρ(i))
λi .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

(ii) -en, it outputs CT � (M, ρ), C, Ci, Ci
′􏼈 􏼉i∈ 1,2, ...,l{ }􏽮 􏽯. Finally, the ABE Service Provider sends CT to the Cloud

Storage Provider (CSP).

Bob Alice
Registration ()

Registration ()

(EKB, DKB) (UPB, TKB)

(UPA, TKA)(EKA, DKA)

(EKB, DKB, UPB, TKB)
= KeyGen (U, MK, SB) 

(EKA, DKA, UPA, TKA)
= KeyGen (U, MK, SA) 

: Trusted Authority : ABE Service
Provider

Figure 1: Registration and key generation’s sequence diagram.

Security and Communication Networks 5



(4) Decryption Phase. First, as shown in Figure 3, Alice
requests the transformed ciphertext transCT from the ABE
Service Provider. -e ABE Service Provider receives CT
from the CSP and executes the function
OutDecrypt(PK,CT,TKA).

OutDecrypt(PK, CT,TKA) is defined as follows:

(i) If Alice’s set of attributes SA does not satisfy the
access structure, then it outputs ⊥. Otherwise, let
I � i : ρ(i) ∈ SA􏼈 􏼉 and wi ∈ Zp􏽮 􏽯

i∈I such that
􏽐i∈Iwi.Mi � (1, 0, 0, . . . , 0).

(ii) -en, it computes

A � 􏽙
i∈I

e DA,i, Ci􏼐 􏼑

e DA,i
′ , Ci
′􏼐 􏼑

⎛⎝ ⎞⎠

wi

� 􏽙
i∈I

e grA/zA .H1(ρ(i))rA,i/zA , gλi􏼐 􏼑

e grA,i/zA , H1(ρ(i))λi􏼐 􏼑
⎛⎝ ⎞⎠

wi

� 􏽙
i∈I

e grA .H1(ρ(i))rA,i , g( 􏼁

e grA,i , H1(ρ(i))( 􏼁
􏼠 􏼡

wi.λi/zA

� 􏽙
i∈I

e(g, g)
rA.wi.λi/zA � e(g, g)

rA/zA ·􏽘
i∈I

wi.λi

� e(g, g)
rA.s/zA .

(4)

(iii) Finally, it outputs transCT generated as follows:

transCT �
e C, DA( 􏼁

A
�

e g
β.s

, g
α+rA( )/β.zA􏼒 􏼓

e(g, g)
rA.s/zA

�
e(g, g)α.e(g, g)rA

e(g, g)rA
􏼠 􏼡

s/zA

� e(g, g)
α.s/zA . (5)

-e ABE Service Provider sends transCT to Alice.
After receiving transCT, Alice decrypts it using its de-

cryption key DKA by calling the function Decrypt(PK,

transCT,DKA).

Decrypt(PK, transCT,DKA) executes the following
instructions:

(i) It computes

Key � transCTDKA � e(g, g)
α.s/zA􏼐 􏼑

zA
� e(g, g)

α.s
.

(6)

(ii) -en, it outputs the Key.

4.1.2. Security Analysis. Before starting our security proof,
we will create a modified version of Bethencourt et al.‘s CP-

Bob

preCT = Encrypt (PK, EKB, (M,ρ))

CT = OutEncrypt (PK, UPB, preCT)

preCT

CT

: ABE Service
Provider

: Cloud Storage
Provider

Figure 2: Encryption phase’s sequence diagram.

6 Security and Communication Networks



ABE scheme [4] and prove that it achieves the same security
level of the original scheme in the random oracle. -en, we
will prove that our 1st CP-ABE-OED KEM is selectively
CPA-secure in the random oracle if the modified version of
Bethencourt et al.‘s scheme is selectively CPA-secure in the
random oracle. -us, our 1st CP-ABE-OED KEM is selec-
tively CPA-secure in the random oracle if Bethencourt
et al.‘s scheme is selectively CPA-secure in the random
oracle.

We create the modified Bethencourt et al.‘s scheme by
modifying the encryption phase as follows:

(i) Instead of using Shamir’s Secret Sharing Scheme to
build the access policy, we use the LSSS access
structure (M, ρ) in the same way as in our scheme
and generate the shares λi.

(ii) We choose a random number sB ∈ Zp and compute
for each row i of M: Ri � H2(ρ(i)||sB).λi (the hash
function H2 : 0, 1{ }∗ ⟶ Zp must be defined in the
public parameters).

(iii) -e generated ciphertext will be defined as follows:

(M, ρ),

􏽥C � M.e(g, g)
α.s

h
s
,

∀i � 1, . . . , l :

Ri � H2 ρ(i)||sB( 􏼁.λi

Ci � g
λi ,

Ci
′ � H1(ρ(i))

λi .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

It is obvious that the modified Bethencourt et al.‘s
scheme achieves the same security level as the original
scheme in the random oracle. -at is because if we consider
H2(ρ(i)||sB) random, then Ri is random and the attacker
cannot compute λi from Ri without knowing H2(ρ(i)||sB).

-erefore, an attacker cannot distinguish between the dis-
tributions (H2(ρ(i)||sB).λi, gλi , H1(ρ(i))λi ) and (r, gλi , H1
(ρ(i))λi ), where r ∈ Zp is a random number.

Now, we prove the following theorem:

Theorem 1. Our 1st CP-ABE-OED KEM is selectively CPA-
secure in the random oracle if the modified Bethencourt et al.
scheme is selectively CPA-secure in the random oracle.

Suppose that we have an adversary A with non-negli-
gible advantage ε in the selective CPA-security game against
our construction. We show how to build a simulatorB that
can attack the modified Bethencourt et al. scheme in the
selective CPA-security model with advantage ε.

(1) Init. -e adversary gives the challenge access
structure (M∗, ρ∗) to the simulatorB.B sends (M∗, ρ∗) to
the challenger.

(2) Setup.-e simulatorB obtains the public parameters
from the challenger:

PK′ � G, g, e(·, ·), H1(·), H2(·), h � g
β′

, f � g
1/β′

, e(g, g)
α′

􏼚 􏼛.

(8)

-e random oracles H1(·) andH2(·) are programmed by
the challenger.

-en, B sends the public parameters

PK � G, g, e(·, ·), H1(·), H2(·), h � g
β′

, e(g, g)
α′

􏼚 􏼛, (9)

to the adversary A

(3) Phase I. -e adversary sends request queries of sets of
attributes S that do not satisfy the challenge access structure
(M∗, ρ∗) to B. -e simulator B calls the challenger’s key
generation oracle on S to obtain the key

Alice

Key = Dcrypt (PK, transCT, DKA)

transCT = OutDecrypt (PK, CT, TKA)

RequestTransCT ()
RequestCT ()

CT

transCT

: ABE Service
Provider

: Cloud Storage
Provider

Figure 3: Decryption phase’s sequence diagram.

Security and Communication Networks 7



SK′ �

S

D′ � g
α′+r( )/β′

∀j ∈ Si:
Dj
′ � g

r
.H1(j)

rj

D
’′
j � g

rj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (10)

-e simulator chooses a random value z ∈ Zp and sets
the decryption key as DK � z and the transformation key as

TK �

S

D � D′1/z

∀j ∈ Si:
Dj � D

′1/z

j

Dj
′ � D

’′1/z

j

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

(4) Challenge. -e simulator sends two distinct random
messages m0 and m1 to the challenger. -e challenger flips a
coin π ∈ 0, 1{ } and creates

CT′ �

M
∗
, ρ∗( 􏼁,

C′ � mπ.e(g, g)
α′s′

,

C′ � h
s′

,

∀i � 1, . . . , l :

Ri � H2 ρ(i)||sB( 􏼁.λi
′,

Ci
′ � g

λi
′
,

C
’′
i � H1(ρ(i))

λi
′
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

-en, the challenger sends CT’ to the simulator.
Later on, the simulator computes

UP∗ �

UPu,1 � Ci
′( 􏼁
1/Ri

UPu,2 � Ci
′( 􏼁
1/Ri

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∀u∈U∩Y

UPu,1 � g1/tu

UPu,2 � x
1/tu
u

⎧⎨

⎩

⎫⎬

⎭
∀u∈U∖Y

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

where tu ∈ Zp and xu ∈ G are random numbers.
-en, B creates CT∗ as follows:

CT∗ �

M
∗
, ρ∗( 􏼁,

C � C′,

C
pre
i � Ri,

⎧⎪⎪⎨

⎪⎪⎩
(14)

Finally, the simulator flips a coin b ∈ 0, 1{ } and computes
Key∗ � C’/mb and then sends CT∗, UP∗, and Key∗ to the
adversary.

(5) Phase 2. -e simulator continues to answer queries as
in Phase 1.

(6) Guess. -e adversary will eventually output a guess b′ of
b. -e adversary outputs 0 to guess that Key∗ is random, and
outputs 1 to guess that Key∗ � e(g, g)α

′s′ . -e simulator
outputs b if b′ � 1; otherwise it outputs b. -us, if the adversary
wins the selective CPA-security game with a non-negligible
advantage, then B can break the security of the modified
Bethencourt et al.‘s scheme with the same advantage.

4.2. 5e 2nd Proposed CP-ABE-OED Key Encapsulation
Mechanism

4.2.1. 5e Construction. In this scheme, we consider the
ABE Service Provider semi-trusted, which means that it
cannot collude with illegitimate users to reveal the plaintext.

We will only describe the modified methods that are
different from the previous scheme.

(1) KeyGen(U,MK, Si)

(i) First, it generates the encryption key EKi � si

where si is picked randomly in Zp, and the
decryption key DKi � zi where zi is a random
number in Zp.

(ii) Afterward, it computes the user’s parameters as

follows: UPi �
UPi,1 � g

1/si ,

∀u ∈ U: UPi,u,2 � H1(u)
1/si .

􏼨 􏼩

(iii) It also computes the Transformation Key (TKi).
First, it chooses a random number ri ∈ Zp

and for each j ∈ Si it picks ri,j ∈ Zp

randomly. -en, it computes TKi �

Si

Di � g
(α+ri)/β.zi

∀j ∈ Si:
Di,j � g

ri/zi .H1(j)
ri,j/zi

D
’
i,j � g

ri,j/zi

⎧⎨

⎩

⎫⎬

⎭

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(iv) Finally, it outputs (EKi, DKi,UPi, TKi ).

(2) Encrypt(PK, EKB, (M, ρ))

(i) It picks a random number s ∈ Zp and computes

preCT �

(M, ρ),

C � h
s
,

C
pre

� sB.s

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (15)

(ii) -en, it outputs preCT.

(3) OutEncrypt(PK,UPB, preCT)

(i) First, it chooses a random column vector
v � (Cpre, y2, y3, . . . , yn) ∈ Zn

p.
(ii) For each i ∈ 1, 2, . . . , l{ }, it computes λi � Mi.v

where Mi is the ith row of M.
(iii) -en, for each i ∈ 1, 2, . . . , l{ }, it computes

Ci � UPλi

B,1 � g
λi/sB

Ci
′ � UPλi

B,ρ(i),2 � H1(ρ(i))
λi/sB ,

⎧⎪⎨

⎪⎩
(16)

(iv) -en, it outputs CT � (M, ρ), C,􏼈

Ci, Ci
′􏼈 􏼉i∈ 1,2, ...,l{ }}.

-e decryption phase will perform in the same way
as in the previous scheme; however, we will describe
it here to show the correctness of our scheme.

(4) OutDecrypt(PK, CT,TKA).

(i) If Alice’s set of attributes SA does not satisfy the
access structure, then it outputs ⊥. Otherwise,

8 Security and Communication Networks



let I � i : ρ(i) ∈ SA􏼈 􏼉 and wi ∈ Zp􏽮 􏽯
i∈I such that

􏽐i∈Iwi.Mi � (1, 0, 0, . . . , 0).
(ii) -en, it computes

A � 􏽙
i∈I

e DA,i, Ci􏼐 􏼑

e D’
A,i, Ci
′􏼐 􏼑

⎛⎝ ⎞⎠

wi

� 􏽙
i∈I

e grA/zA .H1(ρ(i))rA,i/zA , gλi/sB􏼐 􏼑

e grA,i/zA , H1(ρ(i))λi/sB􏼐 􏼑
⎛⎝ ⎞⎠

wi

� 􏽙
i∈I

e grA .H1(ρ(i))rA,i , g( 􏼁

e grA,i , H1(ρ(i))( 􏼁
􏼠 􏼡

wi.λi/zA.sB

� 􏽙
i∈I

e(g, g)
rA.wi.λi/zA.sB � e(g, g)

rA/zA.sB.􏽘
i∈I

wi.λi

� e(g, g)
rA.sB.s/zA.sB � e(g, g)

rA.s/zA .

(17)

(iii) Finally, it outputs transCT generated as follows:

transCT �
e C, DA( 􏼁

A
�

e g
β.s

, g
α+rA( )/β.zA􏼒 􏼓

e(g, g)
rA.s/zA

�
e(g, g)α.e(g, g)rA

e(g, g)rA
􏼠 􏼡

s/zA

� e(g, g)
α.s/zA . (18)

(5) Decrypt(PK, transCT,DKA)

(i) It computes

Key � transCTDKA � e(g, g)
α.s/zA􏼐 􏼑

zA
� e(g, g)

α.s

(19)

(ii) -en, it outputs the Key.

4.2.2. Security Analysis. In this security proof, we will
consider two types of adversaries:

(i) Type-1 adversary: which refers to illegitimate users
trying to break our scheme

(ii) Type-2 adversary: which refers to a curious ABE
cloud provider trying to reveal sensitive information

For the Type-1 adversary, our scheme is viewed as
Bethencourt et al.‘s scheme [4] with outsourced decryption.

Now, we prove the following theorem:

Theorem 2. Our 2nd CP-ABE-OED KEM is selectively CPA-
secure in the random oracle against Type-1 adversaries if
Bethencourt et al.‘s scheme [4] is selectively CPA-secure in the
random oracle.

Suppose we have an adversary A with non-negligible
advantage ε in the selective CPA-security game against our
construction. We show how to build a simulatorB that can
attack Bethencourt et al.‘s scheme [4] in the selective CPA-
security model with advantage ε.

(1) Init. -e adversary gives the challenge access
structure (M∗, ρ∗) to the simulator B. B sends the chal-
lenge access structure to the challenger.

(2) Setup. -e simulator B obtains Bethencourt et al.‘s
[4] public parameters

PK’
� G, g, e(·, ·), H1(·), h � g

β′
, f � g

1/β′
, e(g, g)

α′
􏼚 􏼛.

(20)

and forwards them to the adversary A.
(3) Phase I. -e adversary sends request queries of sets of

attributes S that do not satisfy the challenge access structure
(M∗, ρ∗) toB. -e simulatorB calls Bethencourt et al.‘s [4]
key generation oracle on S to obtain the key

SK′ �

S

D′ � g
α′+r( )/β′

∀j ∈ Si:
Dj
′ � g

r
.H1(j)

rj

D
’′
j � g

rj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (21)

-e simulator chooses a random value z ∈ Zp and sets
the decryption key as DK � z and the transformation key as

TK �

S

D � D′1/z

∀j ∈ Si:
Dj � D

’1/z
j

Dj
′ � D

’′1/z
j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (22)

(4) Challenge. -e simulator sends two distinct random
messages m0 and m1 to the challenger. -e challenger flips a
coin π ∈ 0, 1{ } and creates

CT′ �

M
∗
, ρ∗( 􏼁,

C′ � mπ.Key’,

C′ � h
s′

,

∀i � 1, . . . , l :
Ci
′ � g

λi
′
,

Ci
′ � H1(ρ(i))

λi
′

⎧⎪⎨

⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Security and Communication Networks 9



-en, the challenger sends CT’ to the simulator.
Later on, the simulator computes

UP∗ �
UPu,1 � g1/tu

UPu,2 � H1(u)1/tu

⎧⎨

⎩

⎫⎬

⎭
∀u∈U

⎧⎨

⎩

⎫⎬

⎭. (24)

where tu ∈ Zp are random numbers.
Later on, the simulator constructs CT∗ as follows:

CT∗ �

M
∗
, ρ∗( 􏼁,

C
∗

� C′,

∀i � 1, . . . , l :
C
∗
i � Ci
′,

C′∗i � C
’′
i.

⎧⎨

⎩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

Finally, the simulator flips a coin b ∈ 0, 1{ } and computes
Key∗ � C′/mb , then sends CT∗, UP∗, and Key∗ to the
adversary.

(5). Phase 2. -e simulator continues to answer queries
as in Phase 1.

(6).Guess.-e adversary will eventually output a guess b′
of b. -e adversary outputs 0 to guess that Key∗ is random,
and outputs 1 to guess thatKey∗ � e(g, g)α

′s′ . -e simulator
outputs b if b′ � 1; otherwise it outputs b. -us, if the ad-
versary wins the selective CPA-security game with a non-
negligible advantage, then B can break the security of
Bethencourt et al.‘s scheme with the same advantage.

-e Type-2 adversary is not allowed to collude with
unauthorized users. -us, he can request only the trans-
formation keys and not the decryption keys from the key
generation oracle.

Now, we prove the following theorem:

Theorem 3. Our 2nd CP-ABE-OED KEM is selectively CPA-
secure in the random oracle against Type-2 adversaries if our
2nd CP-ABE-OED KEM is selectively CPA-secure in the
random oracle against Type-1 adversaries.

It is obvious that Type-2 adversary cannot distinguish
between two pre-ciphertexts preCT∗0 and preCT∗1 where

preCT∗b �

M
∗
, ρ∗( 􏼁,

Key∗b ,

C
∗

� h
s
,

C
pre∗

� sB.s

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (26)

and Key∗b �
e(g, g)

α.s
, b � 0,

e(g, g)
R
, b � 1.

􏼨 where R ∈ Zp is a random
number.

-at is because Cpre∗ is random since sB is random, and
the adversary cannot retrieve s without knowing sB. -us,
Type-2 adversary has no advantage over Type-1 adversary
since the only additional information (Cpre∗ � sB · s) he has
compared to the Type-1 adversary is not useful. Hence,
-eorem 3 is proved.

5. Performance Results and Analysis

5.1. 5eoretical Results and Analysis. In this section, we
theoretically compare the user’s computation, communication,
and storage costs between our two schemes and the following
schemes:

(i) -e CPA-secure construction of [12].
(ii) -e CPA-secure construction of [21] based on [12]

using Pedersen Commitment as a commitment
scheme.

(iii) Zhou et al.‘s scheme [23].
(iv) Zhang et al.‘s scheme [26].
(v) Li et al.‘s scheme [27].

We normalized all the schemes based on the following
rules:

(i) -e transformation key is created by TA and not the
user.

(ii) We will consider all the schemes as Key En-
capsulation Mechanisms (KEMs), meaning that
we neglect the part where the message m is
encrypted (e.g., C � m · e(g, g)α.s) and leave only
the parts responsible for sharing the key
e(g, g)α.s.

Table 1: Notations used in the performance results and analysis section.

Notation Definition
|x| Number of elements in x

l Number of rows in the LSSS access structure or number of leaf nodes in the access tree
Nl An upper bound greater than l of all the access policies
S User’s set of attributes
U Universe of attributes
MeG Modular exponentiation in G

MeGT
Modular exponentiation in GT

MG Multiplication in G

MGT
Multiplication in GT

MZ Multiplication in Zp

HG Hashing in G

HZ Hashing in Zp

G Element in G

GT Element in GT

Zp Element in Zp

10 Security and Communication Networks



Ta
bl

e
2:

U
se
r-
sid

e
co
m
pu

ta
tio

n
co
st

co
m
pa
ri
so
n.

Ph
as
e

C
P-
A
BE

-O
ED

1
C
P-
A
BE

-O
ED

2
[1
2]

[2
1]

[2
3]

[2
6]

[2
7]

K
ey
G
en

0
0

0
0

0
0

0
En

cr
yp
t

1.
M

eG
+

l.
M

Z
+

l.
H

Z
1.

M
eG

+
1.

M
Z

(
2

+
3.

l)
.M

eG
+

l.
H

G
(
3

+
3.

l)
.M

eG
+

(
2

+
l)

.H
G

3.
M

eG
+
1.

H
G

1.
M

eG
+

(
1

+
3.

N
l)

.M
G

+
l.

M
Z

3.
M

eG
+

l.
M

G
+
1.

H
Z

D
ec
ry
pt

1.
M

eG
T

1.
M

eG
T

1.
M

eG
T

3.
M

eG
T

1.
M

eG
T

+
1.

M
G

T
1.

M
eG

T
1.

M
eG

T

Security and Communication Networks 11



(iii) We consider that each user has the ability to encrypt
and decrypt.

(iv) We ignored the access structure A and the set of
attributes S when computing the size of the ci-
phertexts and the keys since they are common el-
ements between all the schemes.

In Table 1, we define the notations used in this section.
In Table 2, we compare the number of operations exe-

cuted in each phase (registration phase, encryption phase,
and decryption phase) between our proposed schemes and
the reviewed schemes.

Obviously, the user is not involved in the computations
of the registration phase in all the schemes.

In [12, 21], the user-side encryption cost is very ex-
pensive, because the encryption in these schemes is not
outsourced. Based on the results in Table 3, which were
computed using a Type A curve of the JPBC Library [32] on a
Windows 8.1 Core i7 2GHz PC with 8GB of RAM, we have
the following:

(i) MG � 52MZ

(ii) MeG � 10357MZ

(iii) HG � 22193MZ

(iv) HZ � 84MZ

We mention that the hashes were computed using the
Element.setFromHash() method based on SHA-256.

If we convert the encryption costs of the reviewed
schemes, we get the following:

(i) 1.MeG + l.MZ + l.HZ � (10357 + 85.l).MZ for our
1st CP-ABE-OED KEM

(ii) 1.MeG + 1.MZ � 10358.MZ for our 2nd CP-ABE-
OED KEM

(iii) 3.MeG + 1.HG � 53264.MZ for [23]
(iv) 1.MeG + (1 + 3.Nl).MG + l.MZ � (10409 +

156.Nl + l).MZ for [26]
(v) 3.MeG + l.MG + 1.HZ � (52.l + 31155).MZ for [27]

We observe that, for access policies smaller than 425 leaf
nodes, the user-side encryption in [27] is more efficient than
[23].

If Nl � l, which is the smallest value Nl can take, the
user-side encryption in [26] will be more efficient than [27]
(respectively, [23]) for access policies with less than 200 leaf
nodes (respectively, 270 leaf nodes). If Nl � 5.l, [27] (re-
spectively, [23]) will achieve better efficiency than [26] for all
the access policies bigger than 30 leaf nodes (respectively, 50
leaf nodes). Overall, we can say that [26] is more efficient
than [23, 27] for small access policies; however, [23, 27] are
more efficient for large access policies.

Our 1st CP-ABE-OED KEM achieves a higher user-side
encryption efficiency than [26] for all the access policy sizes.
It also achieves higher efficiency than [23] for access policies
with less than 500 leaf nodes, and higher efficiency than [27]
for access policies with less than 630 leaf nodes.

Obviously, our 2nd CP-ABE-OED KEM is more efficient
than all the schemes for all the access policy sizes.

-e decryption phase costs are almost the same (one
modular exponentiation) in all the schemes since they all use
the same key blinding technique used in [12]. In [21], the
user performs 2 more modular exponentiations to reveal the
commitment.

Table 4 shows the communication costs generated in the
registration phase, the encryption phase, and the decryption
phase between our proposed schemes and the reviewed
schemes. In [12, 21, 23, 26], TA sends TK and DK to the user
in the registration phase, which costs (2 + 2.|S|) elements in
G and (2 + |S|) elements in Zp for [26], (1 + 2.|S|) elements
in G and one element in Zp for [23], and (2 + |S|) elements
in G and one Zp element for [12, 21]. In [27], TA sends the
encryption transformation key ETK and DK to the user,
which costs two Zp elements and |U| elements in G.
However, in our proposed schemes, only two elements in Zp

(EK and DK) are communicated between TA and the user.
-e reason is that TK in our proposed schemes is transferred
by TA directly to the ABE Service Provider.

In the encryption phase, the user in [26] receives two
Intermediate Ciphertexts (ITs) from the ABE Service
Provider offline, each of them containing (1 + 3.Nl) ele-
ments in G and (1 + 3.Nl) elements in Zp, and sends the
ciphertext CT to CSP, which costs (1 + 3.l) elements in G

and 2.l elements in Zp. -is makes [26] the most expensive
scheme for the users in terms of communication cost
produced in the encryption phase. In [12, 21], the user
communicates CT to CSP; this costs (1 + 2.l) elements in G

for [12] and an additional element in G for [21] generated by
the commitment element cm. -e user in [27] sends the
partially encrypted ciphertext preCT and the outsourcing
parameters to the ABE service provider. -is costs (2 + l)

elements in G and (l + 1) elements in Zp, which makes [27]
slightly more efficient than [12, 21]. In our 1st CP-ABE-OED
KEM, the user sends preCT to the ABE Service Provider,
which costs him one G element and l elements in Zp. In [23],
the user sends preCT that costs only 3 elements in G and one
element in Zp to the ABE Service Provider. In our 2nd CP-
ABE-OED KEM, the transfer of preCT to the ABE Service
Provider costs only one G element and one Zp element,
which makes it the most efficient scheme in terms of user’s
communication cost in the encryption phase.

In the decryption phase, the user receives the trans-
formed ciphertext transCT from the ABE Service Provider in
all the schemes, which costs two GT elements in [23] and

Table 3: Running times (in milliseconds) of the main operations using JPBC Library [32] on a Windows 8.1 Core i7 2GHz PC with 8 Go of
RAM.

MeG MeGT
MG MGT

MZ HG HZ

14.5 ms 0.924ms 0.073ms 0.0072ms 0.0014ms 31.07ms 0.118ms

12 Security and Communication Networks



Ta
bl

e
4:

U
se
r-
sid

e
co
m
m
un

ic
at
io
n
co
st

co
m
pa
ri
so
n.

Ph
as
e

K
ey
G
en

En
cr
yp
t

D
ec
ry
pt

Li
nk

TA
�
>
Bo

b/
A
lic
e

Bo
b

�
>
C
SP

A
BE

Se
rv
ic
e

�
>
Bo

b
Bo

b
�
>
A
BE

Se
rv
ic
e

C
SP �
>

A
lic
e

A
BE

Se
rv
ic
e

�
>

A
lic
e

A
lic
e

�
>
A
BE

Se
rv
ic
e

C
P-

A
BE

-
O
ED

1
|E
K

|
+

|D
K

|
�
2.

Z
p

0
0

|p
re
C
T|

�
1.

G
+

l.
Z

p
0

|tr
an
sC

T|
�
1.

G
T

0

C
P-

A
BE

-
O
ED

2
|E
K

|
+

|D
K

|
�
2.

Z
p

0
0

|p
re
C
T|

�
1.

G
+
1.

Z
p

0
|tr
an
sC

T|
�
1.

G
T

0

[1
2]

|T
K

|
+

|D
K

|
�

(
2

+
|S

|)
.G

+
1.

Z
p

|C
T|

�
(
1

+
2.

l)
.G

0
0

0
|tr
an
sC

T|
�
1.

G
T

|T
K

|
�

(
2

+
|S

|)
.G

[2
1]

|T
K

|
+

|D
K

|
�

(
2

+
|S

|)
.G

+
1.

Z
p

|C
T|

�
(
1

+
2.

l)
.G

0
0

1.
G

|tr
an
sC

T|
�
1.

G
T

|T
K

|
�

(
2

+
|S

|)
.G

[2
3]

|T
K

|
+

|D
K

|
�

(
1

+
2.

|S
|)

.G
+
1.

Z
p

0
0

|p
re
C
T|

�
3.

G
+
1.

Z
p

0
|tr
an
sC

T|
�
2.

G
T

|T
K

|
�

(
1

+
2.

|S
|)

.G

[2
6]

|T
K

|
+

|D
K

|
�

(
2

+
2.

|S
|)

.G
+

(
2

+
|S

|)
.Z

p
|C
T|

�
(
1

+
3.

l)
.G

+
2.

l.
Z

p
2.

|IT
|

�
2.

((
1

+
3.

N
1)

.G
+

(
1

+
3.

N
1)

.Z
p
)

0
0

|tr
an
sC

T|
�
1.

G
T

|T
K

|
�

(
2

+
2.

|S
|)

.G
+

(
1

+
|S

|)
.Z

p

[2
7]

|E
TK

|
+

|D
K

|
�

|U
|.
G

+
2.

Z
p

0
0

|p
re
C
T|

+
|O

P|
�

(
2

+
l)

.G
+

(
l
+
1)

.Z
p

0
|tr
an
sC

T|
�
1.

G
T

|T
K

|
�

(
2

+
|S

|)
.G

Security and Communication Networks 13



Ta
bl

e
5:

U
se
r-
sid

e
st
or
ag
e
co
st

co
m
pa
ri
so
n.

C
P-
A
BE

-O
ED

1
C
P-
A
BE

-O
ED

2
[1
2]

[2
1]

[2
3]

[2
6]

[2
7]

Bo
b/

A
lic
e

|E
K

|
+

|D
K

|
�
2.

Z
p

|E
K

|
+

|D
K

|
�
2.

Z
p

|T
K

|
+

|D
K

|
�

(
2

+
|S

|)
.G

+
1.

Z
p

|T
K

|
+

|D
K

|
�

(
2

+
|S

|)
.G

+
1.

Z
p

|T
K

|
+

|D
K

|
�

(
1

+
2.

|S
|)

.G
+
1.

Z
p

|T
K

|
+

|D
K

|
+
2.

|IT
|

�
(
4

+
2.

|S
|
+
6.

N
l)

.G
+

(
4

+
|S

|
+
6.

N
l)

.Z
p

|E
TK

|
+

|D
K

|
�

|U
|.
G

+
2.

Z
p

14 Security and Communication Networks



only one GT element in the other schemes. In addition, the
user should first communicate his TK to the ABE Service
Provider, which costs (2 + 2.|S|) elements in G and (1 + |S|)

elements in Zp for [26], (1 + 2.|S|) elements in G for [23],
and (2 + |S|) elements in G for [12, 21, 27]. In [21], the user
also receives the commitment from CSP, which costs one G

element. In our proposed schemes, the user does not need to
send or receive anything from CSP or the ABE Service
Provider except transCT; TK is already sent by TA to the
ABE Service Provider in the Registration Phase. -us, our
proposed schemes are the most efficient schemes in terms of

user’s communication cost produced in the decryption
phase.

Table 5 compares the user’s storage cost for each scheme.
In general, [26] is the scheme that requires the biggest user-
side storage space to store TK, DK, and two Intermediate
Ciphertextx (ITs). -e user in [27] stores |U| elements in G

and one Zp element for the encryption transformation key
ETK, and one Zp element for the decryption key DK. -us,
for large universe applications, [27] is considered the most
storage space consuming scheme for users. In [12, 21, 23],
the user stores TK and DK. DK costs one Zp element in all

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5 35 65 95 12
5

15
5

18
5

21
5

24
5

27
5

30
5

33
5

36
5

39
5

42
5

45
5

48
5

51
5

54
5

57
5

60
5

63
5

66
5

69
5

72
5

75
5

78
5

81
5

84
5

87
5

90
5

93
5

96
5

99
5

Size of the access policy

CP-ABE-OED1
CP-ABE-OED2
Original CP-ABE

ZHCP-ABE
LiCP-ABE

Lo
g 1

0 (
ru

nn
in

g 
tim

e (
m

s)
 )

Figure 4: User-side encryption running time comparison.

0

2

4

6

8

10

12

5 35 65 95 12
5

15
5

18
5

21
5

24
5

27
5

30
5

33
5

36
5

39
5

42
5

45
5

48
5

51
5

54
5

57
5

60
5

63
5

66
5

69
5

72
5

75
5

78
5

81
5

84
5

87
5

90
5

93
5

96
5

99
5

Minimum number of satisfied attributes

Ru
nn

in
g 

tim
e (

lo
g 

(t)
)

CP-ABE-OED1
CP-ABE-OED2
Original CP-ABE

ZHCP-ABE
LiCP-ABE

Figure 5: User-side decryption running time comparison.

Security and Communication Networks 15



the schemes and TK costs (1 + 2.|S|) elements in G for [23]
and (2 + |S|) elements in G for [12, 21]. In our proposed
schemes, the user stores the encryption key EK and the
decryption key DK; each of them costs only one Zp element.
-erefore, our proposed schemes are the most lightweight
schemes in terms of user-side storage.

5.2. Experimental Results and Analysis. In this section, we
will experimentally compare the running times of the user-
side encryption and decryption of our 1st outsourced CP-
ABE scheme (CP-ABE-OED1), our 2nd outsourced CP-ABE
scheme (CP-ABE-OED2), the original CP-ABE scheme [4],
ZHCP-ABE [23], and LiCP-ABE [27]. -e implementations
of the studied schemes were developed in Java using the
JPBC Library [32] and the hashes were computed using
setFromHash method of the Element class based on SHA-
256.

We run 200 experiments for each N � 5, 10, 15,{

20, 25, . . . , 1000} on a Windows 8.1 Core i7 2GHz PC with
8GB of RAM where the access policy is defined as follows
(A1 AND A2 AND A3 . . . AND AN) and the user’s set of
attributes is A1, A2, A3, . . . , AN􏼈 􏼉. -is approach simulates
the worst-case scenario where the decryption phase depends
on all the access policy’s components. For each N, we repeat
the experiment 10 times and calculate the average running
time in milliseconds to smooth any experimental variability.

In Figure 4, the x-axis represents the size of the access
policy and the y-axis represents the Log10 of the user-side
encryption running time in milliseconds.

-e experimental results confirmed our theoretical re-
sults. Besides, the theoretical results showed that CP-ABE-
OED1 is more efficient than ZHCP-ABE [23] (respectively,
LiCP-ABE [27]) for access policies with less than 500 leaf
nodes (respectively, for access policies with less than 630 leaf
nodes). However, the experimental results showed that CP-
ABE-OED1 is more efficient than ZHCP-ABE [23] and
LiCP-ABE [27] for all the access policy sizes up to 1000.

We observe that the difference in running time between
CP-ABE-OED1 and CP-ABE-OED2 is linearly increasing
with a relatively small slope, and this is due to the number of
multiplications and hashing operations performed in CP-
ABE-OED1 that is linear to the size of the access policy.

In Figure 5, the x-axis represents the size of the user’s set
of attributes and the y-axis represents the Log2 of the user-
side decryption running time in milliseconds.

As expected, the running times of the user-side de-
cryption in all the studied outsourced CP-ABE schemes are
constant and equivalent; that is because they all used the
same decryption outsourcing technique firstly proposed by
[12]. -e user needs only about 2ms (since Log2(t) � 1
according to Figure 5) to decrypt a ciphertext regardless the
size of the access policy or the length of her set of attributes.

6. Conclusion

In this paper, we proposed two efficient CP-ABE Key En-
capsulation Mechanisms that can be provided as services in
the cloud, minimizing the user-side computation,

communication, and storage costs. -e first scheme is
suitable for applications where the ABE Service Provider is
untrusted, whereas the second scheme, which is more ef-
ficient, requires the ABE Service Provider to be at least semi-
trusted. Both schemes are proved to be selectively CPA-
secure in the random oracle. However, our systems support
only one TA that is responsible for the registration of all the
users. Hence, our systems will face a bottleneck problem if
TA does not use a very powerful device or if the registration
requests are very frequent. -erefore, in the future, it will be
interesting to extend our schemes to use a multi-authority
architecture to handle this problem. Converting our schemes
to support a multi-authority architecture might also improve
the security of the systems by preventing the key-escrow
problem produced when attackers compromise the TA’s
master key. In a multi-authority approach, compromising
some authorities’ master keys by attackers will not break the
system.

Data Availability

No data were used to support this study.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work was supported by the National Center for Sci-
entific and Technical Research (CNRST) (scholarship
number: 4UIZ2017).

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “A View of Cloud
Computing: Clearing the clouds away from the true potential
and obstacles posed by this computing capability,” Com-
munications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Proceedings of the 24th Annual International Conference on
the 5eory and Applications of Cryptographic Techniques,
pp. 457–473, Aarhus, Denmark, May 2005.

[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for fine-grained access control of encrypted
data,” in Proceedings of the 13th ACM Conference on Com-
puter and Communications Security—CCS ’06, p. 89, Alex-
andria, VA, USA, October 2006.

[4] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proceedings of the 2017—IEEE
Symposium on Security and Privacy, pp. 321–334, Berkeley,
CA, USA, May 2007.

[5] Y. Yacobi, “A fast attribute based encryption,” IACR Cryp-
tology ePrint Archive, vol. 304, 2016.

[6] S. Hohenberger and B. Waters, “Attribute-based encryption
with fast decryption,” in Proceedings of the International
Conference on Public-Key Cryptography—PKC 2013,
pp. 162–179, Nara, Japan, February 2013.

[7] K. Zhang, J. Ma, J. Zhang, Z. Ying, T. Zhang, and X. Liu,
“Online/offline traceable attribute-based encryption,” Journal

16 Security and Communication Networks



of Computer Research and Development, vol. 55, pp. 216–224,
2018.

[8] S. Hohenberger and B.Waters,Online/Offline Attribute-Based
Encryption, in Proceedings of the IACR International Con-
ference on Public-Key Cryptography, Buenos Aires, Argentina,
March 2014.

[9] S. Ding, C. Li, and H. Li, “A novel efficient pairing-free CP-
ABE based on elliptic curve cryptography for IoT,” IEEE
Access, vol. 6, pp. 27336–27345, 2018.

[10] V. Odelu and A. K. Das, “Design of a new CP-ABE with
constant-size secret keys for lightweight devices using elliptic
curve cryptography,” Security and Communication Networks,
vol. 9, no. 17, pp. 4048–4059, 2016.

[11] V. Odelu, A. K. Das, and A. Goswami, “An efficient CP-ABE
with constant size secret keys using ECC for lightweight
devices,” IEEE Transactions on Consumer Electronics, vol. 62,
pp. 1–15, 2016.

[12] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the
decryption of ABE ciphertexts,” in Proceedings of the 20th
USENIX Conference on Security, p. 34, Berkeley, CA, USA,
August 2011.

[13] B. Waters, “Ciphertext-Policy Attribute-Based Encryption:
An Expressive, Efficient, and Provably Secure Realization,” in
Proceedings of the IACR International Conference on Public-
Key Cryptography, vol. 6571, pp. 1–25, Taormina, Italy, March
2011.

[14] T. Elgamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions on
Information 5eory, vol. 31, pp. 469–472, 1985.

[15] M. Green, A. Akinyele, and M. Rushanan, Libfenc, -e
Functional Encryption Library.

[16] E. Fujisaki and T. Okamoto, “Secure integration of asym-
metric and symmetric encryption schemes,” in Proceedings of
the Annual International Cryptology Conference, pp. 537–554,
Santa Barbara, CA, USA, August 1999.

[17] J. Lai, R. H. Deng, C. Guan, and J. Weng, “Attribute-based
encryption with verifiable outsourced decryption,” IEEE
Transactions on Information Forensics and Security, vol. 8,
pp. 1343–1354, 2013.

[18] Q. Li, J. Ma, R. Li, X. Liu, J. Xiong, and D. Chen, “Secure,
efficient and revocable multi-authority access control system
in cloud storage,” Computers & Security, vol. 59, pp. 45–59,
2016.

[19] B. Qin, R. H. Deng, S. Liu, and S. Ma, “Attribute-based en-
cryption with efficient verifiable outsourced decryption,”
IEEE Transactions on Information Forensics and Security,
vol. 10, pp. 1384–1393, 2015.

[20] S. Lin, R. Zhang, H. Ma, and M. Wang, “Revisiting attribute-
based encryption with verifiable outsourced decryption,”
IEEE Transactions on Information Forensics and Security,
vol. 10, no. 10, pp. 2119–2130, 2015.

[21] X. Mao, J. Lai, Q. Mei, K. Chen, and J. Weng, “Generic and
efficient constructions of attribute-based encryption with
verifiable outsourced decryption,” IEEE Transactions on De-
pendable and Secure Computing, vol. 13, no. 5, pp. 533–546,
2016.

[22] T. P. Pedersen, “Non-interactive and information-theoretic
secure verifiable secret sharing,” in Proceedings of the 12th
Annual International Cryptology Conference, pp. 129–140,
Santa Barbara, CA, USA, August 1992.

[23] Z. Zhou and D. Huang, “Efficient and secure data storage
operations for mobile cloud computing,” in Proceeding of the
2012 8th international conference on network and service
management (cnsm) and 2012 workshop on systems

virtualiztion management (svm), pp. 37–45, Las Vegas, NV,
USA, October 2012.

[24] J. Li, C. Jia, J. Li, and X. Chen, “Outsourcing encryption of
attribute-based encryption with MapReduce,” in in Pro-
ceedings of the 14th International Conference, ICICS 2012,,
pp. 191–201, Hong Kong, China, October 2012.

[25] M. Asim, M. Petković, and T. Ignatenko, “Attribute-based
encryption with encryption and decryption outsourcing,” in
Proceedings of the 12th Australian Information Security
Management Conference., pp. 21–28, Perth, Western Aus-
tralia, December 2014.

[26] R. Zhang, H. Ma, and Y. Lu, “Fine-grained access control
system based on fully outsourced attribute-based encryption,”
Journal of Systems and Software, vol. 125, pp. 344–353, 2017.

[27] J. Li, X. Li, L. Wang, D. He, H. Ahmad, and X. Niu, “Fuzzy
encryption in cloud computation: efficient verifiable out-
sourced attribute-based encryption,” Soft Computing, vol. 22,
no. 3, pp. 707–714, 2018.

[28] P. Zhang, Z. Chen, J. K. Liu, K. Liang, and H. Liu, “An efficient
access control scheme with outsourcing capability and at-
tribute update for fog computing,” Future Generation Com-
puter Systems, vol. 78, pp. 753–762, 2018.

[29] J. Blömer, P. Günther, V. Krummel, and N. Löken, “Attribute-
based encryption as a service for access control in large-scale
organizations,” in Proceedings of the 11th International
Symposium,Foundations and Practice of Security, pp. 3–17,
Montreal, QC, Canada, November 2018.

[30] A. Beimel, “Secure schemes for secret sharing and key dis-
tribution,” Tech. Inst. Technol. Fac. Comput. Sci., 1996.

[31] A. Lewko and B. Waters, “Decentralizing attribute-based
encryption,” in Proceedings of the 30th Annual International
Conference on the 5eory and Applications of Cryptographic
Techniques, pp. 568–588, Tallinn, Estonia, May 2011.

[32] A. De Caro and V. Iovino, “jPBC: Java pairing based cryp-
tography,” in Proceedings of the 16th IEEE Symposium on
Computers and Communications, ISCC 2011, pp. 850–855,
Kerkyra, Corfu, Greece, June 28 - July 1 2011.

Security and Communication Networks 17


