Hindawi

Security and Communication Networks
Volume 2021, Article ID 8847803, 13 pages
https://doi.org/10.1155/2021/8847803

Research Article

WILEY

Hindawi

YAICD: Yet Another IMSI Catcher Detector in GSM

Parimah Ziayi,1 Seyed Mostafa Farmanbar,” and Mohsen Rezvani

IScience and Research Branch, Islamic Azad University, Tehran, Iran
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

Correspondence should be addressed to Mohsen Rezvani; mrezvani@shahroodut.ac.ir
Received 27 June 2020; Revised 20 December 2020; Accepted 13 January 2021; Published 29 January 2021
Academic Editor: Stelvio Cimato

Copyright © 2021 Parimah Ziayi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In GSM, the network is not authenticated which allows for man-in-the-middle (MITM) attacks. Attackers can track traffic and
trace users of cellular networks by creating a rogue base transceiver station (BTS). Such a defect in addition to the need for
backward compatibility of mobile networks makes all GSM, UMTS, and LTE networks susceptible to MITMs. These attacks are
conducted using IMSI-Catchers (ICs). Most of the solutions proposed for detecting ICs in the literature are based on using specific
mobile devices with root access. Also, they cannot identify ICs to which users are not connected. In this paper, we propose an
approach called YAICD for detecting ICs in the GSM network. YAICD consists of a sensor that can be installed on Android
mobile devices. It detects ICs by extracting 15 parameters from signals received from BTSs. We also established a lab-scale testbed
to evaluate YAICD for various detection parameters and for comparing it against existing solutions in the literature. The ex-
perimental results show that YAICD not only successfully detects ICs using the parameters but also identifies ICs to which users

are not yet connected to the network.

1. Introduction

Cell sites known as base transceiver stations (BTSs) con-
stitute the underlying infrastructure of today’s cellular
networks. They connect end-users of mobile devices to a
wider network (for example, a cellular carrier network and
the Internet) by sending audio streams, short messages, and
IP data packets [1]. Unfortunately, vulnerabilities of the
Global System for Mobile Communications (GSM) make it
possible to create fake Base transceiver station (FBTS). In
fact, the GSM standard does not require cellular devices to
confirm the BTS [2]. Currently, millions of BTS simulta-
neously support GSM, universal mobile telecommunications
systems (UMTS), and Long-Term Evolution (LTE) networks
and serve billions of mobile phones. Also, most mobile
devices nowadays support GSM, UMTS, and LTE networks,
and in the presence of several networks, they tend to choose
the one with the highest signal strength [3]. This allows
attackers to launch their own GSM cell sites with high signal
strengths. By sending malicious signals, attackers can even
downgrade 3G/4G GSM-compatible mobile phones to the
GSM mode. Such defects of GSM networks, along with the

need for backward compatibility of cellular networks, expose
all GSM, UMTS, and LTE networks to man-in-the-middle
attacks (MITMs) which make use of FBTSs [4].

In cellular network architecture, mobile devices are al-
ways assigned an International Mobile Subscriber Identity
(IMSI) and an International Mobile Equipment Identity
(IMEI) [5]. During a network connection process, these IDs
are exchanged between the mobile phone and BTSs over the
air. In order to prevent disclosure of a particular user’s IMSI,
a Temporary Mobile Subscriber Identity (TMSI) is applied to
the security architecture of the mobile phone [6]. However,
in two cases before a successful validation, IMSI is trans-
mitted to the network without encryption: (1) when a device
is turned on and (2) when the network fails to detect the
TMSI. Attackers exploit this GSM weakness in order to
introduce themselves to mobile users as a real network. Thus,
they acquire the ID of cellular network users. At first, at-
tackers were only able to receive IMSI and IMEI of
neighboring mobile users. Hence, they were called IMSI
catchers (ICs) [7]. The more advanced models of this
malware can launch MITMs in the traffic exchanged be-
tween an authentic BTS and a mobile phone [8, 9]. In this


mailto:mrezvani@shahroodut.ac.ir
https://orcid.org/0000-0002-1172-1941
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8847803

way, when an adversary with a “fake” mobile tower acts
between the target mobile phone and the service provider’s
real towers in order to listen and manipulate the commu-
nication of a targeted mobile phone, it is considered a MITM
attack. It is to be noted that disclosing such information may
be further used to achieve confidentiality and privacy vio-
lations [10-12].

Many mobile phone operators are planning to abolish
GSM. However, it will take years to upgrade cell sites and to
do away with old mobile phones [13]. Offenders and
criminals currently use ICs to attack users directly. Today,
ICs have been seen in the United States, China, India, Russia,
Israel, and the United Kingdom [1]. Recently, the wide-
spread use of ICs has been reported at airports and embassies
[14, 15]. In the past, FBTSs such as StingRays were quite
expensive (ranging from $68,000 to $134,000), and they were
sold only to judicial and state authorities. But in the last
decade, new technical devices designed for the same mali-
cious purposes have become popular and cheap. By
spending about $1,500, it is now possible to design a simple
IC that includes a Software-Defined Radio (SDR) and two
directional antennas, and it only requires a laptop to run the
OpenBTS for free [14, 16].

Given the rise in IC attacks, several solutions have been
recently advanced for their identification. In 2017, the FBS-
Radar project was developed in collaboration with Chinese
mobile network operators to uncover ICs [1]. Meanwhile,
FBS-Radar detects only ICs that send spam or unwanted
SMS. In the same year, security researchers at the University
of Washington devised a system called SeaGlass to report ICs
[17]. Tt collects the data related to BTS signals and transmits
them to the server by several sensors embedded in the car.
The server-side application subsequently performs necessary
analyses. In 2014, SRLabs introduced two client-side tools,
called SnoopSnitch and CatcherCatcher, for detecting ICs
[18, 19]. The main limitation of these solutions is that they
can only be used on specific mobile devices and require root
privilege. Moreover, they cannot identify ICs that users are
not yet connected to the network. The Android IMSI-
Catcher Detector (AIMSICD) project reports ICs by
checking BTS signals. It is capable of identifying even ICs
which users have not yet connected to the network. How-
ever, AIMSICD is still in the alpha phase, and its effec-
tiveness has not been evaluated in practice [20].

In this paper, we propose yet another IC detector, called
YAICD, a client-side solution to effectively detect ICs while
overcoming the above-mentioned constraints. This solution can
be launched on Android mobile devices, regardless of whether
they have root privilege or not. In rooted mobile devices, as in
SnoopSnitch, a Qualcomm chip is used to collect signal data
received from BTSs. In the case of nonrooted Android mobile
devices, BTS signals are received using a library called Tele-
phony Manager (https://developer.android.com/reference/
android/telephony/TelephonyManager). The Android Tele-
phony Manager library provides information about the tele-
phony services such as subscriber id, sim serial number, phone
network type. Telephony Manager is compatible with all phone
models. The YAICD sensor uses the signals received from BTSs
to detect ICs by extracting fifteen parameters in rooted devices

Security and Communication Networks

and six parameters in nonrooted devices. The detection process
in the YAICD is accomplished based on a threshold value and
considering the sum of individual parameters. The YAICD
sensor alarms the user when an IC is detected. In addition to
detecting ICs to which the user is connected, our solution can
identify the neighboring ICs and alerts users before they might
decide to get connected to them.

We also created a laboratory-scale testbed at the
Shahrood University of Technology to evaluate the pro-
posed method along with existing approaches proposed in
the literature. In this testbed, an FBTS is launched using an
SDR device and a laptop to run the OpenBTS (http://
openbts.org/) software. Three rooted mobile phones
(Huawei Y7, LG nexus 5x, and Huawei G620) and three
nonrooted phones (Samsung J7, Sony z2, and LG G4) were
used to collect the signal data received from the BTSs and
the designed FBTS. To protect the privacy of users, only the
test mobile phones were permitted to connect to the FBTS.
By separately implementing each of the fifteen parameters
for identifying ICs in the laboratory environment, we
conducted several experiments to compare the perfor-
mance of our approach against the state-of-the-art ap-
proach in the literature. Only the YAIC sensor detects ICs
successfully. It is also capable of identifying the neigh-
boring ICs to which users are not yet connected.

YAICD is a client-side solution to effectively detect ICs
while overcoming the abovementioned constraints. This
solution can be launched on Android mobile devices, re-
gardless of whether they have root privilege or not.

The rest of this article is organized as follows. Section 2
discusses some background and related work. Section 3
elaborates our proposed method. Section 4 discusses the
results and compares them with those of previous studies.
Finally, Section 5 outlines a few conclusions.

2. Background and Literature Review

In this section, we will first introduce the GSM network.
Then, the way ICs operate is described. Subsequently, dif-
ferent parameters used to identify ICs are discussed. Finally,
previous works on IC detection are assessed. All the acro-
nyms used in this paper are listed in Table 1.

2.1. The Global System for Mobile Communications (GSM).
Today’s mobile phones are based on cellular network ar-
chitecture. The structure of a cellular network is shown in
Figure 1.

GSM, a 2G standard, is geographically divided into
different location areas (LAs). This classification is per-
formed by the operators. Each LA comprises a number of
cells, and each cell is controlled by a BTS [2]. Based on its
capacity, power, and radio range, each BTS can serve
multiple users. A mobile phone with a SIM card, hereafter
simply “mobile phone,” is known as a mobile station (MS).
The BTS periodically broadcasts network information as
System Information Block (SIB) messages. In the GSM, the
mobile phone identifies its network using SIB messages
based on mobile country codes (MCCs) and mobile network


https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/telephony/TelephonyManager
http://openbts.org/
http://openbts.org/

Security and Communication Networks

TaBLE 1: List of acronyms used in this paper.

Field Description

MITM Man-In-The-Middle

BTS Base Transceiver Station

IC IMSI-Catcher

FBTS Fake Base Transceiver Stations
GSM Global System for Mobile
UMTS Location Update Timer
LTE Long-Term Evolution
ARFCN ARFCN of Cell

IMSI IMSI digits

IMEI IMEI digits

TMSI Temporary Mobile Subscriber Identity
MS Mobile Station

SIB System Information Block
LA Location Area

MCC Mobile Country Code
MNC Mobile Network Code
LAU Location Area Updating
LAC Location Area Code
ARFCN Absolute Radio-Frequency Channel
AIMSICD Android IMSI-Catcher Detector

ICD IMSI catcher Detector

FiGure 1: Cellular network structure.

codes (MNCs). When a mobile phone is turned on or enters
anew LA, it sends a location area updating (LAU) request to
the network. If the mobile phone is already connected to the
network, it will send a TMSI for authentication; otherwise, it
communicates an IMSI for this purpose. If the network is
unable to identify the TMSI, it will send an identification
request. The mobile phone sends an ID response that
contains the IMSI. Immediately after receiving the IMSI, the
network sends the authentication request to the mobile
phone, which includes a random number. The mobile phone
performs some computations with the random number and
then sends it to the network in the form of an authentication
response. After successful authentication, the network cre-
ates a ciphering mode command and determines the desired
encryption algorithm (such as A5/1 or A5/3) to encrypt the
user’s information. The mobile phone generates encryption
keys and transmits them to the network in the form of an

encrypted ciphering mode complete message. From this
point onward, communications between the BTS and the
mobile station (MS) are encrypted. Eventually, the network
sends an LAU Accept message with a new TMSI to the
mobile phone. It should be noted that both authentication
and encryption steps are optional in GSM [21]. Figure 2
illustrates the LAU process in the GSM network [5].

2.2. Fake Base Transceiver Station. In the GSM network, the
mobile phone must be authenticated to connect to the
network, but network authentication is not required for the
mobile phone [1]. GSM is an old technology which makes
the mutual authentication between the mobile station and
the network very expensive. To remove GSM constraints,
UMTS and LTE proposed a two-step verification, which
requires BTS authentication via the mobile phone [4]. Due
to backward compatibility and the use of GSM as a support
network in cases where UMTS and LTE are not available,
mobile phones have to downgrade to a GSM connection and
be totally exposed to IC attacks [6, 22]. In fact, an IC enables
the attacker to get the mobile’s IMSI in order to track lo-
cations, eavesdrop on phone calls, or impersonate an
existing user [7]. Using such tricks, the attacker inserts
himself as man-in-the-middle (MITM) attacks [23]. On the
GSM network, an IC introduces himself as an authentic BTS
by adopting a high signal strength. The IC registers IMSI of
all mobile phones in the nearby which want to connect and,
thus, obtains the necessary information from the target
device [24]. It can also be force connected to mobile phones
to use the A5/0 encryption algorithm (without encryption)
in order to better eavesdrop on them [25] (Figure 3).

2.3. IC Detection Parameters. References [5, 17, 18, 26]
assessed the information of broadcasted IC signals and
introduced them as the IC identification parameters. In the

following, 15 parameters proposed for IC identification are
described.

2.3.1. PI: Decreasing the Security Level of the Encryption
Algorithm and Using a Weak Encryption Algorithm. One of
the most common tactics used by attackers to eavesdrop on
mobile calls is to lead them to choose less secure encryption
algorithms. Attackers often force cell phones not to use
encryption so that eavesdropping could be facilitated.
Hence, being situated in a cell where a mobile phone has
already made encrypted communications and the cell is now
requesting for downgrading or removing the encryption
algorithm indicates the occurrence of this parameter.

2.3.2. P2: Applying Security Settings and Encryptions In-
compatible with Network Settings. An attacker is usually
unaware of cell phone keys and is, therefore, unable to
“break” any kind of encryption. As a result, it suggests users
not to choose encryption. Therefore, one has to suspect a cell
with disabled encryption in a network where encryption is
common.



2.3.3. P3: Rejecting the Location Update Request Immediately
after Receiving the ID of the Mobile Phone. If the attacker
only targets the victim’s IMSI, he or she will disconnect from
the cell phone after obtaining that number. This is a well-
known pattern which could be used to detect various IC
attacks.

2.3.4. P4: Paging the Mobile Phone without the Next Request.
The attacker sends paging messages to the victim so as to find
if the victim is still within his or her reach, without pro-
cessing the next steps of SMS or phone call. This behavior
could prefigure an attack.

2.3.5. P5: Channel Assignment without the Next Call or SMS
Setup. According to the standard, after the station assigns a
channel to a mobile phone, the mobile phone sends an idle
message to keep the channel open until the SMS or the voice
is delivered. In order to locate the victim more accurately,
the attacker may misuse this standard by receiving the idle
message and discontinuing the process once the channel is
assigned to the victim’s device.

2.3.6. P6: A Large Number of Paging Groups. The attacker
sends invalid data to the paging channel in order to remove
the mobile phone from its cell. These data are sent con-
tinuously until the mobile phone is removed from the at-
tacker’s cell. Therefore, the appearance of a large number of
paging-group messages can signal an attack.

2.3.7. P7: Delay in Validating Cipher Mode Complete
Messages. An attacker attempting to “break” a crypto-
graphic code online needs some encrypted texts with cor-
responding plaintexts (Known-Plain attack). To do this, the
attacker makes the mobile phone use the International
Mobile Station Equipment Identity Software Version
(IMEISV) code. On the other hand, by delaying the response
to the Cipher Mode Complete message, the attacker makes
the mobile phone re-send this message in an encrypted
format, thereby obtaining a number of encrypted texts with
specific plaintexts and making it easy to find the key.

2.3.8. P8: Being the Only Visible Cell in a Location Area.
To attract the mobile phone and make it send a LAU request,
the attacker creates a fake cell with a Location Area Code
(LAC) different from other neighboring cells and assigns a
higher signal strength to it. Consequently, this cell will be the
only one in the related area.

2.3.9. P9: Unusual LAC. To acquire more information from
the victim, the attacker needs to make the mobile phone send
an LAU command to the attacker’s station. According to the
standard, this happens when the LAC of the new station is
different from that of the previous station. On the other
hand, the attacker must also send a list of the neighboring
cells to the mobile phone. Thus, the cell phone receives a list
of cells, one of which is incompatible with others.

Security and Communication Networks

MS 2GBTS

SIB messages

N

LAU request (TMSI or IMSI)

v

ID request (IMSI)

A

ID response (IMSI)

v

ID request (IMEI)

A

ID response (IMEI)

\ 4

Authentication request

A

Authentication response

v

Ciphering mode command

A

Ciphering mode complete

\4

LAU accept

A

FiGure 2: LAU process in GSM.

MS 1C

TMSI

\4

IMSI request

A

IMSI

A4

RAND, AUTH

A

RES

Cipher mode
command A5/0, TMSI

A

FIGURE 3: Register process in GSM.

2.3.10. P10: Providing Similar LACs/Cell IDs for Two Dif-
ferent  Absolute Radio-Frequency Channel Numbers
(ARFCNs). An attacker sometimes uses the cell ID and LAC
of a real station to prevent disclosure. In this case, to avoid



Security and Communication Networks

wave interference, the attacker usually makes use of a fre-
quency different from that of the real station. An attack
detection module can identify threats in case two different
frequencies have the same cell ID.

2.3.11. P11: No Introduction of Neighboring Cells by the
Station. As the attacker tries to keep the victim’s mobile
phone connected, he or she announces that there are no cells
in the neighborhood, thus preventing the device from
searching other stations.

2.3.12. P12: List of Incompatible Neighboring Cells. The
neighborhood is a two-way relationship. In fact, when a
station introduces its neighboring cells to a cell phone, it is
expected that the stations in the neighboring cells will also
recognize it as their neighbor. Hence, if the victim does not
find the attacker’s cell ID in the list of neighboring cells, it
can be inferred that an attack has taken place.

2.3.13. P13: High Signal Strength. This parameter is activated
if the signal strength of one cell is considerably different
from that of other cells received up to that point.

2.3.14. P14: Request for Shortening Registry Intervals. The
attacker can reduce the time period of sending LAU to at
least 6 minutes by communicating the T3212 parameter to
the mobile phone. This causes the victim’s cell phone to send
its information every six minutes, making it easier to track
the victim. Therefore, the mobile phone will be at risk if it
receives this message.

2.3.15. P15: High Cell Reselect Offset. The attacker amplifies
the Cell Reselect Offset parameter to prevent the cell phone
from connecting to neighboring BTSs.

2.4. Previous Studies. In recent years, the increasing number
of IC attacks has prompted researchers to look for solutions
to identify them. Some of these solutions are client-side. A
number of these tools are discussed in Reference [5]. Ex-
amples include SnoopSnitch [18], GSM Spy Finder [27], Cell
Spy Catcher [28], and AIMSICD [20]. These Android ap-
plications utilize BTS information as well as BTS-mobile
phone communications in order to identify suspicious BT'Ss.

In 2014, SRLabs developed two client-side IC diag-
nostic tools, namely, SnoopSnitch and CatcherCatcher
[18, 19]. SnoopSnitch is an Android application that alerts
users to IC presence by analyzing signals received from
available cells. According to Reference [5], SnoopSnitch
makes use of the highest number of IC detection pa-
rameters. However, this software only works on rooted
mobile phones with Qualcomm chipset. Similarly,
CatcherCatcher explores suspicious behaviors on mobile
networks and detects IC activities, but it just operates on
Osmocom phones. Therefore, they have not gained much

popularity. The Android IMSI-Catcher Detector (AIM-
SICD) identifies ICs by testing the BTS based on various
criteria. Two of these criteria include monitoring the
signal strength and investigating the accuracy of BTS
information. Nevertheless, AIMSICD is still in the alpha
version, and its effectiveness has not been evaluated in
practice.

Scott et al. proposed a method that measures the
signals of an area by periodically examining frequency
bands and configurations of neighboring cells. They
suggested monitoring unexpected location updates, mo-
bile phone verification, and requests for downgrading
encryption [7]. Anti Spy is a mobile application in which
suggest a machine-learning-baed approah to detecting
take BTSs [29]. Unfortunately, neither of these methods
has come up with a solution for scalability to cover vast
areas. Broek et al. also suggested replacing the IMSI of
devices by changing their nickname to counter IC attacks.
The limitation of this method is that changes to the SIM
card and authentication server are extremely costly for
both users and operators [30].

FBS-Radar is a system solution that includes several
cell phones and the Guard Cell Phone software. Guard
Cell Phone is a network security assessment software for
both Android and iOS systems. In collaboration with
mobile network operators, FBS-Radar utilizes data related
to network cell locations in order to identify ICs. This
method can only detect ICs that send spam or fake SMS
and cannot identify other attacks such as catching IMSI or
tracking and eavesdropping on mobile phones [1]. Sea-
Glass was developed by security researchers at the Uni-
versity of Washington to report ICs across a given city.
This system includes a number of sensors that are installed
on volunteer vehicles and the server. SeaGlass sensors
move around the city to collect BTS signals and transmit
them to the server. ICs are identified at the server. These
sensors have low power consumption and easy mainte-
nance/support and could be installed on vehicles traveling
long distances. It should be added that each sensor costs
$502 [17]. FBS-Radar and SeaGlass are system solutions
for identifying ICs and should be implemented by op-
erators and judicial authorities because they need data-
base information of cell locations. They are also expensive
to implement and cannot be used by individual mobile
users.

Generally, IMSI Catcher Detectors (ICDs) can be
classified into three categories: app based, sensor based,
and network based, whose characteristics are illustrated in
Figure 4.

Furthermore, we also evaluate their strengths and
weaknesses based on their detection capabilities in Table 2.

In this paper, a client-side solution is proposed for IC
detection. It consists of a sensor that can be installed on
both rooted and nonrooted mobile devices. The YAICD
sensor uses signal information from nearby BTSs to
detect ICs. In addition to the ability to detect ICs to which
the user is connected, this sensor can also identify nearby
ICs and provide necessary alerts before users may con-
nect to them.



6 Security and Communication Networks
App_based Sensor-based Network-based
)
Phone
IMSI catcher Operator
(( ) network
)
Heading Sensor
)
Phone
Normal base station(s)
F1GURE 4: Overview of IMSI catcher detection methods [31].
TaBLE 2: Overview of IMSI catcher detection methods.
Category Examples Advantages Disadvantages

SnoopSnitch [18], AIMSICD
App-based [20], Cell Spy catcher [28], and
GSM Spy Finder [25]

App-based ICDs can give the user a direct
real-time notification shortly upon IMSI
catcher activity because they are directly

facing the user.

The smartphone itself does not know the
network deployment status, and some apps
present false notifications to the user.
Furthermore, there is a potential burden on a
smartphone due to increased battery
consumption and side effects such as some
security features being disabled caused by
rooting the smartphone.

ICD sensors can monitor a larger area
compared to smartphones, thanks to the
bigger antenna size than smartphones. This
allows a detailed and focused analysis of a
group of base stations, while app-based
ICDs are bound to the mobility of the phone.
Moreover, sensors provide more computing
power for IMSI catcher detection. Since they
are powered from a mains power unlike
smartphones, they do not run any additional
background process that may hinder the
analysis of incoming signaling messages.

Sensors need long observation times and
require some time to detect the IMSI catcher
event and deliver a warning to the phone. As a
result, an IMSI catcher might already succeed

in an attack well before it is detected by a

sensor. While individual sensors could be

easily built with minimal cost, maintaining
backend infrastructure for sensor
management and analysis requires recurring
cost (power, Internet, place rental, and
management), which will also increase when
service coverage is expanding.

Sensor-

based SeaGlass [8, 18, 32].
Network-

based FBS-radar [2, 26, 33]

Operators retain up-to-date information of
the cellular network deployment; hence,
detection of unknown cells and base station
identities are a clear sign of an IMSI catcher.
Furthermore, this reduces false-positives
and increases accuracy. Deployment cost is
low as it only requires software upgrades
within the network.

Implementation requires cooperation with
network operators, which is not always
possible. Like sensor-based detectors, the
detection is performed after the phone was
released from the IMSI catcher.




Security and Communication Networks

3. The Proposed Solution

In this section, a new method, called the YAICD, is described
for IC identification. It is a client-side tool that can be
launched on Android mobile devices, whether they have
root privilege or not. In rooted devices, like SnoopSnitch, it
uses a Qualcomm chip to collect signal data from BTSs. In
nonrooted Android devices, BTS signal data are received
from a library called TelephonyManager. The YAICD sensor
detects ICs by extracting 15 parameters from BTS signals
based on a threshold value and the sum occurrence of several
parameters. The architecture of the proposed method and its
implementation are described below.

3.1. The Proposed Architecture. Our solution is a sensor that
includes two components: data collection and attack de-
tection. Figure 5 illustrates the architecture of this instru-
ment. Different components of the YAICD sensor and their
relationships are discussed in the following lines.

3.1.1. Data Collection Components. The mobile phone is
directly connected to available BTSs. These stations
broadcast their information in the form of messages called
System Information Block (SIB). The data collection unit
receives information from all signals broadcasted by the
nearby BTSs. These received data are stored in their re-
spective databases. The YAICD sensor’s database consists of
four important tables entitled Cell Info, Session_Info,
Catcher, and NeighborCatcher. Different pieces of infor-
mation related to the data collection component are assigned
to the Cell_Info and Session_Info tables, while the attack
detection component analyzes the data of these tables to
identify ICs. The Catcher and NeighborCatcher tables
contain the information of spotted ICs. In the following,
these four tables are explained:

Cell_Info table: it includes information broadcasted by
all BTSs that the YAICD sensor has observed.

Session_Info table: this table registers information about
transactions (such as calling and sending/receiving SMS)
conducted between the mobile phone and the BTS.

Catcher table: a separate record is created for each
identified IC to which the mobile phone is connected.
In each record, the parameter information of the
identified IC is registered.

NeighborCatcher table: it contains information related
to neighboring ICs to which the mobile phone is not
currently connected but the YAICD sensor has iden-
tified. In each record, parameter data of each of these
ICs are registered.

3.1.2. Attack Detection Component. This is the most im-
portant component of the YAICD sensor. It attempts to
report the presence of ICs using data gathered by the data
collection component. This is accomplished based on the
sum of occurring parameters and a detection threshold. The
YAICD sensor extracts IC identification parameters,

introduced in Section 2.3, by analyzing the signals received
from BTSs. The number of these parameters varies
depending on whether the mobile phone is rooted or not
(see Section 3.2).

3.1.3. Communications between Components. Mobile
phones are in direct contact with BTSs and always receive
SIB messages. In the data collection component, information
on transactions between the mobile phone and BTS as well
as the broadcasted information of all BTSs observed by the
YAICD sensor are separated in the Session_Info and Cel-
1 Info tables. The attack detection component deploys the
information of these two tables to extract IC identification
parameters.

As mentioned, the YAICD sensor can detect both ICs to
which mobile phones are connected and those neighboring
ICs to which mobile devices are not yet connected. To detect
connected ICs, the YAICD sensor may extract all 15 IC
identifiers by means of Cell_Info and Session_Info tables.
However, only parameters p8 to pl5 can be calculated to
spot nearby ICs. These parameters only use the data of
Cell_Info table (Figure 6). Meanwhile, in both cases, the
number of parameters depends on whether the mobile
device is rooted or not.

As one can see in Figure 6, the Data Collection module
aims to collect all the data related to the BTS devices. Such
data are organized and stored in two tables named here cell
info and session info. The Data Analysis module uses the data
stored in these two tables to evaluate the 15 detection pa-
rameters in order to detect ICs. After detection of any IC
based on the data collected from BTS devices, the system
generates corresponding alerts.

3.2. Implementation. The proposed sensor was implemented
on both rooted and nonrooted mobile phones. The imple-
mentation of each mode is described below.

3.2.1. Rooted Sensor. Like SnoopSnitch, our rooted sensor
uses the Qualcomm chip to collect signal information from
BTSs. To operate in this mode, the YAICD sensor requires a
rooted Android mobile phone with a Qualcomm chip. In
fact, receiving data transmitted between the BTS and mobile
phone (such as the type of encryption and some information
relayed by the BTS) is possible when the mobile device has
both root access and the Qualcomm chip. In this case, by
accessing most information received from BTSs, one may
calculate all 15 parameters of IC identification. The infor-
mation gathered by the data collection module, in this case,
is presented in Table 3.

3.2.2. Nonrooted Sensor. The nonrooted sensor can be in-
stalled on all mobile phones, but it will not have access to
low-level data since it uses a library called Tele-
phonyManager on the Android system to collect signal
information from BTSs. Consequently, it does not have
access to the information (such as encryption type) ex-
changed between the BTS and the mobile phone and is only



Security and Communication Networks

Sensor

—— @)

FBTS

Session_info Cell_info

¢ ks )

Data analysis

(@)

Connected FBTS detection Unconnected FBTS

detection
MS FBTS

F1GURE 5: View of external components associated with the YAICD sensor.

Data collection

Cell_info Session_info

Data analysis

P8 P9 P10 || P11 || P12 || P13 P1 P2 P3 P4 P5 P6 pP7 P8

P14 || P15 P9 P10 || P11 || P12 || P13 || P14 | | P15

Il

Il

Unconnected FBTS Connected FBTS
detection detection

FIGURE 6: View of component communication.



Security and Communication Networks

TaBLE 3: Received information from QUALCOMM and root

mobile device.

Field Description

ARFCN ARECN of Cell

IMSI IMSI digits

IMEI IMEI digits

CID Cell ID

CRO Cell reselect offset

T3212 Location update timer
Neigh Neighboring cell count
PWR Signal power

GPS_lat GPS Latitude
GPS_lang GPS Longitude

MNC Mobile network code
MCC Mobile country code

RAT Radio access technology
LAC Location area code

auth Authentication was performed
cipher_delta Delta time to complete ciphering
cipher Cipher type (A5/x, UEA/x, EEA/x)
Duration Transaction duration in ms

sms_presence
call_presence

Assign

iden_IMEI bc
iden_IMEI ac
iden_IMSI_bc
iden_IMSI ac

Transaction contains SMS data
Transaction contains a call setup
Transaction contains an assignment to other
channels
IMEI was requested before ciphering
IMEI was requested after ciphering
IMSI was requested before ciphering
IMSI was requested after ciphering

lu_reject Location update was rejected
lu_acc Location update was accepted
Mobile_org Mobile originated transaction
Paging mi Paging mobile identity type

Mobile_termin

Mobile terminated transaction

able to receive limited information from the nearby BTS
signals. As such, in this case, only the parameters p8 to p13
can be evaluated. The information received from this library
is given in Table 4.

4. Experiments

In this section, we first describe how to set the threshold
parameters of IC detection. After introducing the experi-
mental platform and the procedure for implementing every
single parameter, we compare the performance of YAICD in
terms of IC detection with existing client-side applications.
Eventually, the performance of the sensor in consuming
resources such as CPU and memory is evaluated.

4.1. Cell Data Collection. In this study, in order to determine
the threshold parameters, several mobile phones with IR-
MCI, Irancell, and RighTel SIM cards were chosen. The
YAICD sensor was then installed on every mobile phone.
Subsequently, the mobile devices began collecting infor-
mation in some areas of the two cities of Tehran and
Shahrood, Iran (we published the datasets on github and all
the datasets are publicly available at https://github.com/
parimahziaei/YAICD-Yet-Another-IMSI-Catcher-Detector-
in-GSM). The YAICD sensors gathered data from 1254

BTSs. The threshold of each IC detection parameter was
calculated based on the observations. It was found that
parameters p2, p3, p4, p8, p9, pl0, pll, and p12 had no
threshold value. In case any of these parameters occurs, the
YAICD sensor detects it and the rest of the parameters are
determined according to their observed values. Table 5
presents the required score for each parameter.

The final threshold value for IC detection was estimated
at 2.6. It is necessary to mention that the user can change
threshold values by referring to the sensor’s configurations.
Furthermore, the value chosen for each parameter and the
final threshold value was obtained by using the SnoopSnitch
application.

As mentioned in [19], the threshold values are obtained
based on some evaluations of the attack scenarios using ICs.
As the results of these evaluations, they obtained some
weights and threshold values for the detection parameters as
reported in [19]. Since we were not able to deploy any ICin a
real environment (because of the privacy issues and regu-
lations), we decided to conduct our experiments in a testbed
using the threshold values reported in [19]. This helps us to
fairly evaluate the performance of our approach against
SnoopSnitch.

We believe that having the detailed configurations of the
real BTS devices can improve the process of choosing the
threshold values for the detection parameters. An interesting
research issue is to investigate the possibility of designing a
systematic approach for choosing the threshold values when
we have information about the configurations of the BTS
devices for each network operator.

It is to be noted that we have no access to any real-world
attack scenario launched by an FBTS. Thus, we conducted
our experiments by simulating the attacks in our test bed and
we could not evaluate the performance of our approach
based on the false alarming and the ROC curve. It must be
noted that the threshold value controls the sensitivity of our
detection rate. In other words, the lower value of this
threshold makes our detection mechanism more sensitive
and therefore increases the false alarm. It is due to the fact
that by smaller values of the threshold, the probability of
labeling a real BTS as a fake BTS increases. We also left the
threshold value to be configured by the user of the system,
which provides the possibility to manipulate the sensitivity
of our detection mechanism.

4.2. Comparing the Performance of YAICD with Other Con-
ventional Client-Side Applications Used for IC Parameter
Detection. This section compares the YAICD sensor with
some other client-side programs devised for identifying IC
parameters. These available applications include SnoopS-
nitch, AIMSICD, Cell Spy Catcher, and GSM Spy Finder. An
IC was simulated in a testbed environment in order to
investigate the performance of the YAICD sensor. Testbed
environment was made possible by using OpenBTS software
along with the USRP N210 device. Figure 7 illustrates the
testbed environment used to test the YAICD sensor. In
addition, the following hardware and software were
employed in this study to collect data from BTSs and assess
the YAICD sensor:


https://github.com/parimahziaei/YAICD-Yet-Another-IMSI-Catcher-Detector-in-GSM
https://github.com/parimahziaei/YAICD-Yet-Another-IMSI-Catcher-Detector-in-GSM
https://github.com/parimahziaei/YAICD-Yet-Another-IMSI-Catcher-Detector-in-GSM

10 Security and Communication Networks
TABLE 4: Received information from telephony manager.

Field Description

ARFCN ARFCN of Cell

IMSI IMSI digits

IMEI IMEI digits

CID Cell ID

Neigh Neighboring cell count

PWR Signal power

GPS_lat GPS Latitude

GPS_lang GPS Longitude

MNC Mobile network code

MCC Mobile country code

RAT Radio access technology

LAC Location area code
TaBLE 5: desired parameters along with the threshold and corresponding value.

Parameter Threshold 1 Value 1 Threshold 2 Value 2

P1 If 80% of sessions are encrypted 2 — 1

P2 — 2

P3 — 6

P4 — 1

pP5 8000 ms 1

P6 >32 1

p7 2000 ms (with IMEISV) 2 2000 ms (without MEISV) 1

P8 — 1

P9 — 0.5

P10 — 1

P11 — 1

P12 — 1

P13 =57 1

P14 1-60 minutes 1.5 61-240 minutes 0.7

P15 >8 1

FIGURE 7: Laboratory of testing sensor.

(i) Three rooted mobile phones including Huawei Y7,
LG nexus 5x, and Huawei G620, and three non-
rooted devices including Samsung J7, Sony z2, and
LG G4

(ii) Six SIM cards from different telecommunications
service providers of Iran (IR-MCI, Irancell, and
RighTel)

(iii) OpenBTS installed on the virtual machine

(iv) A USRP N210

To protect the privacy of users, only the test mobile
phones were allowed to connect to the simulated FBTS. The
performance of the proposed sensor was compared with
other available applications by separately implementing each
of the 15 parameters to detect FBTSs in the laboratory
environment. Tables 6 and 7 provide the results of com-
paring the performance of the YAICD sensor with those of
similar user-side tools in identifying parameters of con-
nected nearby ICs.

As can be understood from Table 6, SnoopSnitch suc-
ceeds in identifying parameters of those ICs to which the
mobile phone is connected (except pl3). However, this
application can only be installed on rooted devices that are
equipped with Qualcomm chip. Cell Spy Catcher, AIM-
SICD, and GSM Spy Finder could detect fewer parameters
than SnoopSnitch. Meanwhile, the YAICD sensor could
recognize all parameters implemented in the testbed envi-
ronment. The advantage of our model is that it can be in-
stalled on Android mobile devices, whether they have root
privilege or not. Since it has access to most BTS information
in the rooted mode, it uses the largest number of parameters
possible to detect ICs. In the nonrooted mode, however, it
can only access high-level information. As a result, it uses
fewer parameters to perform its task.



Security and Communication Networks

11

TABLE 6: Results of parameters testing for connected in apps.

Root

Parameter YAICD SnoopSnitch

AIMSICD

Nonroot

Cell spy catcher GSM spy finder YAICD

P1
P2
P3
P4
P5
P6
pP7
P8
P9
P10
P11
P12
P13
P14
P15

v
v

SSSSSSSSSSS S

S NN N N N N N N N NENEN
ESANENENENEN

ANIAN

SSANENENEN
SSANENENEN
ESANENENENEN

TaBLE 7: Results of parameters testing for disconnected in apps.

Root

Parameter YAICD SnoopSnitch

AIMSICD

Nonroot

Cell spy catcher GSM spy finder YAICD

P8

P9

P10
P11
P12
P13
P14
P15

SSSSSSSS
SNSSSSS

SSSSSS

Table 7 shows the results of identifying neighboring ICs.
Accordingly, the YAICD sensor detects the highest number
of parameters for nearby ICs. Moreover, SnoopSnitch, while
good at identifying parameters of ICs to which the user is
connected, is unable to detect neighboring ICs to which the
user is not connected. Of the available applications, only
AIMSICD is capable of detecting nearby ICs, but it is still in
the Alpha version and has not been fully investigated. Be-
sides, compared with our sensor, it detects fewer parameters
of the nearby ICs.

4.3. Assessing Resource Consumption of the YAICD Sensor.
Nowadays, CPU and memory usage is one of the most
decisive indicators in software performance testing. In this
section, the performance of the YAICD sensor is compared
with that of SnoopSnitch in terms of the number of re-
sources, including CPU and memory, each consumes.

The AnotherMonitor (https://f-droid.org/en/packages/
org.anothermonitor/) software was used to measure the
CPU and memory consumption of the YAICD sensor and
SnoopSnitch. To this end, both the YAICD sensor (root)
and SnoopSnitch were installed on Huawei Y7 phone and
their CPU and memory usage were calculated for 4

minutes. Also, to calculate CPU and memory usage on
nonrooted phones, the sensor was installed on the LG G4
phone. The following is a comparison of the amount of
CPU and memory resources used by the rooted YAICD
sensor, the nonrooted YAICD sensor, and SnoopSnitch.
Figure 8 displays the degree of CPU used by the rooted
YAICD sensor, the nonrooted YAICD sensor, and
SnoopSnitch, while Figure 9 presents the amount of
memory used by the rooted YAICD sensor, the nonrooted
YAICD sensor, and SnoopSnitch.

As shown, the YAICD sensor and SnoopSnitch require
almost the same amount of memory and CPU. Accordingly,
it is evident that the sensor, in addition to its excellent
identification of ICs in different modes, performs optimally
with regard to CPU and memory consumption.

5. Conclusion

Due to the dramatic rise of IC attacks on cellular networks,
several system and client-side solutions have been developed
to identify ICs. FBS-Radar and SeaGlass are among system
solutions for IC detection. These methods need database
information of cell locations, and their implementation is
costly. Therefore, they cannot be used by laymen and must


https://f-droid.org/en/packages/org.anothermonitor/
https://f-droid.org/en/packages/org.anothermonitor/

12

70 T T T T T

60 + 1

50 1

40 R

30 1

CPU usage (%)

222030
0 50 100 150 200 250
Time (seconds)
—o— Root YAICD

—6— Non-root YAICD
SnoopSnitch

F1Gure 8: Comparison of CPU usage for the YAICD sensor in root
and nonroot mode and SnoopSnitch.

Memory usage (MB)
e © ©° ©
o W N w

e
=

=)

30 60 90 120 150 180 210 240
Time (seconds)

—o— Root YAICD
—— Non-root YAICD
SnoopSnitch

FiGUure 9: Comparison of memory usage for the YAICD sensor in
root and nonroot mode and SnoopSnitch.

be implemented by operators and judicial authorities.
SnoopSnitch and AIMSICD are well-known examples of
client-side applications in this area. SnoopSnitch utilizes the
highest number of IC identification parameters, but it can
only be used on specific mobile devices with root access. In
addition, it does not identify ICs to which users have not yet
connected. AIMSICD, on the other hand, recognizes ICs to
which users have not yet connected, but it is in the alpha
version and its practical effectiveness has not been
substantiated.

This paper introduced a client-side sensor for IC iden-
tification, called YAICD. This comprehensive solution takes
account of all IC detection parameters that the existing
applications cover. The designed sensor can be installed on
both rooted and nonrooted mobile devices. In addition to

Security and Communication Networks

identifying ICs to which the mobile phone is connected, it
also notifies users of nearby ICs.

The amount of resources consumed by a mobile ap-
plication is one of the basic criteria predicting its accept-
ability in the market. In this regard, the CPU and memory
consumption of YAICD and SnoopSnitch were compared. It
was found that, besides its high performance in detecting
ICs, the YAICD is not significantly different from
SnoopSnitch in terms of resource consumption.

It is noteworthy that the YAICD sensor only alerts the
user of ICs and does not provide secure communications
between the mobile phone and the base transceiver station.
The main advantages of this sensor include:

(1) Alerting the user of MITM or IC attacks to prevent
fraud

(2) Alerting the user when an IC is in the vicinity

(3) Capacity to be installed at different strategic loca-
tions, such as Parliament and the President’s Office,
to ensure the absence of ICs.

As future work, we plan to design a mechanism to
automatically adjust the threshold values we employed in
our detection algorithm. We also plan to design a systematic
approach to learn the detection parameters’ values based on
the configurations set on the real BTS devices by the network
operators. Moreover, by collecting all the data in a central
server, we believe more sophisticated algorithms can be
designed to improve the detection accuracy and to track the
attackers.

Data Availability

The data used to support the findings of this study are re-
stricted in order to protect the privacy of the networks tested
in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors acknowledge ParsaSharif Research Institute,
Iran, for partial support for this work.

References

[1] T. T. Allen, Introduction to Discrete Event Simulation and
Agent-Based Modeling: Voting Systems, Health Care, Military,
and Manufacturing, Springer, New York, NY, USA, 2011.

[2] Z.Li, W. Wang, C. Wilson et al., “FBS-radar: uncovering fake

base stations at scale in the wild,” in Proceedings of the

Network and Distributed System Security Symposium, San

Diego, CA, USA, 2017.

M. Mouly, M.-B. Pautet, and T. Foreword By-Haug, The GSM

System for Mobile Communications, Telecom Publishing,

Bucharest, Romania, 1992.

[4] C. Zhang, “Malicious base station and detecting malicious
base station signal,” China Communications, vol. 11, no. 8,
pp. 59-64, 2014.

[3



Security and Communication Networks

[5] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and

J.-P. Seifert, “Practical attacks against privacy and availability

in 4G/LTE mobile communication systems,” 2015, http://

arxiv.org/abs/1510.07563.

S. Park, A. Shaik, R. Borgaonkar, A. Martin, and J.-P. Seifert,

“White-stingray: evaluating {IMSI} catchers detection appli-

cations,” in Proceedings of the 11th {USENIX} Workshop on

Offensive Technologies ({(WOOT} 17), Baltimore, MD, USA,

2017.

P. E. Scott, “Secrecy and surveillance: lessons from the law of

IMSI catchers,” International Review of Law, Computers &

Technology, vol. 33, no. 3, pp. 1-23, 2019.

[8] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and
E. Weippl, “IMSI-catch me if you can: IMSI-catcher-
catchers,” in Proceedings of the 30th annual computer security
applications Conference, pp. 246-255, ACM, Orleans, LA,
USA, December 2014.

[9] U. Meyer and S. Wetzel, “A man-in-the-middle attack on
UMTS,” in Proceedings of the 3rd ACM workshop on Wireless
security, Philadelphia, PA, USA, October 2004.

[10] A. Montieri, D. Ciuonzo, G. Aceto, and A. Pescape, “Ano-
nymity services tor, i2p, jondonym: classifying in the dark
(web),” IEEE Transactions on Dependable and Secure Com-
puting, vol. 17, no. 3, pp. 662-675, 2018, p.

[11] G. Bovenzi, G. Aceto, D. Ciuonzo et al., “H2ID: hierarchical
hybrid intrusion detection approach in IoT scenarios,” in
Proceedings of the IEEE Global Communications Conference
(Globecom), Taipei, Taiwan, December 2020.

[12] F. Van Den Broek, R. Verdult, and J. de Ruiter, “Defeating
IMSI catchers,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security,
Prague, Czech Republic, September 2015.

[13] P. Ginzboorg and V. Niemi, “Mobile equipment identity
privacy, network node and methods thereof,” Google Patents,
2019.

[14] Phony Cell Towers Are the Next Big Security Risk, 2019, https://
www.theverge.com/2014/9/18/6394391/phony-cell-towers-are-
the-next-big-security-risk Accessed.

[15] K. Norrman, M. Nislund, and E. Dubrova, “Protecting IMSI
and user privacy in 5G networks,” in Proceedings of the 9th
EAI International Conference on Mobile Multimedia
Communications, Xi’an China, June 2016.

[16] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and
E. Bertino, “Privacy attacks to the 4G and 5G cellular paging
protocols using side channel information,” in 26th Annual
Network and Distributed System Security Symposium, NDSS
2019, San Diego, CA, USA, February, 2019.

[17] M. Khan, V. Niemi, and P. Ginzboorg, “IMSI-based routing
and identity privacy in 5G,” in Proceedings of the 22nd
Conference of Open Innovations Association FRUCT, Jyvas-
kyla, Finland, 2018.

[18] P. Ney, I. Smith, G. Cadamuro, and T. Kohno, “SeaGlass:
enabling city-wide IMSI-catcher detection,” Proceedings on
Privacy Enhancing Technologies, vol. 2017, no. 3, pp. 39-56,
2017.

[19] Snoopsnitch,
snoopsnitch.

[20] CatcherCatcher, 2019, https://opensource.srlabs.de/projects/
mobile-network-assessment-tools/wiki/CatcherCatcher.

[21] Android IMSI-Catcher Detector, 2019, https://cellularprivacy.
github.io/Android-IMSI-Catcher-Detector/.

[22] M. Radio Interface Layer, Specification, Core Network Pro-
tocols; Stage [], GPP TS.

[6

[7

2019, https://opensource.srlabs.de/projects/

13

[23] D. Rupprecht, K. Kohls, T. Holz, and C. Pépper, “Breaking
LTE on layer two,” in IEEE Symposium on Security & Privacy
(SP), San Francisco, CA, USA, May 2019.

[24] 1. Singh, “Signaling security in LTE roaming,” MSc thesis,
School of Electrical Engineering, Aalto University, Espoo,
Finland, 2019.

[25] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T. Wang,
“Mobileinsight: extracting and analyzing cellular network
information on smartphones,” in Proceedings of the 22nd
Annual International Conference on Mobile Computing and
Networking, pp. 202-215, ACM, New York, NY, USA, 2016.

[26] A. Dabrowski, G. Petzl, and E. R. Weippl, “The messenger
shoots back: network operator based IMSI catcher detection,”
in Proceedings of the International Symposium on Research in
Attacks, Intrusions, and Defenses, Paris, France, September
2016.

[27] H. Alrashede and R. A. Shaikh, “IMSI catcher detection
method for cellular networks,” in Proceedings of the 2019 2nd
International Conference on Computer Applications & In-
formation Security (ICCAIS), Riyadh, Saudi Arabia, May 2019.

[28] GSM Spy Finder, 2019, https://play.google.com/store/apps/
details?id=kz.galan.antispy.

[29] Cell Spy Catcher, 2019, https://play.google.com/store/apps/
details?id=com.skibapps.cellspycatcher.

[30] T.van Do, H. T. Nguyen, and N. Momchil, “Detecting IMSI-
catcher using soft computing,” in Proceedings of the Inter-
national Conference on Soft Computing in Data Science,
Berkeley, CA, USA, March 2015.

[31] S. Park, A. Shaik, R. Borgaonkar, and J.-P. Seifert, “Anatomy
of commercial IMSI catchers and detectors,” in Proceedings of
the 18th ACM Workshop on Privacy in the Electronic Society,
pp. 74-86, London, UK, November 2019.

[32] A. Wilson, “SITCH: situational information from telemetry
and correlated heuristics,” in Proceedings of the DEF CON,
vol. 24, Las Vegas, NV, USA, 2016.

[33] S. Steig, A. Aarnes, T. Van Do, and H. T. Nguyen, “A network
based imsi catcher detection,” in 2016 6th International
Conference on IT Convergence and Security (ICITCS), pp. 1-6,
1EEE, 2016.


http://arxiv.org/abs/1510.07563
http://arxiv.org/abs/1510.07563
https://www.theverge.com/2014/9/18/6394391/phony-cell-towers-are-the-next-big-security-risk
https://www.theverge.com/2014/9/18/6394391/phony-cell-towers-are-the-next-big-security-risk
https://www.theverge.com/2014/9/18/6394391/phony-cell-towers-are-the-next-big-security-risk
https://opensource.srlabs.de/projects/snoopsnitch
https://opensource.srlabs.de/projects/snoopsnitch
https://opensource.srlabs.de/projects/mobile-network-assessment-tools/wiki/CatcherCatcher
https://opensource.srlabs.de/projects/mobile-network-assessment-tools/wiki/CatcherCatcher
https://cellularprivacy.github.io/Android-IMSI-Catcher-Detector/
https://cellularprivacy.github.io/Android-IMSI-Catcher-Detector/
https://play.google.com/store/apps/details?id=kz.galan.antispy
https://play.google.com/store/apps/details?id=kz.galan.antispy
https://play.google.com/store/apps/details?id=com.skibapps.cellspycatcher
https://play.google.com/store/apps/details?id=com.skibapps.cellspycatcher

