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As an innovative strategy, edge computing has been considered a viable option to address the limitations of cloud computing in
supporting the Internet-of-*ings applications. However, due to the instability of the network and the increase of the attack
surfaces, the security in edge-assisted IoT needs to be better guaranteed. In this paper, we propose an intelligent intrusion
detection mechanism, FedACNN, which completes the intrusion detection task by assisting the deep learning model CNN
through the federated learning mechanism. In order to alleviate the communication delay limit of federal learning, we inno-
vatively integrate the attention mechanism, and the FedACNN can achieve ideal accuracy with a 50% reduction of
communication rounds.

1. Introduction

By connecting the Internet with physical objects (including
people and equipment) and transmitting information between
objects [1], the Internet of *ings (IoT) enables the integration
of the real world and the data world, thus making our life more
smart and fashionable [2]. Current popular applications of IoT
include smart metering, smart cities, smart hospitals, smart
agriculture, and smart transportation [2].

IoT and social networking applications are growing too
fast, resulting in exponential growth of data generated at the
edge of the network [3]. Previously, traditional centralized
cloud computing architectures could provide centralized
remote services by bringing all data together on a central
server [4]. However, due to issues such as network band-
width limitations and data privacy [5], it is impractical and
often unnecessary to still send all data to the remote cloud in
the same way as before [3] because this process incurs
significant data transmission costs and does not meet the
real needs of some low-latency services and applications [4].

As a result, edge computing has emerged as an innovative
strategy [5]. Edge computing migrates some network
functions and data processing to the edge of the network
closer to the end user, where these tasks were previously
performed in the core network [6], resulting in the so-called
edge-assisted IoT. Edge computing has been identified as a
viable option to address the limitations of cloud computing
in supporting IoT applications [7, 8]. Compared to cloud
computing, edge computing helps deliver efficient network
communication services to users with lower latency, more
flexible access, and protection of data privacy [7, 9].

While the edge-assisted IoT architecture offers unique
features and enhanced quality of service, there are still many
challenges to network stability and security, and damage
from malicious attacks will undermine the benefits of edge
computing [7]. In edge-assisted IoT, the threat factors
mainly include information data in edge networks, edge
nodes, cloud servers, and other system devices. *ese threats
come from a variety of sources, including malware, hacking,
exploited system vulnerabilities, unauthorized access, and
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other human factors [10]. Once the intrusion is not detected
in time, it will cause incalculable damage to the applications
and devices in the IoT, especially the threat to personal safety
[4]. *e research on edge network security is still in the
development stage [4], and most of the previous intrusion
detection solutions are recommended to be deployed in the
core backbone network [11]; however, this does not meet the
real security needs, and due to the turnover of the network
structure, the applicability of the intrusion detection tech-
nology has raised higher requirements.

*e rest of this paper is organized as follows. Section 2
presents an overview of intrusion detection for IoT and an
overview of federated learning. In Section 3, we present our
proposed intrusion detection method. In Section 4, we
present our experimental setup, the utilized performance,
our experimental results, and the comparison of our work
with other competing approaches. Finally, in Section 5, we
present our conclusion and future work.

2. Related Work

2.1. IntrusionDetection for IoT. Intrusion detection is a strong
active defense mechanism, and there are many intrusion de-
tection methods [12]. Depending on the data source, intrusion
detection techniques can generally be divided into two cate-
gories: network-based intrusion detection and host-based in-
trusion detection [13]. *e network-based intrusion detection
system is one of the solutions for the early detection of network
attacks [14]. According to the different detection mechanisms,
intrusion detection technology can be divided into two cate-
gories: misuse-based intrusion detection and anomaly-based
intrusion detection.Misuse-based intrusion detection uses a set
of predefined rules and patterns to detect attacks. Anomaly-
based intrusion detection uses a precollected dataset with
normal or malicious behaviour labels and uses this dataset to
train and test a detectionmodel; any network flow that deviates
from the model threshold is flagged as an anomalous entry and
reported as an attacker. Due to the excellent classification
performance ofmachine learning, researchers have widely used
machine learning methods in anomaly-based intrusion de-
tection, such as the Bayesian model, support vector machine,
genetic algorithm, and other machine learning models [13].
However, today’s network data present larger, complex, and
multidimensional features. When facing high-dimensional
data features, traditional machine learning methods need to
manually extract a large number of features. *e process is
complex and the computation is large, which cannot meet the
accuracy and real-time requirements of intrusion detection
[15].

Deep learning, as an important branch of machine
learning, has attracted more and more attention since its
theory was proposed. *e deep learning model has good
advantages in dealing with complex data, and it can auto-
matically extract better representation features from large-
scale data. For image classification, feedforward neural
networks, especially convolutional neural networks (CNN),
have achieved well-known advanced results. For language
modelling tasks, recurrent neural networks (RNN), espe-
cially LSTM, have also achieved remarkable results [16].

Neural network models such as those described above, with
good self-learning capabilities, high-speed optimization, and
efficient parallel distributed processing, are also very suitable
for handling complex data in network traffic [15].

Currently, the commonly used models in DL-based IoT
intrusion detection are DBN, CNN, RNN, GAN, etc.,
[17, 18]. However, the network structure and training
process of most depth models are usually complex, and the
model parameters are more, which increases the difficulty
and energy consumption of training. CNN has the property
of weight sharing, which can effectively avoid the problem of
more parameters in complex network structure and reduce
the dimension of data by convolution layer and pooling
layer, which can effectively reduce the network complexity
and speed up the intrusion detection rate. Yang and Wang
[19] proposed a wireless network intrusion detection
method based on an improved convolutional neural network
(ICNN). Simulation results show that the proposed model
has acceptable performance on public datasets compared
with traditional methods. Considering the limited resources
of IoT edge equipment, Stahl et al. [20] proposed a solution
to perform CNN model detection tasks in a distributed
manner using multiple collaborative edge devices. *e core
mechanism of their method is to partition the CNN layer
where the dominant weight is, distribute the weight data and
calculation load evenly on all available devices, and then
minimize the task execution time.

Recently, researchers have been exploring whether
collaborative intrusion detection systems [21] can be a
mainstream option for detecting attacks in large and
complex networks, such as the IoT [22]. By detecting real
worm datasets with accuracy and overhead, Sharma et al.
[11] evaluated the applicability and performance of
centralized IDS and purely distributed IDS architectures.
*rough experiments, they observed that when a large
number of edge nodes have attacks, centralized IDS has
higher network requirements than distributed IDS and
does not have more advantages in detection performance.
It can be seen that Stahl et al. [20] did provide a reasonable
solution for better completing the detection task on re-
source-constrained edge devices, but they ignored the
protection of data privacy and the threat of malicious
nodes.

2.2. Federated Learning. In recent years, the emergence of
federal learning (FL) has enabled the deep learning model to
effectively train, ensure the security and privacy of data, and
effectively solve the problem of data island. *e original
design purpose of FL is to conduct efficient learning among
multiple participants or computing nodes, on the premise of
ensuring information security in the process of data ex-
change. FL can be used as the enabling technology of edge
network because it can realize the collaborative training of
ML and DL models and also be used for the optimization of
edge network [23]. In FL, client devices (edge devices) use
local data to train the ML model and then send updated
model parameters (rather than raw data) to the cloud server
for aggregation.
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According to [24], federal learning can be divided into
three categories: (1) horizontal federated learning, which
applies to scenes with different samples but the same
characteristics in multiple datasets, (2) vertical federated
learning, which applies to scenarios where multiple datasets
have the same sample but different feature spaces, and (3)
federated transfer learning applies to scenarios where
multiple datasets have different samples and different feature
spaces. *e federal learning architecture in our subsequent
proposed approach belongs to horizontal federal learning.

Since the server needs to interact with the client in the
edge network, the wireless connection between them is
unstable and unreliable, reducing the number of rounds of
communication between the server and the client which is
necessary to provide security.*e delay in communication is
the performance bottleneck of the entire learning framework
[25, 26]. For this reason, our goal is to ensure the good
performance of the detection mechanism while reducing the
cumulative number of communication rounds.

In addition, common machine learning (including deep
learning) methods usually follow the assumption that data
are independent and identically distributed (IID). However,
in real networks, especially under the current edge-assisted
IoT architecture, different IoT devices belong to a certain
user, enterprise, or application scenario, and thus, data
distribution often varies greatly, and due to factors such as
user groups and geographical associations, these data often
have certain correlations, so the data on edge devices are
likely to be non-IID, and this situation deserves strong at-
tention, especially when federated learning is introduced and
used to collaborate with tens of thousands of devices and
their private data for model training. Using only existing
machine learning methods to handle non-IID data for
training will lead to low model accuracy and poor model
convergence [6]. *erefore, our study focuses on the
treatment when the data are non-IID.

In this paper, we propose an intelligent intrusion de-
tectionmechanism, FedACNN, based on federated learning-
(FL-) aided convolutional neural network (CNN) for edge-
assisted IoT. FedACNN completes detection tasks using the
CNN model in the framework of federated learning. Our
FedACNN uses local datasets and computing resources of
edge devices for model training and uploads model pa-
rameters to a central server for collaborative training.
Compared with traditional centralized learning approaches,
FedACNN does not require the transfer of raw data to a
central server, ensuring model accuracy while reducing the
risk of data leakage. At the same time, we incorporate an
attention mechanism, which allows fewer communication
rounds and lower detection latency while ensuring the
performance of the detection model.

3. Proposed Methods

In this section, we first detail the composition of the learning
model CNN and then introduce the common FL algorithms.
Finally, we innovatively incorporate attention mechanisms
into the FL model to constitute an intrusion detection
mechanism based on FL-aided CNN.

3.1. CNN for Intrusion Detection. CNN is a kind of artificial
neural network (ANN), which is inspired by the study of
visual cortex cells. Its important feature is to reduce the
number of parameters in the network by local connection
and shared weight, to obtain some degree of affine
invariance.

Using the neural network model for detection tasks, the
structure of the network has a great influence on the de-
tection results. However, most edge devices are limited by
memory and computing resources [27], and they cannot
store and execute complex CNNmodels.*erefore, when we
set the hierarchical structure of the CNN model, we mainly
start by adjusting parameters and optimizing the structure.
While ensuring accuracy, the CNN model structure is rel-
atively simple, as shown in Figure 1.

*e CNN model structure is mainly composed of the
convolution layer, the pooling layer, and the full connection
layer. *e first layer is the data input layer. In the training
process, the data distribution will change, which will bring
difficulties to the learning of the next network. So, after the
convolution layer, we use batch normalization to force the
data back to the normal distribution with mean 0 and
variance 1; on the one hand, it makes the data distribution
consistent, and on the other hand, it avoids gradient dis-
appearance. We use the ReLU function as a nonlinear ac-
tivation function to replace the Sigmoid or tanh function
commonly used in traditional neural networks, which can
effectively accelerate the speed of network convergence and
training. *e eighth layer is the pooling layer (down-
sampling layer), which mainly conducts the downsampling
of the input. *e pooling operation reduces the output size
of the convolution layer, thus reducing the calculation cost
and avoiding overfitting. *e commonly used pooling
methods include the mean-pooling and the max-pooling,
and the max-pooling method is selected in this paper. *e
ninth layer to the eleventh layer is the fully connected layers;
the number of neurons in each layer has been marked in
Figure 1. *e last layer is the output layer of the network,
which is mainly used for classification prediction. We use
Softmax as the decision function, which generates a frac-
tional vector for each class and returns the maximum index
as the predicted class.

3.2. Federated Learning. *e FL structure consists of one
server and several clients. In this paper, the term “server” is
the remote cloud server, and the term “client” is the edge
network entities such as edge nodes and edge devices. *e
basic idea of FL is “the data does not move, the model
moves” [27]. As shown in Figure 2, specifically, the server
provides a global shared model and the client downloads the
model and uses local datasets for training, while updating
model parameters. In each communication between the
server and the client, the server will get the current model
parameters are distributed to each client (also can be de-
scribed as the client download server model parameters),
after the client training, and then, the updated model pa-
rameters are uploaded to the server; the server will aggregate
client model parameters through some method, as the
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updated global model parameters, of this cycle. *e server
has a variety of aggregation methods for the model pa-
rameters uploaded by clients. In [16], the authors proposed a
federal averaging algorithm, FedAVG. *is algorithm
combines the local stochastic gradient descent (SGD) of each
client and the execution of model averaging on the server
side. In FL scenarios, communication costs are very large
constraints, compared with the synchronous random gra-
dient descent algorithm; their FedAVG can greatly reduce
the number of communication rounds.

*e computation of FedAVG is mainly controlled by
three key parameters: C, the fraction of clients, B, local batch
size for client update, and E, the number of local epochs. In
particular, when B�∞ (i.e., the complete local dataset used

for the client update) and E� 1, then FedAVG is equivalent
to FedSGD [16]. FedACNN refers to FedAVG as a baseline
model framework. See Algorithm 1, for details of the
FedAVG algorithm steps.

3.3. Improving FedAVG for Intrusion Detection. Based on
FedAVG, inspired by the idea of attention mechanism, we
match different importance degrees for the edge nodes in-
volved in collaborative detection. In other words, different
clients have different weights. *e standard of importance
degree is based on the contribution of local model classi-
fication performance to the improvement of global model
classification performance. *e weight is high when the
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Figure 1: Structure of the proposed CNN model.
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Figure 2: Intelligent intrusion detection based on FL-aided CNN for edge-assisted IoT.①Model initialization;② local model training and
update;③ ipload the updated local model parameters;④ server aggregates and updates parameters of the global model;⑤ download the
updated global model parameters. Repeat ②–⑤, until model convergence.

4 Security and Communication Networks



contribution is large, and vice versa.*e server does not only
aggregate the average model of clients but also aggregate the
weighted model parameters, which can accelerate the
convergence of the global model. At the same time, it re-
duces the adverse effects of model parameters that con-
tribute less to global models. *e FedACNN algorithm is
described by Algorithm 2. *e innovative contributions of
this algorithm are mainly reflected as follows.

3.3.1. Server. Like the previous FedAVG algorithm, the
server initializes and publishes the model parameters. Each
client device downloads the initial model parameters of the
server, uses the local dataset for training, and uploads the
updated model parameters to the server. After each client
device uploads the updated model parameters, the server
aggregates the parameters. It is necessary to note that we
only use the idea of FedAVG to process non-IID data and
apply it to the FedACNN algorithm.

Assuming that the server communicates with the client
total t round, in the first round of communication, the server
receives updates from s clients, the model parameter after
the average aggregation of the server is WG (1), and N′� |
D1| + |D2| + . . .+ |Ds| is the total number of client data
samples. We update the global model on the server side by

WG(1) � 
s

k�1

Dk




N′
Wk(1), (1)

where Wk (1) is the local model parameter of client k in the
first round of updating. In the later update aggregation
process, an attention mechanism is introduced to aggregate
weighted parameters.

3.3.2. Weighted Parameter Aggregation. Inspired by the
attention mechanism and FedAGRU [25], FedACNN im-
plements the attentionmechanism on the server side, assigns
different weights to different clients, and applies the
weights to the model parameter aggregation process. *e
model parameter vector set updated by s clients is expressed

as W� [W1, W2, . . ., Ws]. Assuming that the model pa-
rameter vectorWk updated by the client k is n-dimensional;
after the first round of communication (t> 1), the Euclidean
distance d(WG(t), Wk(t)) between the parameter matrices
are calculated by

d WG(t), Wk(t)(  �

���



n

i�1




WG(t)i − Wk(t)i( 
2

. (2)

Compare the magnitude of d value between the model
parameters updated by each client and themodel parameters
after global aggregation by the server, which is used to
measure the contribution of each client’s local parameters to
the global parametric model optimization. Due to the large
dimensional difference between different parameters, the
Sigmoid function (see (3)) is used for normalization. *e
normalized result is ak(t) (see (4)). Furthermore, using (5) to
assign importance hk (t) to client k,

fSigmoid �
1

1 + e
− x, (3)

ak(t) � fSigmoid d WG(t), Wk(t)( ( , (4)

hk(t) �
s ∗ ak(t)


s
k�1 ak(t)

. (5)

In the next round of global aggregation, the server will be
based on the importance of each client hk(t) and aggregate
model parameters for each the client using (6).*is cycle will
continue until optimal performance is achieved:

WG(t) � 
s

k�1

Dk




N
∗ hk(t − 1)∗Wk(t), (6)

where N∗ is the total number of data samples for selected
clients.

It is important to note that, except for the average ag-
gregation of parameters by the server in the first round of
communication, the server aggregates weighted parameters

procedure Server:
initialize w0
for each round t� 1, 2, . . . do
m←max (C·K, 1)
St← (random set of m Clients)
for each Client k ∈ St in parallel do

wk(t + 1)←ClientUpdate(k, wk(t))

wG(t + 1)←ClientUpdate(k, wk(t + 1))

procedure Client (k, w)://Run on Client k
B← (split local Client data into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈B do
w←w − η∗ ι (w; b)

return w to Server

ALGORITHM 1: FedAVG. Given K clients (indexed by k), B is the local minibatch size, E is the number of local epochs, R is the number of
global rounds, C is the fraction of clients, and η is the learning rate.
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in each subsequent round of communication. According to
the contribution of the updated parameters of the client in
the previous round to the global model optimization, the
importance of each client in each round will be dynamically
allocated.

4. Experiments and Results

We use the NSL-KDD dataset to evaluate the model. Our
experiments can dynamically select the number of clients,
and each client uses local data to train its model and upload
updated model parameters to the server for aggregation.

*e server used in this experiment is the Windows10
operating system and the processor is Intel(R) Core (TM) i5-
10210U CPU@2.11GHz. We use Python’s deep learning
library Pytorch to program FedACNN.

4.1. Dataset Preprocessing. ML algorithms rely on large
amounts of data to train models to provide better results.
Data is usually stored in storage container devices such as
files and databases, which cannot be used directly for
training [28]. Before passing the data to the learning model
for training, we must preprocess the data.

A key component of an effective intrusion detection
system is a good dataset that reflects real-world reality. To
verify the effectiveness of the approach proposed in the
paper, we conduct experiments using a public intrusion
detection dataset-NSL-KDD. NSL-KDD dataset is a com-
monly used dataset for intrusion detection. *e NSL-KDD
dataset has advantages over the original KDD CUP 99
dataset, such as it does not include redundant records in the
training set, so the classifier is not biased towards more
frequent records, etc. *e dataset contains normal networks’
behaviour data, as well as four major categories of abnormal

attack data, which are denial-of-service (DoS) attack, user to
root (U2R), remote to local attack (R2L), and probing attack
(Probe), and their specific descriptions are shown in Table1.
Our work focuses on classifying and detecting four major
categories of anomalous attacks. Each sample in the NSL-
KDD dataset contains 41 feature attributes and one class
identification, and the class identification is used to indicate
whether the connection record is normal or a specific type of
attack.

To better use the NSL-KDD data as input data for the
CNNmodel, we performed a preprocessing operation on the
original dataset. *e preprocessing procedure includes
numerical, normalization, and visualization.

4.1.1. Numerical. *e original NSL-KDD dataset has four
character-based feature attributes, namely, protocol, service,
flag, and label. We have used the label encoder function to
numerically encode each of the four character-based values.

4.1.2. Normalization. After the numerical processing is
performed, there is a large difference in magnitude be-
tween the values. *is situation tends to cause problems
such as slower convergence of the network and saturation
of neuron outputs; therefore, normalization of the orig-
inal data is required. We used the Min-Max normalization
method (see (7)) to normalize the data to the interval [0,
1]:

x
∗

�
x − xmin

xmax − xmin
, (7)

where x∗ is the normalized data, x is the original data, xmin is
the minimum data value in the current attribute, and xmax is
the maximum data value in the current attribute.

procedure Server:
initialize W0
for each round t� 1, 2, . . . do
m←max (C·K, 1)
St← (random set of m Clients)
for each Client k ∈ St in parallel do

Wk(t + 1)←ClientUpdate(k, Wk(t))

if t� 1 then
WG(1) � 

S
k�1 |Dk|/N′Wk(1)

Calculate the Client K importance degree hk(1) following equations (3)–(6)
else

WG(t) � 
S
k�1 |Dk|/N∗hk(t − 1)∗Wk(t)

Calculate the Client importance degree hk(t) following equations (3)–(6)
Update parameter WG(t + 1), hk(t + 1).

procedure Client Update (k, w)://Run on Client k
B← (Split local Client data into batches of size B)
for each local epoch i from 1 to E do
for batch b ∈B do

w←w − η∗ ι (w; b)
return w to Server

ALGORITHM 2: FedACNN. Given K clients (indexed by k), B is the local minibatch size, E is the number of local epochs, R is the number of
global rounds, C is the fraction of clients, and η is the learning rate.
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4.1.3. Visualization. After preprocessing the data, we ob-
tained a numerical dataset with values between [0, 1], and we
converted the numerical type data into an 8∗ 8 two-di-
mensional matrix, with the empty space to be filled with
zeros.

In the following experiments, Accuracy, Precision, Re-
call, and F1_score are selected as the evaluation indexes for
evaluating the performance of various methods. *e specific
description of these evaluation indexes is shown in Table 2.
TP and TN correctly classify positive/negative samples; in
fact, FP indicates a false alarm that misidentifies a negative
sample as a positive sample by mistake negative samples into
positive samples and FN means that a positive sample is
mistaken for a negative sample, indicating a missing alarm
[29].

4.2. Applicability of FL Model. We first use Accuracy to
evaluate the performance of the centralized learning (CL)
model and the federated learning model on NSL-KDD. For a
centralized model, we use our proposed local CNN model
for experiments. Centralized algorithm uploads data to the
server for centralized training. FedAVG [29] is selected as
one of the comparison methods of federal learning. In
order to better illustrate the advantages of the proposed
algorithm, the training models of the comparison federal
learning methods are CNN. Reasonable selection of
hyperparameters will greatly affect the performance of the
algorithm [30]. Under different hyperparameter configu-
rations, we studied the classification performance of the
centralized learning model CNN (CL-CNN) and the FL
model and determined the reasonable parameters of the
algorithms (the specific parameter configuration is shown
in the table). *e simulation results (see Table 3) show that,
under the condition of 40 rounds of iteration, CL-CNN has
the highest accuracy of 99.65%; this is because the CL-CNN
model has more complete datasets, so its accuracy can be
used as the theoretical upper limit of the accuracy of the
federal learning model. Compared with FedAVG,
FedACNN has higher accuracy of 99.12%. Although it is
slightly lower than CL-CNN, it is within an acceptable gap.
Experiments show that collaborative training of federal
learning can achieve ideal accuracy while protecting data

privacy. In other words, FedACNN sacrifices a bit of ac-
curacy to protect data privacy.

4.3. Classification Performance Evaluation. After verifying
the applicability of the federal learning model, we use Ac-
curacy to measure the overall classification performance of
FedACNN without limiting the number of communication
rounds, and use Recall, Precision, and F1_score to measure
the specific classification performance of FedACNN. First,
we use FedAVG to complete the comparative experiment.
*e hyperparameters of the FL model are set as B� 128,
E� 5, K� 10, C� 1, and η� 1e− 2.*rough the experimental
results shown in Table 4, we observe that since there are
fewer samples of R2L and U2R types of attacks, the indi-
cators of these two types of attacks are lower than those of
other types, followed by Probe. Since there are too few
samples of the U2R class, FedAVG cannot accurately classify
such attacks, while FedACNN has certain classification
ability for such attacks. FedACNN also has obvious ad-
vantages in detecting other types of attacks, and its overall
classification accuracy can reach 99.76%. Figure 3 shows the
detection performance of FedACNN for various attacks.

We compare the results of the NSL-KDD dataset after
applying traditional machine learning for training and
testing with FedACNN and also compare the classification
performance of typical deep learning models along with
several current innovative mechanisms. *e traditional
machine learning models used for comparison include
Random Forest (RF), SVM, and Naive Bayes [31], typical
deep learning models include LeNet-5, DBN, and RNN [19],
and innovative mechanisms include IoTDefender [24] and
IBWNIDM [19]. Combined with the analysis of the ex-
perimental results in [31], it is clear that the RF classifier has
the best classification performance compared to SVM and
Naive Bayes, and its detection accuracy can reach 99.1% for
normal traffic, 98.7% for DoS, and 97.5%, 96.8%, and 97.6%
for U2R, R2L, and Probe, respectively. Comparing the above
results with the detection results produced by our model,
FedACNN has higher detection accuracy for normal traffic
and various types of attacks than the three types of tradi-
tional machine learning models mentioned above (see
Table 5).

Table 1: Specific description of each type of attack.

Category Description Specific attacks included in the
training set

Specific attacks included in the
test set

DoS
Sending a large number of packets to the server to make
it busy, the attacker tries to prevent legitimate users

from accessing the server

back, land, Neptune, pod, smurf,
teardrop apache2, mailbomb, processtable

U2R
*e attacker accesses the system through a normal user
account and then attempts to gain root access to the

system using certain vulnerabilities

buffer-overflow, perl, load
module, rootkit httptunnel, ps, sqlattack, xterm

R2L
*e attacker can remotely log into the computer and
then use the computer’s account and weak password to

enter the computer to operate

ftp-write, imap, multihop, phf,
guess-passwd, warezclient, spy,

warezmaster

sendmail, worm, named, xlock,
snmpgetattack, snmpguess,

xsnoop

Probe *e attacker purposefully collects information about a
computer network to bypass its security controls ipsweep, Satan, nmap, portsweep Mscan, saint
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As shown in [19], IBWNIDM is a detection mechanism
based on the improved CNNmodel, and its overall detection
accuracy reaches 95.36%, which is already higher than the
typical deep learning models, LeNet-5, DBN, and RNN.

Comparing the above results with the detection performance
of our designed FedACNN, the overall detection accuracy of
FedACNN is 4% higher more than.*e authors of [24] claim
that their IoTDefender is the first framework to apply
federated transfer learning to 5G IoT IDSs, but the detection
accuracy of IoTDefender for the NSL-KDD dataset is only
81.99%, which is much worse than that of our FedACNN
(see Table 6). *rough the above comparative analysis, we
can learn that FedACNN has better detection performance.

4.4. Communications’ Efficiency Assessment. *rough the
relationship between the number of communication rounds
and the accuracy, we evaluate the learning speed of the
proposed algorithm and compare the classification accuracy
performance of FedACNN and FedAVG (CNN) under
different communication rounds. Figures 4 and 5 show the
relationship between the number of communication rounds
and accuracy. Compared with FedACNN and FedAVG,
FedACNN has better performance under the same com-
munication round. In other words, FedACNN needs fewer
communication rounds to achieve model convergence.
FedACNN can achieve the accuracy of FedAVG in 40
rounds of communication when communicating for 20
rounds, and the number of communication rounds is re-
duced by 50%. *is is due to the addition of the attention
mechanism in FedACNN, so the server aggregation of client
model parameters is no longer an average aggregation, but a

Table 2: Method evaluation metrics.

Metrics Narrative description Equation to describe
Accuracy *e percentage of correct classification records in total records TP + TN/TP + TN + FP + FN

Precision *e percentage of the number of prediction pairs of this category to all the prediction
number of this category TP/TP + FP

Recall *e percentage of the number of prediction pairs of this category to all the number of
this category TP/TP + FN

F1_score A measure of classification problems is a harmonic average of precision and recall 2∗ Precision∗Recall/Precision + Recall

Table 3: Comparison of overall classification accuracy between the CL model and the FL model.

Method
(B� 128, E� 1, K� 10, C� 1, η� 1e− 2)

Accuracy (%)
(R� 10)

Accuracy (%)
(R� 20)

Accuracy (%)
(R� 40)

CL-CNN 98.97 99.40 99.65
FedAVG (CNN) 98.13 98.58 98.90
FedACNN (proposed) 98.73 99.02 99.12

Table 4: Comparison of specific classification performance of different methods.

FedACNN FedAVG (CNN)
Recall Precision F1_score Recall Precision F1_score

DoS 99.92 99.93 99.93 99.79 99.77 99.78
U2R 45.59 90.00 60.52 23.07 63.91 33.90
R2L 85.54 90.15 87.78 69.25 80.00 74.24
Probe 88.79 93.86 91.26 75.84 84.08 79.75
Normal 99.81 99.43 99.62 99.49 98.99 99.23
All 83.92 94.67 88.97 73.49 85.35 78.98

Recall
Precision
F1_score

0

20

40

60

80

100
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U2R R2L ProbeDos
Attack Type

Figure 3: *e detection performance of FedACNN for various
attacks.
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weighted aggregation according to different importance,
allowing parameters that contribute more to the overall
model to play a greater role, thus speeding up convergence
and reducing the number of communication rounds.

4.5. Comparison of Classification Performance between the
Local Model and Global Collaboration Model. We use
FedACNN to complete this part of the experiment. On the
one hand, each client model uses the local dataset for
training, and the local iterations are 40, 120, and 200 rounds,
namely, E� 40, 120, and 200. On the other hand, the FL
mechanism is used for collaborative training, the parameters
E� 1, and R is 40, 120, and 200, respectively. In each iteration
number (communication rounds), we use Accuracy and
Precision as evaluation indexes to evaluate the classification
performance of these two mechanisms.*e results in Table 7
show that due to the incomplete characteristics of the
dataset, each client model shows overfitting. In the same
number of iterations, the overall classification performance

CL–CNN
FedAVG (CNN)
FedACNN (proposed)

5 10 15 20 25 30 35 400
Number of communication rounds (E = 1)

0.86
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Figure 4: Relationship between number of communication rounds and accuracy (B� 128, E� 1, K� 10, C� 1, and η� 1e− 2).

Table 5: Comparison of specific classification performance with traditional machine learning methods.

Classification algorithm
Accuracy for different classes of attacks

Normal Dos U2R R2L Probe
Random forest 99.1 98.7 97.5 96.8 97.6
SVM 98.1 97.8 93.7 91.8 90.7
Naive Bayes 70.3 72.7 70.7 69.8 70.9
FedACNN (proposed) 99.8 99.9 99.1 99.0 99.2

Table 6: Comparison of specific classification performance with traditional machine learning methods.

Classification algorithm LeNet-5 DBN RNN IBWNIDM IoTDefender FedACNN
Accuracy (%) 86.54 92.45 93.08 95.36 81.99 99.76

FedAVG (CNN)
FedACNN (proposed)

5 10 15 20 25 30 35 400
Number of communication rounds (E = 5)
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Figure 5: Relationship between number of communication rounds
and accuracy (B� 128, E� 5, K� 10, C� 1, and η� 1e− 2).
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of each client under the FL mechanism is much better than
that only using local data to train in the local. *is is because
when the client only uses local data for model training, the
dataset is small and the number of samples is limited.
FedACNN, through the federal learning mechanism where
the Clients update parameters and the server aggregates
them and sends them to the clients, makes each client no
longer only use small dataset for training, but use the current
global optimal parameters for training, which makes the
model detection performance trained by each client better.

5. Conclusions

In this paper, we propose an intelligent intrusion detection
mechanism for edge-assisted IoT, FedACNN, which is based
on FL-aided CNN. Under the premise of protecting data
privacy, the FedACNN can complete the intrusion detection
task with relatively ideal performance, and the overall
classification accuracy of FedACNN for attack data can
reach 99.76%. Since we innovatively integrate the attention
mechanism, FedACNN can obtain higher detection accu-
racy with less communication overhead. By comparing the
detection results on the USL-CUP dataset, FedACNN has
better accuracy performance than three traditional machine
learning models, three typical deep learning models, and two
innovative mechanisms. Compared with FedAVG, the
number of communication rounds is reduced by 50%.

We believe and expect that FedACNN can make some
contributions to the research on security protection for
edge-assisted IoT. In the future, we will conduct intrusion
detection research on encrypted traffic data of edge-assisted
IoT and look forward to making greater contributions to
protecting edge-assisted IoT.
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