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Cloud services have become an increasingly popular solution to provide different services to clients. More and more data are
outsourced to the cloud for storage and computing. With this comes concern about the security of outsourced data. In recent
years, homomorphic encryption, blockchain, steganography, and other technologies have been applied to the security and
forensics of outsourced data. While encryption technologies such as homomorphic encryption and blockchain scramble data so
that they cannot be understood, steganography hides the data so that they cannot be observed. Traditional steganography assumes
that the environment is lossless. Robust steganography is grounded in traditional steganography and is proposed based on a real
lossy social network environment. *us, researchers, who study robust steganography, believe that the measurement should
follow traditional steganography. However, the application scenario of robust steganography breaks through the traditional
default lossless environment premise. It brings about changes in the focus of steganography algorithms. Simultaneously, the
existing steganography methods miss the evaluation of applicability and ease of use. In this paper, “default parameters” are
observed by comparing the process of robust image steganography with traditional image steganography. *e idea of “perfecting
default parameters” is proposed. Based on this, the attribute set of measuring robust image steganography is presented. We call it
PRUDA (Payload, Robustness, ease of Use, antiDetection, and Applicability). PRUDA perfects default parameters observed in the
process of traditional steganography algorithms. Statistics on image processing attacks in mobile social apps and analyses on
existing algorithms have verified that PRUDA is reasonable and can better measure a robust steganography method in practical
application scenarios.

1. Introduction

With the proliferation of mobile terminals and the as-
tonishing expansion of the mobile Internet, Internet of
things, and cloud computing, more and more data are
outsourced to cloud storage systems because once the data
are shared with untrusted servers, there are potential risks
that the data might be modified or replicated by unau-
thorized servers. Users worry that when they outsource
their data to untrusted parties, they lose control of the
outsourced data, and the ownership of the data is not well
guaranteed. *us, users are reluctant to share their data in

these network environments with other entities they do not
trust because of privacy concerns. To address this issue,
many schemes have been proposed to protect outsourced
data security. Homomorphic encryption [1, 2], blockchain
[3, 4], and steganography [5, 6] are effective methods that
have been popular in recent years. When using homo-
morphic encryption and blockchain to encrypt and verify
the outsourced data, the carrier transmitted over the
channel and stored in the cloud are garbled media. *e
garbled media is easy to attract the attention of attackers.
Steganography embeds private data into normal media, and
the carrier transmitted over the channel and stored in the
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cloud is everyday media. It not only hides the content of
data but also hides its existence. *us, the data are doubly
insured.

*e photos and pictures of blowout growth [7] shared on
social applications, post bars, and open websites provide
natural carriers for steganography. For the sake of speed or
other bandwidth considerations, images are often processed
unexpectedly (such as scaled or compressed) in the cloud
environment. *e traditional image steganography method
cannot function effectively in this lossy environment. Based
on this, robust image steganography is introduced [8]. Tra-
ditional steganography methods usually focus on designing
proper distortion functions. *e aim is to improve anti-
statistical detection performance by keeping themodifications
concentrated on complicated texture areas adaptively [9, 10],
or the pixels’ modification directions met expectation [11].
Robust image steganography [12–17] has inherited a lot from
traditional image steganography. For example, the mea-
surement attributes. New problems arise due to the different
application backgrounds of robust image steganography.

Figure 1 shows the application scenarios of traditional
steganography and robust steganography. A stego image is
transmitted in a lossless environment in traditional steg-
anography (Figure 1(a)) while it is transmitted in an open
lossy environment in robust steganography (Figure 1(b)).
Measurement attributes are born in traditional steganog-
raphy (the blue dashed tail arrow) and used to evaluate all
steganography methods (the regular blue arrows). *e ap-
plication background of robust steganography, lossy envi-
ronment (e.g., Wechat1 and Facebook2), is not reflected (the
hollow green arrow) in the measurement attributes. As one
robust steganography method after another was proposed,
the contradiction between the measurement attributes and
the robust steganography is gradually exposed.

*e existing robust image steganographymethods can be
divided into methods combing with watermarking algo-
rithm and methods digging environment features (or called
channel features which refer to lossy operations in trans-
mission or the cloud) according to the algorithm’s idea. *e
former obtained the wanted robustness while introducing
the unwanted low embedding rate and poor antidetection
performance such as DCRAS [8], GMAS [16], and MREAS-
PJ [17]. Some researchers tried to dig channel features and
simulated channel attacks to keep attacks that images suf-
fered when transmitting are predictable such as designing a
transport channel matching [12], adjusting cover images
according to the received image [13], constructing an
autoencoder [14], and utilizing a simulated repetitive
compression network [15]. *ese methods always had good
antidetection performance and a higher embedding rate.
However, they generally had relatively strict restrictions on
channels. Otherwise, the robustness would be reduced.

All these methods consider reducing the message ex-
traction error rates while maintaining [15] (sometimes
sacrificing [17]) the antistatistical detection ability. Anti-
statistical detection ability is one of the essential attributes to
measuring traditional steganography. It means that the

measurement attributes are beginning to diverge. For tra-
ditional steganography, two key attributes of the measure-
ment are message embedding capacity (payload) and
antistatistical detection ability [18]. *ere are also eyes on
embedding efficiency [19], color frequency test [20], and
dual statistics attacks [21]. *e validity of antistatistical
detection abilities has been challenged because of the impact
of network behaviors [22].

With profound research in robust image steganography,
some questions arose. Is there any disadvantage to measuring
robust image steganography using them directly? Are they
suitable for the application background of a lossy environ-
ment?When evaluating a robust steganographymethod using
the traditional measurement attributes directly, the usage of
measurement attributes has been altered to some extent.
*ese nonuniform settings hamper comparisons between
methods. It means traditional measurement attributes begin
to limit robust steganography methods. Besides, because the
existing measurement attributes do not consider the lossy
environment’s application background, the evaluation of a
method is incomprehensive. *ese indicate that the existing
measurement attributes cannot accurately evaluate robust
image steganography.

Based on the above considerations, we try to look for
suitable measurement attributes for robust image steg-
anography. We first compare the transmission process of
robust image steganography and traditional steganography.
*e “default parameter” is observed, and the concept of
“perfecting default parameter” is naturally introduced. *e
attribute set PRUDA (Payload, Robustness, ease of Use,
antiDetection, and Applicability) is presented based on this.
*e main contributions are as follows:

(i) *e concept of “perfecting default parameter” is
proposed. It provides a direction for the attribute set
perfection and may offer inspiration to other related
measurements’ improvement.

(ii) Contrasting the pursuits and application back-
ground of robust image steganography with the
existing measurement attributes, the attribute set
PRUDA is proposed. It may measure robust image
steganography comprehensively and may push this
field closer to the practical application faster.

(iii) A large number of statistics on processed images
and open lossy channel attacks are given. *ey
verify the rationality of PRUDA and can be used as
the application basis of the relevant research on
robust image steganography.

*e rest of this paper is organized as follows: in Section 2,
we introduce the concept of “perfecting default parameters.”
*en, logically and smoothly, by perfecting the “default
parameters” of traditional steganography, a new measure-
ment attribute set, “PRUDA,” is proposed and elaborated in
Section 3. Next, the rationality of PRUDA is verified in
Section 4. Finally, the paper is discussed and concluded in
Section 5.
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2. The Concept of “Perfecting
Default Parameters”

Figure 2 shows the comparison between the transmission
process of traditional image steganography (Figure 2(a)) and
robust image steganography (Figure 2(b)). *e upper left
box is the legend. As shown in Figure 2(a), the cover image
can be any image for traditional image steganography. *e
sender embeds the secret messages of a given payload into a
cover image and generates a stego image. *e stego image is
transmitted through a lossless channel [23]. *e receiver
extracts the secret message from the received stego image. In
this process, the steganalyzer distinguishes the cover and
stego image by statistical detection.

As shown in Figure 2(b), to ensure that the secret
message can be extracted from a stego image transmitted
through the public lossy channel, more operations are added
in the transmission process of robust image steganography.
*us, this process is more complicated than that of tradi-
tional steganography. *e cover image is no longer an ar-
bitrary original image but maybe the image with specific
features or the preprocessed image. *e sender embeds the
secret message of a given payload into a prefiltered or
preprocessed cover image. Many algorithms encode the
secret message first before embedding to reduce the message
extraction error rate. *us, the actual message embedding
rate may be lower than that of the desired. *e encoded

message is always embedded into the prefiltered or pre-
processed cover image, and the stego image is generated.
When the stego image is transmitted through a public lossy
channel, it may be subjected to scaling and compression
attacks. After the stego image is received, the corresponding
extraction steps are performed. In this process, the steg-
analyzer still distinguishes the cover and stego image by
statistical detection. Nevertheless, it is worth a reminder that
the cover image here is always not the original image but the
prefiltered or preprocessed image.

*e cover image, message extraction error rate, and
environment are not considered when studying traditional
steganography. We name them “default parameters.” Spe-
cifically speaking, the traditional steganography algorithm
can use any cover image to embed messages. *e message
extraction error rate is zero.*e environment is lossless, and
the stego image is unchanged before and after transmission.
*e only consideration in the whole process is to reduce the
possibility of detecting the stego image and extract messages
correctly. *erefore, it is reasonable to take antistatistical
detection ability and message extraction error rate as the
attributes of the measurement of traditional steganography.

To ensure robustness and improve antidetection per-
formance, “default parameters” have changed a lot in robust
image steganography. *e cover image may not be arbitrary,
but the prefiltered or preprocessed image. It directly affects
the message embedding rate, which is computed based on
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Figure 1: Comparison between application scenarios of (a) traditional steganography and (b) robust steganography.
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the cover image. Messages are no longer embedded directly
but are first encoded using various codes. *e environment
is a public and lossy channel with its own transmission rules.
Images and behaviors that do not obey these rules would be
easily detected [24]. Stego images suffer attacks during
transmission. After transmission, their image sizes and file
sizes are uncertain. It is challenging to ensure the stego
image’s consistency of the sender and the receiver, so is the
message extraction accuracy rate.

*is is the complex environment faced by robust image
steganography, in which “default parameters” are no longer
default. Researchers try to enhance robustness considering
the lossy environment. However, when evaluating the
method, they directly use the measurement attributes of
traditional steganography. *is paper focuses on this
neglected point and argues that it is time to perfect default
parameters. “Perfecting default parameters” means to per-
fect those parameters that are no longer default to the
measurement to take the actual application background (the
lossy environment/channel) into account. We believe this
can help robust image steganography towards practical
applications.

3. PRUDA

Reasonable measurement attributes are essential to promote
the research of robust image steganography. In this section, a
five-sphere measurement attribute set, PRUDA, is put
forward. As shown in Figure 3, PRUDA considers five
perspectives. Payload is the message embedding rate of an
image transmitted through the lossy channel. Considering
the lossy channel’s effect, the definition is extended by
perfecting the definition: message embedding rate in the
traditional steganography method. Robustness refers to the
resistance of a stego image to attacks from the lossy channel.
*e definition is extended considering the feature and fault-
tolerant retransmission mechanism of lossy channels.
AntiDetection is defined as the unidentifiability and indis-
tinguishability of images. *e definition is updated con-
sidering the actual application background of robust
steganography. Ease of Use means the difficulty of using the
method, or rather, the difficulty of obtaining cover images.

Applicability refers to the degree to which the channel is
constrained by the method. Ease of Use and Applicability are
two novel attributes proposed by perfecting two default
parameters: cover image and environment in the traditional
steganography method.

*e attribute set PRUDA perfects the explicit and implicit
(default) measurement attributes of traditional steganography.
It not only inherits the measurement attributes of traditional
steganography but also considers the actual application sce-
narios of robust image steganography.*us, it canmeasure the
robust image steganography method more accurately.

3.1. Payload. Payload is defined as the message embedding
rate p � n/nI in traditional steganography, where n is the
number of embedded messages, nI is the number of pixels
(spatial domain), or the nonzero AC coefficients (frequency
domain) in an image.*e “image” in the definitions refers to
the sender’s cover image and is represented by I.

I has undergone a great change in robust image steg-
anography. Unlike traditional steganography methods
[25, 26], which uniformly define I as any cover image, I is
defined differently in various robust steganography
methods. For example, in Yu et al.’s method [16], I is defined
as a precompressed image, while in Zhang et al.’s method
[27], I is defined as a scaled image.

Like I, n has changed a lot too. Unlike traditional
steganography, where n represents there are n messages
embedded, robust steganography methods have embedded
far fewer messages than n. *e reason for this is that in
robust steganography methods, messages are often encoded
first before embedded, such as RS (Reed–Solomon) [16],
CRC (Cyclic Redundancy Check) [28], and BCH (Bose–
Chaudhuri–Hocquenghem) [12]. *at is, n is the encoded
message. *us, the effective message embedding rate p is
lower than expected to some extent.

*is inconsistency hampers the comparison of methods
and is not conducive to the development of this field.
*erefore, Payload needs to be unified, and it is redefined as

p �
n − nem( 

nRI

, (1)
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where nem and nRI represent the number of embedded error
correction code and the number of pixels (or nonzero AC
coefficients) of “the open-processed image” RI, respectively.
RI refers to the image performed simple, reasonable pro-
cessing that most users would do, such as scaling an image to
the received image’s image size, precompressing an image
once. p represents the percentage of embedded messages in
RI. (n − nem) represents the number of effective embedded
messages.

*is definition considers the inconsistency of payload
calculation caused by the inconsistency of message encoding
and cover image in robust image steganography, thus
avoiding the differential use of message embedding rate and
building a comparison bridge between different methods.

3.2.Robustness. Robustness refers to the resistance of a stego
image to attacks from a lossy channel. Reflected in mea-
surement attributes, it is the integrity of the messages
extracted from the image attacked. For robust image steg-
anography, the unit transmitted in the public lossy channel
is the image.*e unit of the sender embedding messages and
that the receiver extracting messages is the image too.
Considering the fault-tolerant retransmission mechanism in
practical applications (if a fragment of messages fails to be
extracted, the sender is requested to resend), the message
complete extraction rate of the image is challenged. In other
words, in the practical application, if N images are sent, and
messages embedded in Nr images can be extracted entirely,
then messages in N − Nr images need to be resent. If
messages embedded in each image cannot be fully extracted,
even if the average message extraction error rate is low, the
sender still needs to resend all the images.

*e average message extraction error rate is one of the
default parameters of traditional steganography and is 0. For
existing robust image steganography methods, the average
message extraction error rate of 0 comes with many con-
straints. Otherwise, the rate is far from zero. *e message
extraction utterly is the ultimate goal of robust image
steganography. Considering the fault-tolerant retrans-
mission mechanism in practical applications, assigning two

meanings to robustness to measure the method’s effec-
tiveness is more practical. (1) *e current average message
extraction error rate Re � ne/n, where ne is the number of
message bits mistakenly extracted from every image, and n is
the total number of embedded messages in the image. (2)
*e completely correct extraction rate Rr � Nr/N, where Nr

is the number of stego images that can extract the completely
correct message, and N is the total number of stego images.
Giving robustness with these two meanings considers the
extraction accuracy of each image and the overall average
extraction error rate.

3.3. Ease of Use. For a user, the ease of use of a method has
nothing to do with the method’s complexity but with the
difficulty of using it. *e internal implementation is en-
capsulated when the product is released, and interactions
with users depend on input and output parameters.

For the traditional steganography method, the input is
generally a cover image, messages transmitted, and a shared
key to the sender. *e output is the stego image obtained by
embedding messages into the cover image, transmitted
through the lossy channel. As shown in

s⟵Emb(c, k, m), (2)

c, m, k, s, and Emb(•) represent the cover image, secret
message, shared key, stego image, and the embedding op-
eration, respectively. ← represents that after embedding
operation, the stego image s is generated.

To the receiver, the input is the stego image transmitted
through the lossy channel and a shared key.*e output is the
message extracted from the image. As shown in

m⟵Ext(s, k), (3)

Ext(•) represents the extraction operation. ← represents
that after extraction operation, the transmitted secret
message m is extracted.

We do not need to focus too much on k and m, but we
have to think about c. In traditional steganography, there is
generally no special requirement for c. In other words, for a
traditional steganography method, c is one of the default
parameters, and any image can be used as a cover; thus, the
method is easy to use.

However, robust image steganography is not the case. To
improve robustness or maintain antistatistical detection
ability, preprocessing [12] or prefiltering [17] of cover im-
ages has gradually become one step of some steganography
methods. *e step limits the suitable cover images and
increases the selection difficulty of cover images. It means
that the cover image is no longer any image but images with
particular characteristics. *at is the reason why we think
ease of use should be one of the attributes of measurement.

“Ease of Use” can be defined as how easy to obtain the
method’s cover image. As shown in

pu �
Nu

N
, (4)
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Nu is the number of images available in the database. pu is
the ratio of the number of available images to the total
number of images. Suppose the method is greatly affected by
the “selection of cover image,” and the “selection of cover
image” is difficult to a certain extent. In that case, the
method’s usability will decline sharply, and we think that the
reliability and guideline of the experimental results of the
method may relatively be reduced.

3.4. AntiDetection. Steganography analysis is regarded as
having promoted steganography’s progress [18]. Statistical
detection is an essential means of steganography analysis.
Antistatistical detection ability is one of the critical evalu-
ation attributes of steganography. However, with further
development, the rationality of antistatistical detection
ability has been questioned [22]. In robust image steg-
anography, we need to pay extra attention to it.

With the advent of the mobile phone era, thousands of
images are transmitted at any moment on the network,
converging into an image ocean. Such an image ocean
provides a natural hiding environment for stego images. In
such an environment, as long as the stego image is like other
images and does not attract attackers’ attention, it is secure.
*is new security, known as behavioral security, has
attracted the attention of scholars [24]. *is section con-
siders the antidetection ability from the images’ perspective
on robust image steganography’s actual application back-
ground. It includes two aspects: (1) the image itself is un-
recognizable, such as the image’s size is not suspect; (2) the
image is indistinguishable in the image ocean.

3.4.1. ,e Image Is Unrecognizable. To reduce the channel’s
monitor’s attention, the stego image transmitted through the
channel should be unrecognizable. *at is, it should look
similar to other images on the channel. As shown in

ws ∼ wI, (5)

ws and sI represent the identifiable feature of the stego image
and the image transmitted on the channel, respectively. ∼
represents that they are approximate.

Take the most identifiable feature of images: size as an
example. For a lossy channel with compression and scaling
attacks, to ensure robustness, suppose smaller images are
selected for transmission to avoid compression and scaling,
for instance, memo, as shown in Figure 4. Memes are
generally small and will not be scaled or compressed. *us,
they seem to be the right choice as robust covers. However,
memes are not suitable for hiding messages, because (1) for
the same messages, compared with typical size images, more
emojis images are needed due to their small sizes, which is
easy to attract the attention of the monitor; (2) frequently
sending memes on moments where people are sharing
photos is abnormal behavior [24]; and (3) memes are
generally traceable; that is, their original versions are easy to
locate. Besides, memes are generally of a single tone, and
messages hidden in them are more likely to be extracted than
those hidden in other normal photos. *erefore, memes that

seem very appropriate from a robust point of view are not
suitable for robust steganography. Normal photos may be
more suitable.

3.4.2. ,e Image Is Indistinguishable. With the increasingly
powerful camera apps on mobile phones, unprocessed
images are rare. Unlike traditional steganography, which
assumes that all images are unprocessed, nowadays, images
processed are ubiquitous on social software, forums, and
photo contests. When stego images mingle with kinds of
images processed, the effect of a method’s antistatistical
detection ability is greatly weakened (Section 4.3.2). *us, in
the robust image steganography’s practical application en-
vironment, it is more meaningful to consider the indistin-
guishability between a stego image and other images
processed. As shown in

s ∼ c
∗ ∈ c

∗
| c
∗ is processed , (6)

s and c∗ represent the stego image and the processed image,
respectively. ∼ represents that they are approximate.

*erefore, giving antidetection these two new meanings
takes into account the unrecognizable of the image itself and
considers the indistinguishability of the image in the general
environment. It is more suitable for the practical application
background of robust image steganography.

3.5. Applicability. Applicability refers to the degree to which
the channel is constrained by a method. Robust image
steganography studies how to extract messages correctly
from the image transmitted through a lossy channel. It
means the attacks that robust image steganography
addressed should be those contained or possibly contained
in the “open lossy environment,” rather than the “imagined”
ones.

At present, the robust steganography method is difficult
to apply to free and open lossy channels. Focusing on the
characteristics that fit, reality is a shortcut to promote re-
search into practice. As shown in

fs ∼ fc ∈ fc | fc is the channel′s attack parameter , (7)

fs and fc represent the applicable condition of a steg-
anography method and the real channel’s attack parameter,
respectively. ∼ represents that they are approximate.

To make the stego image resistant to an open lossy
channel, in robust steganography, the constraints on the
scaling/compression/other channel’s attack parameters
should be reasonable; it should be set within the actual factor
range than be set as an imagined value. Take the most
common image scaling and compression as examples.

3.5.1. Scaling Attack. Assume that the premise of a method
is to know the size of the receiver’s image. According to the
investigation of some lossy channels, the received image’s
size can be determined. *e channel’s scaling factor remains
constant for a long time. *us, this premise is practical.

Suppose a method applies to upsampling with a scaling
factor of more than five but not upsampling with a scaling
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factor less than two and downsampling. According to
surveys of real lossy channels, images are almost all
downsampled on the channel. Hence, this hypothesis is
impractical, and this study makes little sense in robust image
steganography (however, it may be significant in other
fields).

3.5.2. Compression Attack. Assume a method applies to a
fixed quality factor, and when the quality factor changes a
little, the method works poorly. According to surveys of real
lossy channels, it is not easy to obtain the channel’s accurate
quality factor. *us, this restriction may be a little harsh.

Suppose a method is useful for the quality factor within
the range of a quality factor. According to the investigation
of the actual lossy channel, the channel’s compression factor
range can be estimated, so this method’s condition is
reasonable.

*ere may be other types of attacks on the channel, and
the actual attack types and attack parameters need to be fully
considered in the research. Taking applicability as a mea-
surement attribute can put the research of robust steg-
anography to practical applications.

3.6. Observations on Five Attributes. Five attributes measure
a robust steganography method from five dimensions.
Different methods have different emphases and concerns,
leading to different measurement dimensions.

With observations on the current development history
of robust steganography, scholars’ attention on attributes is
affected and limited by the development of this research
field. *erefore, it may be challenging to obtain a perfect
method. Consideration of “lossy channel” is added in
robust steganography. *us, scholars paid more attention
to Robustness in the early days, even at the expense of
antiDetection and Payload [8]. Robustness had more to do
with observing that attacks (such as the compression at-
tack) were on a channel. *e researchers constructed a
number of attack experiments in laboratories based on the
attacks they observed.*at is said, research at that time [15]
was “totally based on a laboratory environment.” With
further development, the robust steganography field has
gradually gone from the “laboratory” to the “real envi-
ronment.” Applicability began to appear in experimental
verification in some papers [16]. During this process, due to
the impact of “lossy environment,” the two measurement
attributes of traditional steganography, Payload and anti-
Detection, were sacrificed to some extent [17]. At present,
robust steganography is still in its infancy. Restricted to the
stage, a mature robust steganography application (product)

has not been released yet. *us, Ease of Use has not been
considered so far.

*e above observations indicate that PRUDA’s five at-
tributes are the alchemy of quenching a robust steganog-
raphy method that can only be used in a laboratory
environment into one that can be used in an actual lossy
environment. In essence, none of the five attributes is more
important than the other. However, some attributes need to
be paid special attention to at a particular development stage
to facilitate a method’s breakthrough. *us, some attributes
are considered to be more important than others at a specific
stage of development. By perfecting attributes one by one,
the robust steganography method is gradually improved,
and finally, to realize the original intention of robust steg-
anography research: achieving covert communication in an
actual lossy environment.

4. Verification

In this section, we first discuss and show the not unified
status quo of the existing methods. *en, the rationality and
practicality of PRUDA are verified through actual statistics.
Finally, since Robustness and Ease of Use are apparent, the
discussion emphasizes the three attributes that may be
questioned: Payload, antiDetection, and Applicability.

4.1. Verification of PRUDA’s Necessity. We first gather sta-
tistics on the robust steganography methods’ nonuniform
measurement attributes to verify that it is necessary to
perfect the existing measurement attributes. *en, an
existing method is evaluated from five attributes to verify the
necessity of PURDA.

4.1.1. Necessity of Perfecting Measurement Attributes.
Some existing methods are analyzed from five aspects in this
section, as shown in Table 1. *e first column is the attack
type that the second column’s method can resist; the third
column represents the payload used in the method, where
(BCH/RS) is the algorithm used for message encoding. *e
fourth column shows robustness measurements used in the
method (the average message extraction error rate Re or the
completely correct extraction rate Rr). *e fifth column
explicates what kind of images can be used as the method’s
cover images; the method’s antistatistical detection perfor-
mance is demonstrated in the sixth column. Performance
calculation parameters are as follows: payload is 0.1bpp/
bpnC/bpnAC (except for the method in [29, 30]). SPAM
(Subtractive Pixel Adjacency Matrix) [32] feature is
extracted from spatial domain images, and DCTR (Discrete

Figure 4: Examples of memes.

Security and Communication Networks 7



Cosine Transform Residual) [33] feature is extracted from
frequency domain images. *e seventh column gives the
requirement of the method for the applicable channel.

Table 1 shows the nonuniform status of the existing
methods. For example, for Payload, a fixed amount of
embedded messages are used in [29, 30]’s method; in studies
[12, 14, 15], an original image is the basis for calculating
payload; in other papers, a scaled image or precompressed
image is the basis. For Ease of Use, “any image” [13, 27]
means the method is used easily; “precompressed image”
[8, 16] means that the method needs to preprocess the cover
image, which increases the difficulty for the use of the
method; “repeatedly compressed image that meets certain
requirements” [12] and “the image that conforms to certain
laws” [17] mean that the method becomes more difficult to
use. For antiDetection, when payload� 0.1, only [27]’s
method maintains the antistatistical detection ability of
traditional classical steganography (such as J-UNIWARD
[34]) (data > 0.45); these data of other methods decrease
significantly, even close to 0 [17]. Moreover, cover features
extracted in these papers are based on preprocessed images
rather than original ones. For Applicability, “no restriction”
[14, 15] means that there is no requirement for the channel,
while most methods require accurate channel details
[12, 13, 27] or an approximate parameter range
[8, 16, 17, 31]. All these show that nowadays when evaluating
a method, it uses custom but not unified attributes. It
hampers comparisons between methods. *us, direct ap-
plying the traditional measurement attributes to robust

steganography is not reasonable to some extent.*erefore, it
is necessary to perfect the measurement attributes of robust
steganography, determined by its practical application
background.

4.1.2. Necessity of PURDA. We take the method in the
paper [12] as an example to analyze the five attributes of
PRUDA. We chose it because there are experiments on
practical applications, and we think this is consistent with
our idea to some extent. Our idea is trying to perfect the
measurement attributes and make them more suitable for
robust image steganography under the lossy channel.
*us, the robust steganography method is promoted to be
closer to practice.

Two robust image steganography methods based on
TCM (Transport Channel Matching), namely, JCRIS and
JCRISBE, are introduced in the paper [12]. *e notations
used below follow those in that paper. *e image size of the
received image, Q.Size, and the channel compression factor,
Q.qf , need to know.*e TCM algorithm is used to compress
images repeatedly. We denote the number of compressions
as tTCM. *e JCRIS algorithm compresses the stego image
repeatedly. *is process is performed up to ϕ times. *e
JCRISBE algorithm encodes messages repeatedly. *is
process is performed up to t times.

10,000 images from the Bossbase-1.01 database are used
to verify JCRISBE. Q.qf � 75, and attack quality factor
QFc� 65, 72, 75, 78, 85. Payload� 0.01–0.1 bpnzAC.

Table 1: Nonuniform measurement attributes of existing methods.

Attack type Method Payload Robustness Ease of Use AntiDetection Applicability

Scaling

Method in
[27]

0.1–0.5bpp of scaled
image Re Any image 0.4936

Known scaling factor and
scaling type is the nearest-
neighbor interpolation

Method in
[29] 96bit Re, Rr Any image 0.2082 Scaling factor greater than

0.5
Method in

[30] 128bit Re, Rr Any image 0.3395 Scaling factor greater than
0.5

Compression

Method in
[15]

0.1–0.15bpnC of
original image Re

Repeatedly compressed
image 0.405 No restriction

JCRISBE
[12]

0.05–0.3bpnAC of
original image (BCH) Re

Repeatedly compressed
image that meets certain

requirements
0.43 Known accurate channel

compression factor

Method in
[13]

0.1–0.5bpnAC of
compressed image Re Any image 0.42 Known accurate channel

compression factor

GMAS
[16]

0.05–0.15bpnAC of
precompressed image

(RS)
Re *e precompressed image 0.025

Known approximate
channel compression

range
Method in

[14]
0.05–0.35bpnAC of
original image (BCH) Re Any image 0.42 No restriction

DCRAS
[8]

0.01–0.1bpnAC of
precompressed image

(RS)
Re, Rr *e precompressed image 0.055

Known approximate
channel compression

range

Method in
[31]

0.01–0.1bpnAC of
precompressed image

(RS)
Re *e precompressed image 0.0227

Known approximate
channel compression

range

Multiple
attacks

MREAS-
PJ [17]

0.01–0.1bpnAC of
precompressed image

(RS)
Re

*e image that conforms
to certain laws Close to zero

Known approximate
channel compression

range
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(1) Payload. Two algorithms used 0.05–0.3 bpnzAC of
the multiple compressed images as payload. For
JCRIS, the cover image is compressed ϕ × tTCM
times, which means that the cover image has a small
file size. For JCRISBE, the messages are encoded by
BCH before embedded into the compressed image,
which means there are many error correction codes
in the embedded messages. *e actual message
embedding rate falls short of the 0.05–0.3 bpnzAC of
the original cover image in both cases. Table 2 gives
the actual embedding rate of our verification ex-
periment (“all” means the results for all the QFc are
the same). Obviously, the actual embedding rate is
lower than the defined payload.

(2) Robustness. Two algorithms considered the message
extraction error rate Re. We verified Re and Rr, and
the results are shown in Table 2.

(3) Ease of Use. When the payload� 0.1 bpnzAC and the
distortion function is J-UNIWARD, the available
image in the Bossbase-1.01 database was about 55%
and 99% for JCRIS and JCRISBE. It means that not
all images can be used as cover images for these
methods. *e number of failed images we verified
that cannot be as cover images is higher than that in
the paper [12] (Table 2).

(4) AntiDetection. For JCRIS, the number of compres-
sion of the cover image is ϕ × tTCM, whichmeans that
the cover image’s file size is relatively small and may
be recognizable. *e security of JCRIS was not
evaluated in the paper [12]. For JCRISBE, in the
statistical performance test, cover features are
extracted from the TCM output compressed images
and once-compressed images. Images used for
extracting stego features are generated by embedding
messages into these two kinds of images. When
evaluating antistatistical detection performance,
unlike the traditional steganography, images used for
extracting cover features are no longer the original
images but maybe processed images. *e processing
may differ in different methods, which brings ob-
stacles to the security comparison between different
methods.

(5) Applicability.*is method requires a known received
image size Q.Size and a known accurate channel
compression factor Q.qf. Q.Size is predictable, which
is verified in the next section. Q.qf may not be so easy
to obtain. To verify the method’s effectiveness when
the channel’s (attack) quality factor QFc is somewhat
different from Q.qf , we did some experiments (Ta-
ble 2). It shows that the method needs a Q.qf that
equals QFc. Otherwise, the method is out of work.

4.2. Verification of Definition on Payload and Application.
To verify the Payload’s definition, we should verify whether
the sender can predict the receiver’s image size (scaling
factor) and file size (compression factor). To verify the
Application’s definition, we should study if it is feasible to

make some constraints on the channel, whether we can
have harsh constraints. Our verification process is as
follows.

We shot with the top seven mobile phones and three
camera apps on 1,000 scenes. A total of (13 + 10 + 12 +
10 + 11 + 11 + 9) resolution types × 1,000 scenes � 76,000
photos are captured, shared and compressed, separately.
For space consideration, only the data of four mobile
phones under one scene are listed here. Mobile phone
brands came from Zhongguancun Online3 and listed in the
first column of Table 3. Test phones were randomly selected
from our laboratory classmates (the model and resolution
are listed in the second column of Table 3). *ree camera
apps were selected combining Zhongguancun Online’s
recommendation4 and laboratory classmates’ preferences
(three camera apps are listed in the third column of Ta-
ble 3). We used Huawei as PhoneA and others as PhoneB.
When Huawei was used as PhoneB, Oppo was used as
PhoneA temporarily.

We did the following test using PhoneA and PhoneB:

(i) Shoot with three camera apps using PhoneB, and
captured images are called the Original Photo. Its
two properties, image size and file size, are denoted
as ImageSize_OP and FileSize_OP, respectively.

(ii) Post original photos in WeChat Moment using
PhoneB.

(iii) Download photos from PhoneB’s Moment in
WeChat using PhoneA, and call them Moment
Photo. Its two properties, image size and file size, are
denoted as ImageSize_MP and FileSize_MP,
respectively.

(iv) Resize the original photo’s image size to Image-
Size_MP, which is renamed ImageSize_CP. *en,
perform JPEG compression tomake the compressed
photo as consistent as possible with FileSize_MP.
*e quality factor used is 98, and the compressed
photo’s file size is denoted as FileSize_CP.

*e reason for choosing the compression quality factor
98 is that the FileSize_CP is the closest to FileSize_MP when
the quality factor is 98 after our repeated tests. When the
quality factor is slightly changed, the difference between
FileSize_CP and FileSize_MP is greater than that of 98. *e
unit of FileSize_X (X is OP, MP, or CP) is in KB.

*e comparison between ImageSize_OP and Image-
Size_MP in Table 3 shows when the image size of the original
image is greater than the resolution of the receiver’s phone,
the image will be scaled while preserving the ratio of the
height-to-width. Otherwise, the image stays the same (the
bold data). It indicates that the sender can predict the image
size of the received image for a certain receiver. It has been
used as a premise for existing robust steganography
methods. Many methods resisting compression [12, 13, 16]
are proposed on the presumption of resizing the cover image
to the receiver’s image size. *e comparison between Fil-
eSize_MP and FileSize_CP in Table 3 shows that the Fil-
eSize_CP may be larger or smaller than FileSize_MP. It
indicates that the original image can be compressed to an
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Table 2: Verification on JCRISBE.

Value type Q.qf QFc Payload (bpnzAC)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Re 75

65 0.5002 0.5007 0.5001 0.5001 0.4997 0.4999 0.5001 0.5002 0.5001 0.4998
72 0.5003 0.5004 0.5003 0.4997 0.4998 0.5002 0.5002 0.4999 0.5001 0.5001
75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
78 0.5001 0.4996 0.5006 0.4993 0.5001 0.4997 0.5000 0.5001 0.5000 0.4998
85 0.5004 0.4995 0.5001 0.4998 0.5007 0.5000 0.5001 0.5002 0.5000 0.5001

Rr 75

65 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0
75 1 1 1 1 1 1 1 1 1 1
78 0 0 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0 0 0

Actual embedding rate 75 all 0.0085 0.0135 0.0199 0.0266 0.0332 0.0400 0.0467 0.0535 0.0604 0.0671
*e number of failed images 75 all 678 4975 4294 3858 3490 3216 2996 2773 2602 2442

Table 3: Open channel transmission statistics on photos taken on the same scene with different camera apps on different phones.

Brand Phone detail Camera type
Original photo Moment photo Compressed photo

ImageSize_OP FileSize_OP ImageSize_MP FileSize_MP ImageSize_CP FileSize_CP

Huawei BLA-AL00
2160×1080

Built-in
camera

3840× 5120 3149 1080×1440 606 1080×1440 599
2976× 3968 1891 1080×1440 595 1080×1440 587
2976× 2976 1423 1080×1080 460 1080×1080 442
2448× 3264 1272 1080×1440 555 1080×1440 556
1984× 3968 1208 1984× 3968 2890 1984× 3968 1879
1632× 3264 819 1632× 3264 1951 1632× 3264 1256

BeautyCam
App

960×1920 981 960×1920 668 960×1920 651
1080×1920 1103 1080×1920 773 1080×1920 731
1080×1440 855 1080×1440 655 1080×1440 574
1080×1080 647 1080×1080 485 1080×1080 434

B126 App
1080×1920 911 1080×1920 674 1080×1920 572
1080×1440 739 1080×1440 590 1080×1440 477
1080×1080 588 1080×1080 477 1080×1080 385

Oppo R15x 2340×1080

Built-in
camera

3456× 4608 3649 1080×1440 669 1080×1440 633
3456× 3456 2673 1080×1080 499 1080×1080 448
2126× 4608 2265 2126× 4608 3122 2126× 4608 2626

BeautyCam
App

918×1920 994 918×1920 719 918×1920 678
1080×1920 1146 1080×1920 832 1080×1920 777
1080×1440 912 1080×1440 684 1080×1440 622
1080×1080 682 1080×1080 517 1080×1080 467

B126 App
1080×1920 1436 1080×1920 952 1080×1920 1034
1080×1440 1126 1080×1440 762 1080×1440 817
1080×1080 814 1080×1080 544 1080×1080 590

Sumsung SM-N9200
2560×1440

Built-in
camera

5312× 2988 3806 1080×1920 610 1080×1920 665
3984× 2988 2794 1080×1440 529 1080×1440 512
2976× 2976 2083 1080×1080 399 1080×1080 388
3264× 2448 1165 1080×1440 519 1080×1440 513
3264×1836 1009 1080×1920 599 1080×1920 636
2048×1152 461 1080×1920 600 1080×1920 623

BeautyCam
App

1080×1920 1210 1080×1920 756 1080×1920 810
1080×1440 850 1080×1440 567 1080×1440 562
1080×1080 650 1080×1080 428 1080×1080 429

B126 App
720×1280 529 720×1280 348 720×1280 350
768×1024 467 768×1024 327 768×1024 313
768× 768 360 768× 768 249 768× 768 242

10 Security and Communication Networks



image the file size of which is approximately equal to but not
the exact size. *erefore, a proposed method can constrain
the channel, but it must be a mild constraint rather than a
harsh one.

4.3. Verification of Definition on AntiDetection. We have
given the antiDetection two meanings. *e image is un-
recognizable, such as the image’s size is not suspect; the
image is indistinguishable in the image ocean. *e first
meaning is given because we want to keep the image
noteless. *e second meaning is given because we find the
role of the existing statistical detection in open lossy
channels (the application background of robust image
steganography) is reduced. *is section verifies the anti-
Detection’s definition from two aspects: image composition
in public lossy channels and the role of statistical detection in
open lossy channels.

4.3.1. Image Composition in Open Lossy Channels. *e social
platform is an important application background of robust
image steganography. We focus on the proportion of pro-
cessed images on the social platform. From a common user’s
perspective, there are two types of images on social plat-
forms: those captured by the user and those downloaded
from other sources. Among downloaded images, there are
also two types: captured photos and produced images. *us,
there are two types of images on social platforms: photos
taken and images produced. *e latter are processed images
undoubtedly. Here, we focus on the former: besides the
platform’s processing such as compression and scaling, how
many images are processed when sharing? To this end, we
developed the following questionnaire (six questions
(Q1–Q6) and corresponding options (O1–O6)):

Questionnaire on Camera and Photo Processing
Q1: the degree of concern with the camera app when
buying a phone.
O1: 5 scores. (1 means not concerned at all; 5 means
extremely concerned.)
Q2: your greatest concern in a camera application.
O2: A, resolution; B, number of cameras; C, camera
functions (such as various image operations); D, others.

Q3: the proportion of processed images to all posted
images.
O3: 5 scores. (1 means never processed at all, and 5
means every image is processed.)
Q4: the most commonly used operation.

O4: A, beautify/filter/blur; B, enhance (contrast,
brightness, sharpen, etc.); C, adding (stickers, doodles,
watermarks, etc.); D, others.
Q5: your age.
O5: A, 1–17; B, 18–25; C, 26–40; D, 40–55; E, over 55.
Q6: your gender.
O6: A, male; B, female.

A total of 1,917 questionnaires were collected. 641 partici-
pants were female, and the rest were male; 76.98% were
18–25 years old, and 15.24% were 26–55 years old. *e
statistical results are shown in Figure 5.

*e blue bars in Figure 5 show all the returned ques-
tionnaires’ statistical results. Figures 5(a)–5(d) are corre-
sponding to questions 1–4 in the questionnaire, respectively.
It can be seen that when buying a phone, 60.69% of people
pay attention to the camera app (≥3); of the concerns about
camera applications, half focus on resolution, and nearly
40% focus on image processing. Nearly half of the partici-
pants always processed their photos before posting on social
platforms (≥3). In image processing, nearly half prefer
beauty/filter/blur processing, 23% prefer enhancement
processing, and 24% like to add extra doodles to their
photos.

In our cognition, females prefer cameras and image
processing more than males. To avoid inaccurate statistical
results caused by gender, we chose 641 males as the com-
parison to ensure the ratio of males to females is 1 :1. Among
them, 75.02% were 18–25 years old, and 16.89% were 26–55
years old. *e statistical results are shown in the red bars in
Figure 5. It shows that on social networks, males and females
showed similar preferences for image processing.

*e statistical results show that nearly half of the photos
transmitted through the open lossy channel (the applica-
tion background of robust image steganography) have been
processed. *is means that the processed images trans-
mitted through open lossy channels account for far more
than half.

Table 3: Continued.

Brand Phone detail Camera type
Original photo Moment photo Compressed photo

ImageSize_OP FileSize_OP ImageSize_MP FileSize_MP ImageSize_CP FileSize_CP

IPhone XR 1792× 828

Built-in
camera

4032× 3024 3931 1080×1440 554 1080×1440 489
3024× 3024 3448 1080×1080 465 1080×1080 429

BeautyCam
App

1774× 3840 7468 1080× 2338 937 1080× 2338 1090
2160× 3840 7955 1080×1920 748 1080×1920 778
2880× 3840 11590 1080×1440 687 1080×1440 636
2160× 2160 5241 1080×1080 564 1080×1080 510

B126 App

486×1052 220 486×1052 253 486×1052 250
720×1280 426 720×1280 490 720×1280 495
828×1104 373 828×1104 458 828×1104 428
828× 828 298 828× 828 358 828× 828 336
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4.3.2. ,e Role of Statistical Detection in Open Lossy
Channels. To study the role of statistical detection in open
lossy channels, we verified the antistatistical detection
performance in variously processed images. 10,000 gray
images from the Bossbase-1.01 database and 886 color
images from the UCID database were utilized. JPEG com-
pression is first performed to generate JPEG images. *e
quality factor is 75 for Bossbase-1.01 database and 85 for the
UCID database. Five operations, including mean filtering,
gaussian filtering, contrast adjustment, image sharpening,
and edge enhancement, were performed. Stego images are
generated utilizing “J-UNIWARD+ STC (Syndrome-Trellis
Codes).” Payload� 0.1–0.3 bpnzAC. DCTR feature was
utilized to extract features of cover and stego images. We
randomly selected 1/2 for classifier training in each group
and the remaining 1/2 for testing to get the average detection
error rate EOOB.

Table 4 is the experimental results of antistatistical de-
tection. *e first column refers to the types of cover images
included in the experiment. *e abbreviations are in pa-
rentheses. *e corresponding stego images are generated by
embedding messages in these cover images with different
embedding rates. For example, “Contrast + Edge + Sharpen”
means that the cover images contain these three types of
images, each accounting for 1/3. *e stego images are
generated by embedding messages into these cover images.
*e second to the fourth column and the fifth to the seventh
column are the detection error rates of two image databases
under three different embedding rates of 0.1–0.3 bpnzAC.

Table 4 shows that images with edge enhancement or
sharpening are suitable as cover images and have good
antistatistical detection performance. In contrast, images
with mean filtering and Gaussian filtering are the opposite.
When cover images contain multiple types of images, the
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Figure 5: Statistical results of the questionnaire.
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antistatistical detection performance is an approximate
average value of that of them. It means that when an image is
in an ocean composed of various types of images, the
antistatistical detection performance increases, and the role
of statistical detection may be weakened. *e practical ap-
plication environment of robust image steganography is
open lossy channels, and there are plenty of processed
images in open lossy channels. Considering this, it may be
more meaningful to assign the antidetection as the indis-
tinguishability between the stego images and other pro-
cessed images.

5. Discussion and Conclusion

With the development and maturity of technologies,
cloud services provide more and more convenience for
people. *is convenience comes with security issues. For
privacy or data ownership reasons, users do not want the
outsourced data to be seen by third parties or performed
unexpected operations. For this reason, the outsourced
data are often encrypted or hidden in other carriers. *e
recently popular used cryptographic technique is ho-
momorphism encryption. In addition, the blockchain has
been widely used to verify the integrity of outsourcing
data in recent years. *ese methods encrypt the out-
sourced data into garbled code to hide the contents.
However, garbled code can be a noticeable feature that
catches an attacker’s eyes. Steganography, masking the
content of outsourced data and its existence simulta-
neously, is also effective schemes used to maintain the
security of outsourced data in recent years. Because the
cloud is an open lossy environment, which is different
from the lossless hypothesis of traditional steganography,
robust steganography came into being. *e open lossy
environment diverts the algorithm’s focus and leads that
the existing measurement attributes inherited from tra-
ditional steganography are no longer suitable for robust
image steganography.

Affected by the lossy environment, many default pa-
rameters in traditional image steganography are no longer
default in robust image steganography. Considering this,
“perfecting the default parameters” is proposed. A mea-
surement attribute set that is suitable for robust image
steganography is proposed considering practical application
background. We call it PRUDA. PRUDA perfects the default
parameters of traditional steganography. It improves the
existing measurement attributes from five perspectives of
Payload, Robustness, Ease of Use, antiDetection, and Ap-
plicability.*e rationality of measurement needs to be tested
by practice. After all, it is a truth universally acknowledged
that genuine knowledge comes from practice. For this
reason, this paper verified PRUDA utilizing a large number
of practice experiments. First, the existing robust image
steganography methods are presented and discussed from
five aspects, which shows some deficiencies in experimental
verification’s uniformity, and perfecting the existing mea-
surement is needed. *en, the scaling and compression
experiments are done on WeChat, one of China’s most
popular social media. Top 7 mobile phone brands and three
camera apps are used. Results show that the definition of
Payload and Application is reasonable. Finally, the ques-
tionnaire of photo processing and antistatistical detection
performance of processed images shows that the definition
of antiDetection is reasonable. *erefore, the rationality of
PRUDA is verified.

Parts of the attributes in PRUDA have been used in the
measurement of existing robust steganography methods.
However, limited by the traditional measurement attributes,
the robust steganography method is evaluated as incom-
prehensive and inconsistent. In this paper, the attribute set
PRUDA unifies measurement attributes, hoping to break
down the measurement barriers between methods. Worthy
of note, this paper does not intend to challenge the existing
measurement standard. It is valuable for traditional steg-
anography methods. Nor does this paper intend to challenge
any existing robust image steganography approach. *ey

Table 4: *e effect of the statistical detection techniques in processed images.

Image type
EOOB of different databases under different payloads
Bossbase-1.01 UCID

0.1 0.2 0.3 0.1 0.2 0.3

Original image (Original) 0.4266 0.3203 0.2143 0.4825 0.4419 0.3795
Mean filtering (Mean) 0.2845 0.1136 0.0339 0.3954 0.2494 0.1267
Gaussian filtering (Guassian) 0.4038 0.2721 0.1532 0.4578 0.3769 0.2828
Contrast adjustment (Contrast) 0.4385 0.3553 0.2771 0.4904 0.4589 0.4153
Edge enhancement (Edge) 0.4866 0.4605 0.4224 0.4951 0.4808 0.4529
Image sharpening (Sharpen) 0.493 0.4751 0.4443 0.4957 0.4921 0.4728
Original +Mean 0.3786 0.2428 0.1447 0.449 0.3564 0.2788
Original +Guassian 0.4234 0.3141 0.2133 0.4748 0.42 0.3533
Original +Contrast 0.4539 0.3838 0.3036 0.4931 0.4679 0.4256
Original + Edge 0.4646 0.4146 0.3555 0.4963 0.4771 0.4482
Original + Sharpen 0.4731 0.4283 0.3792 0.495 0.479 0.4579
Mean+Guassian 0.3706 0.2253 0.1213 0.4297 0.3271 0.2335
Contrast + Edge + Sharpen 0.4866 0.4551 0.4169 0.5016 0.4887 0.466
Original +Contrast + Edge + Sharpen 0.475 0.4357 0.3879 0.4962 0.4924 0.4591
Original +Mean+Guassian +Contrast + Edge + Sharpen 0.4519 0.3884 0.3252 0.4868 0.4514 0.4107
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have strongly promoted steganography field development.
Our goal is to show the observation that the existing
measurement standard is restricting the robust image
steganography to some extent. *is paper only draws the
hook out. Further improvement on measurement is likely
possible to promote robust image steganography closer to
reality faster by doing the next work. (1) *e definition of
antiDetection and Applicability needs to be more specific
and more operable. (2) Simple and effective methods to
judge the unidentifiability of stego images and processed
images are to be proposed.
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