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Attacks launched from the inside of the cloud are threats not only to the cloud users but also to the cloud infrastructures. Although
with trusted computing the cloud service providers can guarantee the trust and security of the cloud environment for the users, the
trustworthiness of users is not properly assessed. Inspired by the concept of variable trust, the main contribution of this paper is
that we propose a trust assessment method for cloud users based on deep learning. Firstly, we extract users’ activities from system
logs and employ stacked LSTM (long short-termmemory) neural network to model normal activity patterns to build trust profiles
for different users. Secondly, the trust profile is capable of predicting future behavioural actions of the specific user, and by
calculating the similarity between predicted actions and actual actions the trustworthiness of the user will be assessed with a
baseline to detect the trust state of the cloud user dynamically. And in the end, we design and conduct experiments on a public
dataset.*e results of experiments indicate that when the user is in abnormal state, there are notable differences between predicted
actions and user’s actual actions, which proves the efficiency of the proposed method.

1. Introduction

Security issue is one of the most important problems in
cloud computing and building trust is a practical method to
resolve it. Typically, trust is a mutual relationship in cloud
environment. On one hand, cloud service providers (CSPs)
usually need to provide trust evidence to cloud users to
ensure that the security of computing environment is
guaranteed. For example, TCG’s trusted computing-based
trust chain [1], trustworthiness attestation [2], and trans-
parency of cloud platform [3] are all included in trust ev-
idence. On the other hand, CSPs also need evidence to trust
the cloud users while the users trust the CSP. However, the
trustworthiness of cloud users is always neglected. Few CSPs
would ask for trust evidence from users and which leads to
inside attack performed by malicious inside attackers.
Malicious cloud users may exploit cloud resources to launch
attack against some other cloud users or other Internet
services. In traditional way, malware such as viruses, trojans,
and worms are used to perform attack activities by malicious

insiders. And, Botnet and information theft are used more
often nowadays. For example, malicious user may be able to
steal data from a target virtual machine with side channel
[4], and DDoS attack may be launched by a malicious tenant
against some other tenant [5]. In 2009, Zeus Botnet was
found in Amazon EC2 and, in 2011, SONY PSNwas attacked
by hackers using Amazon EC2 resources in the same way. A
lot of work has discussed malicious insiders in different
aspects [6–8].

Hence, it is important to distinguish and identify
“untrusted” inside users for cloud environment. Typically,
there are two types of malicious insiders [9]: the traitors
and the masqueraders. *e traitor means a legitimate user
who has privileges to visit some specific resources but
counters to security policy, while the masquerader means a
user who does not have corresponding privileges to some
specific resources but manages to access them. In cloud
environment, traitors can be considered as benign users
which are controlled by bot-ware to perform malicious
activities and masqueraders can be considered as users who
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act like normal users but intend to impersonate some other
users. What those two kinds of malicious insiders have in
common is acting departure from normal patterns. Hence,
the key for CSPs to trust users is to profile normal patterns
of users. It means that the CSPs should know what a normal
user would do and when the behaviour pattern changes
CSPs should be aware. *e technique anomaly detection is
used to address such problems. Benefiting from the tech-
nique of anomaly detection, multiple kinds of behaviours
are used to profiling user for detecting insider attacks, such
as command sequences [10], system call sequences [11],
system logs [12], web requests [13], network observable
actions [14], and so on. It has been proved that those
behaviours are practical in detecting anomaly activities.
However, there are two issues to apply anomaly detection
in cloud environment. Firstly, behaviours mentioned above
are hard to collect or illegal to collect. Secondly, anomaly
detection methods are always adopted as a binary classifier
that cannot reflect the changes of status of the users.

No doubt that trusted computing is a powerful tool to
guarantee the security and trust of cloud environment, but
the trust of cloud users cannot be assessed. *e trust of
users is not a simple binary problem with the labels of
“trusted” or “untrusted”. Note that the zero trust archi-
tecture [15] stated that a variable trust should be allocated
to every entity in the network no matter the service pro-
vider or the service recipient; we believe that the trust of
users should also be dynamic and real-time. *erefore, in
this paper, combining the notions of variable trust and
anomaly detection, we propose a method of building trust
profiles to assess trust for cloud users based on system logs
from virtual machines which are legitimate and easy to
collect [16]. System logs, which record system events in
some critical points, are excellent data source for moni-
toring system behaviours. Furthermore, system logs are
generic for nearly all kinds of operating systems and with
fixed format to analyze [12].*e contributions of this paper
can be highlighted as follows:

A deep learning-based trust profile: the trust profile is
capable of predicting future behavioural actions of the
specific user, and by calculating the similarity between
predicted actions and actual actions the trustworthiness
of the user will be assessed with a baseline to detect the
trust state of the cloud user dynamically
Convenient and legitimate data collection and pro-
cessing: the data used to profile user’s behavioural
patterns is extracted from system logs which are easy
and legitimate to collect for diagnosis
Experiments were conducted on an open dataset and
the results indicated that our method is able to describe
the real-time status of the user

*is paper is organized as follows. Section 1 introduces
the background and promotions with the related works in
Section 2. *e proposed assessment method is discussed in
Section 3 and evaluated with experiments in Section 4. In the
end, the conclusion is given in Section 6.

2. Related Work

TCG’s trusted computing plays an important role in the
study with respect to trust in cloud environment. Trusted
computing is defined as follows: one entity is trusted if this
entity acts toward prospective goal with prospective actions.
Generally, there are several manners such as transitive trust,
attestation, and sealing storage used to enhance security of
the protected system in trusted computing. In cloud envi-
ronment, trust relationships are established in many ways,
e.g., reducing VMM function to gain trust [17], a trusted
coordinator based TCCP (trusted cloud computing plat-
form) [18], vTPM [19] and sHype [20] integrated TVDc [21],
etc. In recent years, trusted computing is also adopted in
cloud-edge systems to guarantee the efficiency, reliability,
and resource allocation. However, most of the researches
about trust in cloud focus on how to build trust in cloud
environment, while the trust of users is always neglected.

For trust issue from the users’ end, traditional security
methods such as identification, authentication, and access
control are widely employed, and traditional security
countermeasures accompanied with novel techniques such
as blockchain are also adopted to protect the security and
privacy of cloud environments or keep cloud environment
from certain attacks. Building trust for users is also an
important approach. It was pointed out that the trust of users
is still a hot topic in the study of cloud computing security
[22]. In [23], a policy-based trust evaluation method was
proposed by checking the policies violated by the user or not
to tell the trustworthiness of the user, but the establishment
of the policies highly depended on experience and expertise.
Li et al [24] designed a scheme to determine the trust of user
by evaluating the interactions between user and the network
environment and user and other users, but the interaction
data was hard to collect. In [25], a hierarchical trust as-
sessment method for cloud users was proposed, in which a
series of subtrust properties with respect to user behaviours
were aggregated to a global trust, but the scheme was not
authenticated with experiments. Fuzzy logic was adopted in
[26] to compute a trust value for a user with evidence of
user’s behaviours such as login, security, operating, and
performance. Chen et al. [27] proposed a trust evaluating
scheme, with which user’s behaviours such as authentica-
tion, downloads, uploads, and interactions were adopted to
compute the direct/indirect trust, and the comprehensive
trust was calculated with weighted sum. But both [26] and
[27] only took advantages of limited user behaviours which
are also hard to collect. To describe the participant in a
computing environment, the notion of trust profile [28, 29]
was introduced, which means the policy that a participant
declares to the execution environment in order to have a
trust based interaction and focuses on the entities in the
environment instead of the environment itself. Different
from trusted cloud computing, trust profile is applied as
security constraint for both service suppliers and service
users. A behaviour based trust profile for a specific user will
be able to represent how this user would act when using the
service.
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To build trust profile, anomaly detection is a typical and
powerful tool employed to analyze behaviours of a user.
Anomaly detection is defined in [30] as a problem of finding
patterns in data that do not conform to expected behaviour.
To define a normal region that encompasses all normal
activities, a series of methods have been adopted by re-
searchers such as statistics, machine learning, and data
mining. In the early time, anomaly detection was mainly
based on statistics and pattern recognition [31, 32]. With the
development of machine learning, new methods were
proposed. In [33], Naive Bayes was applied to analyze
anomalies in UNIX commands of multiple users. One-class
support vector machine (SVM) was used to detect inside
attackers in [34]. In [35], an eigen cooccurrence matrix based
method was used to extract relationships in the commands’
sequences. And, hidden Markov model was also employed to
distinguish abnormal behaviours from normal behaviours
[36]. Compared with schemes in [22–27], anomaly detection
based trusted profile can utilize more features of users.

In recent years, with the rise of deep learning or deep
neural networks, deep learning-based methods were pro-
posed for detection [37, 38] or prediction [39]. A significant
benefit of deep learning-based methods is that feature en-
gineering in traditional machine learning is no longer in-
dispensable. In [39], deep neural network was used to
predict service stability of smart grid. In [37], a deep neural
network-based method was proposed to detect inside threats
with an LSTM-based automatic feature extraction and a
CNN based classifier, but the sequential characteristics were
only considered in feature extraction and it was still a
classification problem in essence.

*e related work is summarized in Table 1. In general, we
have classified related work into four categories and each of
them focuses on different problems. However, there are
limitations for all of them. For example, for traditional se-
curity methods such as access control and authorization and
TCG’s trusted computing-based methods, the inside users are
always considered trusted and therefore the user’s trust is
neglected. For nonlearning-based trust evaluation methods, a
series of predefined trust properties are needed for the
evaluation process and the properties are not comprehensive
enough. For current learning-based methods, there are also
limitations. First, the data used in those methods is neither
hard to collect nor illegal to collect. Second, the algorithms
adopted in those methods cannot capture some hidden
features such as time dependence. *ird, current learning-
based methods always focus on binary classification for
distinguishing abnormal or malicious targets but cannot
describe the real-time trust status of an entity dynamically. To
overcome those limitations, the advantages and merits of our
methods would be focusing on user trust, making use of more
convenient data source, and taking advantage of hidden
features such as time-dependencies.

3. Methodology

In this section, we propose the trust profile for cloud users
and trust assessment method. First, the application scenario
of the proposed method is introduced. In a typical cloud

environment illustrated in Figure 1, virtual machine in-
stances, which represent the cloud users, are generating
system logs in their life cycles all the time. *e logs are
collected via a central log server and used for further
analysis.

*ere are four phases in the scheme, the selection of data
source, the extraction of behaviours, building trust profile
with LSTM, and trust assessment. In the first phase, we
choose system logs as data source due to the accessibility and
legality. In the second phase, users’ behaviours are extracted
from well-formatted system logs. What is worth mentioning
is that the system logs selected in the first phase and be-
haviours extracted in the second phase should be derived
from trusted source and hence would be a reflection of the
normal behaviour patterns of users. In the third phase, trust
profile will be built using LSTM. And, in the last phase, an
algorithm is developed to predict the future actions of a user
in terms of the trust profile and the trust assessment will be
performed based on the similarity of predicted action se-
quence and real action sequence which actually happened.
With the similarity value, the trust status of the user would
be assessed. *e four phases of our method are illustrated in
Figure 2.

3.1. Phase 1: Data Source. *e most often used data sources
of anomaly detection are command lines and system call
sequences. However, in cloud environment, it is either
hard or illegal to collect command line history or system
call sequences in client’s virtual instances, no matter
IaaS, PaaS, or SaaS. In contrast to command lines and
system call sequences, system log is a good alternative
data source. *ere are several benefits of system logs.
Firstly, system logs contain a lot of information that
indicates the behaviours of the virtual instances, which
can be translated into behaviours of cloud users. Sec-
ondly, system logs are universally available in every
operating system. Besides, which is important, system
logs are legitimate to collect by CSPs due to diagnosis
needs. And, meanwhile, it is easy to collect system logs
from all virtual instances in a centralized manner for
whether Microsoft Windows or Linux. Hence, in this
case, we choose system logs as data source to build the
trust profiles for cloud users.

3.2. Phase 2: Behaviour Extraction. *e first step of building
trust profile for cloud user is to extract behaviours from
system logs. Typically, there are two parts of system log
entry, the “Event ID” and the “Event Content.” Event ID tells
what incident happened and Event Content tells the detailed
information of this incident. We use that information to
extract behaviours from log data. For every cloud user, it
would be easy to obtain its log files and to assemble them.
Suppose that there are K users that need to establish trust
profile, denoted as U � u1, u2, . . . , uk . Let Lm

i be log file of
user i(i ∈ [1, K]) where m is the number of log entries of this
log file. As illustrated in Figure 3, there are three steps to
extract behaviours.
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Table 1: Summary of related work.

Category Literature Focus
Tradition security methods [22] Specific security issues
TCG’s trusted computing [17–21] Building trust for cloud infrastructures

User trust Nonlearning-based methods [23–27] Evaluating user’s trust or reputation
Learning-based methods [33–37] Building trust profiles for users
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Figure 1: Cloud scenario for the proposed method.
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Step 1. *e first step aims to transfer raw log data into
structured data. Generally, raw log files are always
disorganized and should be parsed before bringing into
operation. In this paper, we use XML format to
structure log files. We separate important information
from raw log data such as Event Name, Event GUID,
Event ID, corresponding process or thread id, opcode,
timestamp, etc. *e input of this step is Lm

i , and the
output would be an XML file with m child nodes of root
node, denoted as XMLm

i .
Step 2. *e second step is about to extract necessary
information from structured data. Due to the feature of
multisource and heterogeneous of log data, we only use
Event ID and timestamp to extract behaviours. And,
the rest of the information is still stored for further
research purposes. With XML format, it is easy to
extract Event ID. Timestamp is also extracted to index
corresponding Event ID. With XMLm

i as input of this
step, a sequence of Event IDs with the length of m and
sorted by time will be generated, denoted as
Sm

i � si,1, si,2, . . . , si,m  where si,t(1≤ t≤m) is an event
entry.
Step 3.*e third step aims to encode Event ID sequence
generated in step 2. In this paper, we choose one-hot
encoding to finish this task. Because the amount of
system events is limited, a finite-capacity vocabulary
can be built. Suppose that the total number of system
events is N; then let V � v1, v2, . . . , vN  be the vo-
cabulary that contains all system events. When the
sequence entry si,t matches event vj (j ∈ (1, N)), this
entry will be a vector si,t � [e1i,t, e2i,t, . . . , eN

i,t] where e
j
i,t is

set as 1 and the others are set as 0. Furthermore, the
m-length sequence of Event IDs would be represented

as a matrix BehMi �

si,1
si,2
. . .

si,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

e
1
i,1 · · · e

N
i,1

⋮ ⋱ ⋮
e
1
i,m · · · e

N
i,m

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. *is

matrix will be the behaviour matrix of specific cloud
user.

Every log file will be parsed to a one-hot encoded be-
haviour matrix after these three steps, which indicates that
the behaviour pattern of cloud user is implied within this
matrix. *e behaviour matrix will be used as input of deep
neural network.

3.3. Phase 3: Building Trust Profile with LSTM. With the
behaviour matrix generated in above procedure, we can
employ neural network to build trust profile. Not only the
Event IDs but also the sequence of Event IDs indicates the
pattern of users’ behaviour. *erefore, to capture the se-
quential characteristic of users’ behaviours, LSTM neural
network is adopted in this paper.

LSTM takes a fixed-length sequence as input. In this
paper, we use a w-length time window to split the Event IDs
sequence into a series of subsequences with a stride of n.
With one-hot encoding, the input of LSTM in this paper

would be a w × N behaviour matrix. Suppose the LSTM
network consists of one input layer, l LSTM layers, and one
output layer, as shown in Figure 4. In Figure 4, Si,1...w, which
indicates the input of the neural network, is the encoded
Event IDs, and hl is the hidden state in the output of a
previous LSTM cell. *e cells are connected with Si and hl to
generate a w-length and l-layer network.

*e output of LSTM shown in Figure 4 is calculated in
the process of forward propagation, which is described as
follows:

f
(l)
t � σ W

(l)
f · h

(l)
t−1, inputi,t  + b

(l)
f ,

i
(l)
t � σ W

(l)
i · h

(l)
t−1, inputi,t  + b

(l)
i ,


C

(l)
t � tanh W

(l)
C · h

(l)
t−1, inputi,t  + b

(l)
C ,

C
(l)
t � f

(l)
t ∗C

(l)
t−1 + i

(l)
t ∗


C

(l)
t ,

o
(l)
t � σ W

(l)
o h

(l)
t−1 + b

(l)
o  ,

h
(l)
t � o

(l)
t ∗ tanh C

(l)
t .

(1)

σ(·) is sigmoid function, and inputi,t equals si,t when
l � 1. W

(l)
f , b

(l)
f , W

(l)
i , W

(l)
C , b

(l)
i , b

(l)
C , W(l)

o , and b(l)
o are

trainable parameters. *e trust profile consists of those
parameters along with some hyper parameters. An exclusive
LSTM neural network would be built for every user in cloud
environment as the user’s trust profile.

3.4. Phase 4: Trust Assessment. Trained with normal be-
haviours of specific user, the trust profile of this user is
generated and applied to predict future actions of this user.
An algorithm is adopted to predict next x-step actions.With
the predicted action sequence, the key to assess the user’s
trustworthiness is to compute the mean similarity of pre-
dicted sequence and actual sequence. Firstly, we calculate the
similarity of individual action of the two sequences. As every
action is encoded as a one-hot vector, we adopt cosine
similarity for single action:

simi � predictedi

�����������→
· reali
���→

 / predictedi

�����������→
× reali

���→
   . (2)

*en, the mean similarity is calculated as

Sim Seqp, Seqr  �
1
x



x

i�1
simi predictedi

�����������→
, reali
���→

 , (3)

where Seqp refers to the predicted action sequence by Al-
gorithm 1 and Seqr refers to the action sequence that really
happened derived from the future system logs. And
predictedi and reali refer to the vectorized single step action
in Seqp and Seqr

Furthermore, a threshold θ is set to determine the
trustworthiness of user ui:

Tui
�

1, Sim Seqp, Seqr ≥ θ,

0, Sim Seqp, Seqr < θ,

⎧⎪⎨

⎪⎩
(4)
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which means when user’s activities deviate from the pre-
dicted activities which are conceived normal behaviours, the
user would be considered in untrusted state.

4. Evaluation

4.1. Dataset Description. *e dataset we perform experiments
on is CSE-CIC-IDS2018 [40]. *is dataset contains a series of
attack scenarios such as DDoS, Brute force attack, Web attack,
and Botnet, etc. We choose Botnet attack which fits the cloud
inside risk for the experiment. *e Botnet software was
deployed on 10MicrosoftWindows servers and the system logs
are collected from the 10 servers.*e servers were kept running
for 720 hours and in the last 3 hours the Botnet software was
activated. *erefore, the dataset has recorded system logs of
720 hours, in which the first 717 hours were when the servers
were in normal or benign state and in the last 3 hours the
servers were in abnormal or malicious state. Hence, the dataset

can be separated into two parts, the part in the normal state and
the part of malicious state, which were connected but can be
distinguished with timestamps in the logs.

4.2. Data Preprocessing and Experiment Setup. We extract
behaviours from the logs with phases in Section 3.2, as
shown in Figure 5.

We extract about 9,000 normal behaviours from the
normal state and about 250 behaviours (such as ‘104’,
‘7036’, and ‘51047’ in Figure 5) within the period of attack
which are considered untrusted behaviours for every
server. *ose data are used to train the learning models to
build trust profile for each server. In the training process,
we only use normal behaviours as training data to deter-
mine the parameters of models and we use untrusted
behaviours to test the trust profile. Corresponding pa-
rameters are chosen as in Table 2.

...

LSTM cell LSTM cell LSTM cell LSTM cell...

LSTM cell LSTM cell LSTM cell LSTM cell...

LSTM cell LSTM cell LSTM cell LSTM cell...

si,1 si,2 si,w–1 si,w

... ... ... ...

hl0 hl1 hl2

h2
0 h2

1 h2
2

h1
0 h1

1 h1
2

hlw–1 hlw

h2
w–1 h2

w

h1
w–1 h1

w

Figure 4: LSTM structure.

(i) Input: current action sequence to Predict, steps to predict x
Output: predicted action sequence predicted

(1) function PREDICTACTIONS (to predict)
(2) nextAction� LSTM (to Predict)
(3) return next Action
(4) end function
(5) iter� 0
(6) while (TRUE) do
(7) if iter≤ x then
(8) nextAction�PredictAction (to Predict)
(9) predicted� to Predict.remove (the first element)
(10) predicted� predicted.append (next Action)
(11) else
(12) return predicted
(13) end if
(14) end while

ALGORITHM 1: Predict sequence.
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4.3. Comparison with Previous Methods and Model Selection.
We studied representative anomaly detection methods such
as One-class SVM (OC-SVM) in [34] and a state-of-the-art
deep learning-based method in [37] to compare the per-
formance among the proposed method and related work.
We briefly describe them as follows:

Method in [34]: one-class SVMmodel was employed in
detecting masquerade intrusions. Non-intruded data
was adopted as training data for the model, and the
trained model was used to detecting “unusual” be-
haviours of a specific user. Only non-intruded data was
collected and labelled as negative; when outlier be-
haviour was detected, it would be reported as positive.
Method in [37]: an LSTM-CNN (long short-term
memory-convolutional neural network) was adopted to
detected insider threat without feature engineering.*e
LSTM was used to extract features automatically. *e
extracted features would be transformed into matrices
and the CNN was used to classify them as normal or
abnormal.
Method in this paper: we take advantage of LSTM to
model the normal behavioural patterns of cloud users
as trusted profile. And we use regression method to
predict the future behaviours of the users. *e simi-
larity between the “what-should-do” behaviours and
“what-really-do” behaviours is calculated to assess the
trustworthiness of the users.

Considering the dataset is a segment of system behav-
iours cut off from the complete behavioural workflows, we
also investigated other LSTM-based models in our experi-
ments, stacked LSTM and bidirectional LSTM. *e stacked
LSTM is a neural network with multiple hidden LSTM
layers. As an expansion of LSTM, stacked LSTM is with
greater model complexity and it can create a more complex
feature representation. And the bidirectional LSTM (Bi-
LSTM) takes the input data twice for training from two
directions. Bi-LSTM is able to improve learning long-term
dependencies and thus consequently will improve the ac-
curacy of the model. In the experiments, the kernel function

of one-class SVMwas Radial Basis Function (RBF) and the c

was set to 0.5. And for LSTM-based models, we adopted a 3-
layer stacked LSTM and a 2-layer Bi-LSTM. *e 9,000
normal behaviours were dynamically generated into several
mini-batches with the size of 100 to train the models for 50
epochs with RMSProp. *e performance of model accuracy
and training time was compared in our experiments as il-
lustrated in Figure 6. For OC-SVM, traditional LSTM, Bi-
LSTM, and 3-LSTM, the accuracy on training data is 58.1%,
94.7%, 80.1%, and 98.2%, respectively. With the growth of
the scale of the parameters of themodels, the training time of
the four models is increasing as well, recorded as 369685ms,
920128ms, 950012ms, and 110192ms.

Due to the high-dimension and sequential characteris-
tics of the input data, the LSTM-based models outperformed
the OC-SVM in accuracy, in which 3-LSTM has achieved the
optimal performance. Hence, we have chosen the stacked
LSTM to model the trust profile.

4.4. Experiment Result. With the trained LSTM, we exper-
iment on untrusted behaviours to evaluate the performance
of proposed method. We choose the last 99 behaviours in
normal state as current actions to predict next 30 actions and
then compute the similarity value between each action in the
predicted sequence and each action in the real sequence that
happened in the attacking state. To provide a comparison,
we also predict some sequences in the normal state. *e
results are illustrated in Figure 7.

In Figure 7, the x-axis is the action sequence number
while the y-axis is similarity value between the predicted
action and real action, and the horizontal line similarity � 1
is the baseline that indicates that the predicted sequence is
identical to the real sequence. When the predicted action is
different from the real action, the corresponding point will
deviate from the baseline. *e broken line in Figure 7 in-
dicates the similarity value between each predicted action
and real action calculated with (7), and the mean similarity is
also calculated with (8) and shown on top of every subfigure.
*e first 3 subfigures show that themean similarity is close to
1 when predicting sequences in normal state, while the last
subfigure shows that the similarity is far away from the
baseline when the server enters Botnet state. It can be seen
intuitively that the broken line in normal state (the first 3
subfigures) and in Botnet state (the last subfigure) are sig-
nificantly different, which verified that the similarity value is
useful to describe the state of target server.

Also, an experiment was performed on the effectiveness
of trust profile. We picked up three subsequences from the

……

……

……

……

Raw log file Parsed XML file Flow of Event IDs

……

104 7036 7040

7036

……

51047

……

Figure 5: Behaviours extraction from the dataset, in which ‘104’ and ‘7036’ indicate the Event IDs contained in the log files.

Table 2: Parameters in experiment.

Parameter name Parameter value
Time window w � 99
Stride n � 1
To predict steps x � 30
Event numbers (collected from log files) N � 63
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dataset.*ose subsequences were extracted from system logs
of three different users, i.e., three different cloud hosts. All
three subsequences contain normal behaviours and mali-
cious behaviours but those behaviours are distributed in

different time period. *e structures of the three subse-
quences are shown in Table 3.

For convenience, the number of behaviours in different
periods is modified based on the parameters in Table 2. *e
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Figure 6: Performance comparisons between different models.
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Figure 7: Similarity of predicted sequences and real sequences.
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similarity values on three subsequences are calculated to
check whether the trust profile will be able to determine the
trust state or not. *e result of this experiment is shown as
Figure 8.

In Figure 8, the x-axis is the number of behaviours
sequence and the y-axis is the similarity value between every
predicted action and real action. When the user is in normal
state, the similarity value would oscillate around 1 while it
would oscillate around 0 when entering malicious/untrusted
state. Figure 8 illustrates that when user enters different state,
no matter from normal state to malicious state or from
malicious state to normal state, it will be reflected by the
similarity calculated with trust profile. *erefore, trust
profile is useful to detect malicious or abnormal state for
cloud users, and the CSP would be able to take response
measures such as sending alert, adding to black or blocking
at network level.

4.5. Computation of Trustworthy9reshold θ. It is important
to determine the trustworthy threshold θ. *e value of θ is
highly associated with the user’s usage, business, active time,
etc. Consequently, θ should be established for every single
user and determined by the historical experience of specific
user. In our experiment, the threshold is determined with

θ(u)
�
1
k



k

i�1
θ(u)

i , (5)

θ(u) is the trustworthy threshold for specific useru, and it is
calculated as mean value of multiple times of single-time
threshold θ(u)

i . θ(u)
i is calculated with two steps. Firstly, we

randomly choose one action from the action sequence
extracted from the trusted system logs and it would be the
starting point of the time window. Secondly, the similarity
will be calculated with the parameters selected in Table 2 and
the value of similarity will be θ(u)

i in the ith time, which
means θ(u)

i � Simi. Obviously, the bigger k is, the more
accurate θ(u) would be.

In the experiment, we performed the computation of
trustworthy threshold θ for one user. *e value of k is set to
10,000. *e mean value of those 10,000 similarity values
would be θ and the value computed is 0.8199. Hence, in this
instance, the trustworthy threshold θ would be set as about
0.8.

5. Discussion

5.1. Qualitative Analysis. *e result of the experiments in-
dicated the effectiveness of the proposed method. We also
quantitatively compared our method with similar schemes
for building trust in cloud environment and summarized in
Table 4.

We compared the trusted computing-based methods
and learning-based methods from 5 aspects. Compared with
trusted computing-based methods, our method can build
trust for cloud users without requirements of special
hardware. Compared with other learning-based schemes
such as [34] and [37], our method benefits from the
behavioural actions of cloud users extracted from system
logs with LSTM to build a trust profile rather than feature
extraction, which utilizes the sequential characteristics more
comprehensively. And furthermore, our method focuses on
the real-time trust assessment instead of binary
classification.

5.2. Time Consumption and Complexity Analysis. Note that
the time consumption in the training phase is a factor to be
reckoned with. As shown in Figure 6, all LSTM-based
methods would take more than 900000 milliseconds to be
trained. However, with our method, the training phase and
trust assessment phase are separated; i.e., we train the trust
profile for every cloud user offline and assess the trust-
worthiness online. *e time consumption in the training
phase would not affect the efficiency of the assessment phase.
*e overhead in the assessment phase is considered with
respect to the complexity of Algorithm 1. In Algorithm 1, a
sequence of x steps of actions is generated with a loop from
line 6 to line 14. *e time complexity of algorithm 1 is O(n)

and the space complexity of algorithm is O(n) as well,
depending on the value of x. In our experiment, the time
used in the assessment phase is about 5 milliseconds, which
is totally acceptable.

And meanwhile, due to the fact that the training data
may not cover all the patterns of normal behaviours, a
dynamical update mechanism is adopted. With this
mechanism, the CSP can provide feedback by checking the
result of the trust assessment. When the result is a false
positive, the CSP would take the input as training data for
incremental training to update the parameters of the LSTM

Table 3: Subsequence structure.

Period 1 Period 2 Period 3
Subsequence 1 Normal Malicious Normal
Subsequence 2 Malicious Normal Normal
Subsequence 3 Malicious Normal Malicious
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Figure 8: Variation of similarity curve in different scenarios.
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neural network. *e incremental training process is also
offline and the model would be updated continuously to
improve the accuracy of trust assessment. In the case of the
trustworthy threshold θ, the situation is similar. *e value of
θ is determined with multiple times of calculating similar-
ities. Hence, at the beginning of trust assessment phase, the
value θ is set manually while it can be updated dynamically
in the follow-up trust assessments.

6. Conclusion

In this paper, we proposed a deep learning based trust as-
sessment method for cloud users. With system logs collected
in cloud environment, we extract user behaviours and build
LSTM neural network as trust profile for this user. *e trust
profile is to determine the trustworthiness of the user by
predicting the future actions and then computing the
similarity between predicted actions and actual actions.
With the calculated similarity and a trustworthy threshold,
our method can assess the user’s real-time trust status
dynamically.

7. Case Study

*e experiments verified the validity of our method. *e
trained trusted profile can describe the behavioural pattern
of a cloud user and can be used as a baseline for detecting
anomaly actions. However, regardless of the advantages,
there are also limitations to our method. First, in the ex-
periment we extract only 250 behaviours from the dataset,
and the number is not so big for global system activities.
Hence, our method is more suitable for building trust profile
for cloud users that are with higher stability, as the
behavioural actions or Event IDs are only sufficient to de-
scribe cloud users which undertake monotonous tasks.
Second, the trustworthy threshold θ is not easy to determine.
In Section 4, we have explained the computation process of
θ. However, in the process, the final value of θ is highly
dependent on the training data; i.e., the more training data
is, the more accurate θ is. *e scale of training data de-
termines the accuracy of θ, as well as the performance of our
method.

8. Future Work

Considering the limitations of our method, the future work
is summarized. Firstly, it is necessary to find more generic
properties to profile the users, and secondly, we should
incorporate other types of neural networks to achieve better
performance with smaller data scale. And thirdly, adopting

the method to other fields such as Internet of things is also in
consideration for future work.
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