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Information technology has become eminent in the development of modern cars. More than 50 Electronic Control Units (ECUs)
realize vehicular functions in hardware and software, ranging from engine control and infotainment to future autonomous driving
systems. Not only do the connections to the outside world pose new threats, but also the in-vehicle communication between
ECUs, realized by bus systems such as Controller Area Network (CAN), needs to be protected against manipulation and replay of
messages. Multiple countermeasures were presented in the past making use of Message Authentication Codes and time stamps
and message counters, respectively, to provide message freshness, most prominently AUTOSAR’s Secure Onboard Commu-
nication (SecOC). In this paper, we focus on the latter ones. As one aspect of this paper, using an adequate formal model and proof,
we will show that the currently considered solutions exhibit deficiencies that are hard if not impossible to overcome within the
scope of the respective approaches. We further present a hardware-based approach that avoids these deficiencies and formally
prove its freshness properties. In addition, we show its practicability by a hardware implementation. Finally, we evaluate our
approach in comparison to counter-based solutions currently being used.

1. Introduction

Information technology has become an integral part of
modern vehicles. More than 50 interconnected Electronic
Control Units (ECUs) realize vehicular functions in hard-
ware and software ranging from engine control and con-
nected infotainment systems to future autonomous driving
systems. -e in-vehicle communication between ECUs is
realized with bus systems like CAN (Controller Area Net-
work Bus [1]). Further, vehicles communicate with the
outside world (e.g. with their manufacturer’s backend sys-
tems, with the garage’s On-Board-Diagnose (OBD) devices)
via different communication interfaces. Usually, these in-
terfaces are not strictly separated from the in-vehicle net-
work (the OBD port for example must have access to a car’s
ECUs to extract error codes). -is poses serious security
threats, one of the possible attack vectors being in-vehicle
communication. -e vehicle owner can for example install a
tuning box to suppress or inject messages that control engine

operations in order to achievemore horsepower.-is in turn
may damage the engine and violate the warranty. Moreover,
third-party devices connected to the OBD port can inject
messages to the regular in-vehicle network. In [2], Koscher
et al. have shown various attack techniques like Packet
Sniffing and Targeted Probing, Fuzzing, and Reverse-
Engineering.

Multiple countermeasures were presented in the past to
protect in-vehicle networks (see Section 2.4). Early work can
be traced back to EVITA [3] that introduced Message
Authentication Code (MAC) truncation in order to cope
with the small bandwidth of field buses such as CAN. -is
approach has been adapted by AUTomotive Open System
ARchitecture AUTOSAR in SecOC [4]. Including a fresh-
ness value in a message’s MAC can in principle prohibit
fuzzing or replay attacks. Most of the current approaches
consider a monotonic counter value.

In this paper, we discuss our new counter-based ap-
proach BusCount based on our ideas introduced in [5],
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present its full formal verification, discuss its implementa-
tion and provide a practical evaluation. We further oppose it
to a generic system that captures the principles of today’s
counter-based approaches for freshness protection. -e
principle idea of our approach is to use the messages that are
sent on a specific bus as a pulse generator for the counter of
this bus, resulting in only one counter per bus. To cope with
the loss of counter values e.g. caused by technical problems
or an attack, our approach includes counter synchroniza-
tion. Further, it requires the sending and reception of
messages to be processed simultaneously toMAC generation
and verification. -erefore, we propose a hardware-based
solution: -e CAN controller is enhanced by the func-
tionality to maintain a counter and to manage MAC gen-
eration and verification while the main ECU processors can
be inactive at times.

In the next section, we present the principles of in-ve-
hicle communication based on CAN, our attack model, the
protection goals we will address, current work concerning
the security of CAN-based communication, and finally the
characteristics of the counter-based approaches currently
being discussed. Section 3 then describes the details of our
approach BusCount. -e following Section 4 briefly intro-
duces our Security Modeling Framework SeMF that is then
used in Sections 5 and 6, respectively, to formally model and
verify both the generic counter approach and our bus
counter approach. Based on these results, in Section 7.1 we
present a comparison of the security aspects of both ap-
proaches while Section 7.2 introduces our proof of concept
implementation showing its practicability and design de-
cisions that substantiate our formal proof. Finally, we
conclude with Section 8.

2. Principles of In-Vehicle Communication

CAN bus is the core technology for onboard communication
in vehicles. Brakes, acceleration, and many further essential
features are controlled by ECUs that communicate using
CAN bus messages. An overview of different network
structures is given in [6]. -e CAN network is accessible via
the OBD port allowing repair shops to access the car network.
Modern vehicles also have connections through infotainment
systems as well as telematic control units (TCUs) connecting
the CAN bus to the outside world. By connecting the in-
vehicle communication with the outside world, the necessity
arose to protect its messages against malicious entities.

In this section, we describe the basics of CAN bus
communication, the attacker model we take as a basis, the
most relevant protection goals, and the current approaches
for protecting these goals.

2.1.Basics ofCANCommunication inVehicles. -eCAN bus,
specified in [1], is a field bus where each entity connected to
it is able to sendmessages and listen to everymessage sent on
the bus. -e maximum transfer rate of the highspeed-CAN
is 1 Mbit/s.

A standard CAN message consists of 7 segments
(Figure 1): “Start of frame” bit, a message identifier, a

control field, a data field, a checksum, a confirmation field,
and an “end of frame” sequence.

-e 11 bit identifier which is the second section of a
CANmessage also represents the message’s priority which
is used to handle collisions. -e CAN bus uses Carrier
Sense Multiple Access/Collision Resolution (CSMA/CR)
to prevent collisions: All ECUs start sending a CAN
message simultaneously and monitor its identifier while
sending. In case a dominant 0 overwrites a 1 the ECU with
the lower priority stops its transmission, thereby avoiding
collisions.

During the transmission of the message every ECU
calculates the CRC (cyclic redundancy check) over the
message and checks the correctness of it as soon as it gets
transmitted by the sender. In case of a problem (e.g. if the
CRC check has failed) an ECU interrupts a transmission
with an error frame that invalidates the message for all
receivers. Furthermore, an error counter is increased by 1 for
every receiver and by 8 for the sender. Every successfully
transmitted message decrements the counter. If a counter
reaches 128, the ECU disables its CAN connection. -is
mechanism ensures that damaged ECUs do not block the
entire bus communication.

Successors of CAN, like CAN FD or CAN XL, differ
mainly in the frequency of transmitting data payload. CAN
FD can transmit up to 64 bytes while CAN XL can handle
2048 bytes.

2.2. Our Attack Model. Attacks on in-vehicle communica-
tion have been presented first by Kocher et al. in [2]. -ese
attacks concern manipulation of brake control and vehicle
acceleration via CAN Bus by message injection. In the real
world, attacks on vehicle networks have been observed that
manipulate in-vehicle communication by attaching devices
to the bus system, like tuning devices, AdBlue emulators [7],
unauthorized OBD dongles [8], etc.

In our attack model, an attacker can send arbitrary
messages on any bus she has access to. Moreover, she can
overhear and record all communication on a bus she is
connected to and replay all recorded messages. Finally, an
attacker is able to flip bits of messages or send an error frame.
-is enables her to invalidate messages for other ECUs after
having recorded them herself. In our scenario, an attacker
does not have access to any cryptographic keys. -is also
includes that the attacker cannot manipulate ECUs by e.g.
corrupting firmware which in turn implies that legitimate
ECUs always act correctly. Furthermore, the attacker is not
able to manipulate processes or storage of ECUs by physical
attacks. In addition, the attacker is not able to produce a
counter overflow as a sufficient counter length is chosen to
prohibit this sort of attacks.

2.3. Protection Goals. A secure CAN bus communication in
a vehicle needs to fulfill a set of requirements to prevent
previously introduced attacks. -ese include e.g. data in-
tegrity, confidentiality, and availability. In the following, we
explain those requirements we specifically address in this
paper.
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Data Origin Authenticity:Amessage in a vehicle network
should be accepted if and only if it has authentically for the
recipient been sent by another valid member of the network.
-is property prevents attackers from manipulating mes-
sages or sending messages on the bus system from additional
devices or replaced components without the intended re-
cipient noticing.

Immediacy: Contrary to many other IT-systems, it is
important for an automotive system to receive and process
messages within a certain time frame. Once this time frame
has passed, messages might be authentic, but can still cause
fatal results, e.g. if breaking signals sent by the anti-lock
braking system are processed too late. Immediacy expresses
the fact that a message sent at time t1 is accepted until t2 if
and only if t2 − t1 does not exceed a specified limit.

Non-repeatability: -e last important property for an
automotive network is non-repeatability: If a message is
accepted at time t1, the same message is not accepted at any
later point in time. -us, an attacker cannot eavesdrop on a
message and successfully replay it at a later point in time.

Many articles do not distinguish between the two above
properties and use the more abstract concept of “message
freshness” with “message replay” seeking to violate fresh-
ness. We adapt to this notation and distinguish the specific
characteristics when necessary.

2.4. State of the Art CAN Bus Security. -e security of bus
communication in current vehicle networks has already
been discussed in literature and standardization. Early work
onMAC truncation for secure CAN bus communication can
be traced back to [3]. In this section, we give an overview of
state of the art with a focus on replay protection in CAN bus
systems and compare the techniques.

A lot of CAN bus security approaches introduce message
authentication mechanisms, but not all introduce replay
protection. -e latest example of an approach without
freshness values is TOUCAN: A proTocol tO secUre Con-
troller Area Network presented by Bella et al. [9], which
introduces a 24 bit truncated Chaskey MAC and a SPECK64
encryption for each CAN message.

A more exotic approach for replay protection is used in
LCAP by Hazem et al. [10]. LCAP appends a truncated
element of a hash chain to the CAN message and encrypts
the resulting message. An HMAC secures the transmission
of the last element of the hash chain to initialize the
communication. Woo et al. [11] periodically change HMAC
keys to prevent replay attacks.

Nürnberger and Rossow [12] developed VatiCAN, an
HMAC based authentication procedure that sends aMAC in
a separate message following the original CANmessage. -e

MAC is then validated with a delay of about 4 ms. Replay
protection is implemented with a monotonically incre-
mented counter, its starting value being a random nonce
generated by a central component for every message ID. -e
authors recommend this procedure only for a few CAN
messages since it increases the bus load. Van Bulck et al.
improved this approach in [13] by introducing software
isolation and attestation as well as key update mechanisms.

Hartkopp et al. presented a further approach to intro-
duce freshness to CAN messages. MaCAN [14] formally
verified in [15] introduces a central trusted time server which
distributes time information over the network. -is infor-
mation is used as freshness value for message authentication.

AUTOSAR specifies the protection of communication in
vehicle networks based on a MAC and a freshness value. -e
specification of the Secure Onboard Communication
(SecOC) [4] module suggests to add a truncated timestamp
or message counter and a truncated authenticator to every
message. -e specific counter mechanism is based on
splitting the counter (with a maximal length of 96 bits) into
three different parts: the so-called “trip counter” that only
changes essentially with every new trip, a “reset counter” that
is reset periodically, and the actual “message counter”. Only
the trip counter is stored in non-volatile memory, thus
mitigating loss of counter values in case of sudden ECU
shutdown. -e truncated freshness value has a length be-
tween 0 and 8 bit.-e truncated authenticator consists of the
first 24 to 28 bits of the MAC covering the full freshness
value and the message.

Similar to SecOC many approaches in literature use
counters and an application-level protocol to ensure replay
protection. Kurachi et al. [16] suggest attaching a truncated
MAC (8 bit) and a truncated monotonic counter (4 bit) to a
message. A monitoring node verifies messages during
transmission and overwrites invalid messages with an error
frame. ECUs do not verify messages. Groll et al. [17] suggest
an initialization phase to form groups of ECUs.-ese groups
generate a shared symmetric key using an asymmetric key
exchange. Within these groups, ECUs use the shared secret
for authentic and confidential encryption. A counter should
be part of the message to protect against replay attacks. Lin
et al. presented an approach in [18] with symmetric keys for
message authentication. A sender calculates aMAC for every
receiver. Every ECU also holds two counters for replay
protection per message ID, the last counter it has sent and
the last one it has received. Every receiver can verify the
MAC and process its corresponding message. -e LeiA
protocol by Radu et al. [19] is another solution that transfers
MAC and counter value in a separate message. Every ECU
has a session key for each relevant message ID derived from a
long-term symmetric key and renewed after a certain period.

SOF ID Control Payload CRC ACK EOF

1 bit 11 bit 6 bit 0 - 8 byte 16 bit 2 bit 7 bit

Figure 1: A single CAN frame.
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VeCure [20] is a CAN authentication framework similar to
VatiCAN. -e authentication value is also transmitted via a
separate message, but contrary to VatiCAN the second
message includes aNode-ID besides aMessage Counter and a
four byte HMAC value.

Alternatively, several approaches suggest the use of
CAN+ [21], a protocol extension for CAN allowing to
transport 120 bit additional data. -e first approach is
CANAuth presented by Van Herrewege et al. [22]. Another
one is LiBrA-CAN [23]. LiBrA-CAN introduces (Linearly)
Mixed MAC, which mixes multiple MACs of one message
generated with different keys allowing receivers to verify a
MAC even though they do not know all keys. -e approach
allows making sure receivers cannot impersonate a sender in
a properly organized group. Both approaches send counter
values in their messages to protect against replay attacks.

Some works are also considering the implementation of
a secure CAN bus controller.-eir approaches introduce the
calculation of MACs, denial of service countermeasures, or
intrusion prevention mechanisms. [24] implemented a CAN
controller including a physical unclonable function imple-
mentation, key generation and storage, and encryption and
decryption allowing authenticated communication over
CAN. However, the approach does not consider replay
protection. Ueda et al. presented a CAN controller with
integrated HMAC in [25]. To ensure replay protection a
truncated monotonic value of 4 bits is part of every message.
Messages which are not authentic are destroyed while
correct messages update the counter.

A new approach by Groza et al. [26] suggests replacing
CAN IDs with a specificMAC-based algorithm that preserves
the order of CAN IDs. In predefined time intervals the
counter included in the MAC is incremented thus the IDs
change.-is approach increases the resistance against reverse
engineering and denial of service attacks related to a specific
ID. It does not provide data integrity and authenticity which
needs an additional security protocol as mentioned in the
paper.Moreover freshness is not guaranteed since the counter
used in the MAC of the CAN ID does not change with every
message. In case of constantly changing counter values (IDs)
and if a significant limitation of ID range is acceptable this can
be a viable alternative to transfer of fresh counter values.

We observed that most of the presented approaches (cf.
Table 1) have similar ways to ensure replay protection and
authentication of messages. All approaches add a MAC to a
CAN message. While a MAC provides authenticity of a
message, only in combination with a freshness value replay
and delay attacks can be mitigated. Most approaches in-
troduce a counter value to provide freshness since the usage
of time or nonce values has disadvantages, discussed e.g. in
[27].-e transmission of MAC and freshness values is either
realized in an additional message or achieved by including
truncated values in the same message. -e verification of a
complete message is performed by the receiver or an ad-
ditional node. In the following section, we present a detailed
generic model covering the characteristics of the current
counter-based approaches for freshness. -is model is then
compared to our approach based on formal verifications of
the security goals.

2.5. 0e Generic Counter Concept. Considering the recent
research, we simplified the approaches in order to generate
an abstract model to evaluate the security of software-based
freshness techniques compared to our approach. Since a
large majority of approaches favor counters for freshness
values, we focus on this technique.

Figure 2 illustrates the abstract protocol we assume. To
transmit a CAN message m which contains the I D and
payload data msg an ECU first calculates a MAC covering m

and a local counter ca derived by incrementing the previ-
ously used one (steps 1 and 2). For our analysis, the choice of
the MAC algorithm is not important. In the next steps, m, ca

and the authentication tag are concatenated (step 3) and the
values are transmitted (step 4). Note that this transmission is
not necessarily processed with one CAN message only,
different techniques could apply here. Finally, a receiver gets
the message, verifies the MAC and tests if its local counter cb

is smaller than the counter in s. -e check is not necessarily
performed by the same entity which later processes m. If
both checks are successful, the local counter is set to the
counter in s and the message can be processed. Otherwise,
the message is discarded.

Only some approaches consider an explicit synchroni-
zation of counter values which is necessary in case an ECU
loses its counter value, e.g. due to a software error, a power
loss (engine stop or malfunction) or an ECU without per-
sistent memory. Most approaches that use synchronization
introduce a central system sending an authenticated message
containing the current counter value. In case a sender has an
incorrect counter, the value needs to be provided by a
dedicated entity or some client. In both cases the counter
value is transmitted in the payload CAN message with a
reserved ID. -is message is secured identically to regular
messages.

Even though the generic counter protocol is fairly simple
it represents the characteristic properties of all above
mentioned protocols that increment counters after suc-
cessful validation of the message. -e fact that the local
counters of message recipients only change when a message
is accepted is a very important characteristic property.
Consequently, these protocols cannot prohibit so-called
delay attacks, as will be formally shown in Section 5.2. For
such an attack, the adversary with the abilities described in
Section 2.2 stores and then invalidates a message and all
subsequent ones related to the same counter. -e reinserted
message will then be accepted by the intended recipients at
any later point in time if no further countermeasures are
taken.

3. BusCount: A Hardware Based Bus
Counter Solution

In this section we describe BusCount, our approach for a
hardware based secure CAN bus communication, which
eliminates the possibilities of attackers with the abilities
presented in Section 2.2. We first introduce our approach to
ensure immediacy, non-repeatability, and authenticity of
messages on the bus and then elaborate on the synchro-
nization mechanism for freshness values.
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In a bus system, each participant can see and thus count
every message written to the bus. Hence, the number of
messages sent on a particular bus is an inherent part of the

system that can serve as a bus specific counter [5] known by
all devices connected to it. Consequently, there is no need to
send counters. Each bus of a vehicle system is equipped with

Transmit
can message
m := ID|msg

1: ca := ca + 1

2: t :=
mac (m|ca, k)

3: s := m|ca|t

4: Send s 5: Receive s

6: ca >
cb ^ t =

mac(m|ca, k)

7: cb: = ca

8: Process m

9: Discard m

y

n

(Wait for next message)

Figure 2: Process of Generic Counter Communication.

Table 1: Comparison of different authentication approaches for CAN-Bus (HW: Hardware, SW: Software, C : Counter, T : Timestamp, N :
Nonce, ∗: not described)

HW change SW change Central component Freshness
technique MAC Encryption

Transfer
techniques for

MAC

Syncronisation of
freshness value

AUTOSAR
[2] - ✓ - C / T ✓ - 28 bit data

field ✓

CaCAN [24] ✓ ✓ ✓ C ✓ - 8 bit data field -
CANAuth
[35] ✓ ✓ - C ✓ - CAN+ (✓)

Groll et al.
[14] - ✓ ✓ C ✓ ✓ ∗ -

LeiA [31] - ✓ - C ✓ - sep. message ✓
LibrA-CAN
[16] - ✓ ✓ C ✓ - CAN+ -

Lin et al. [25] - ✓ - C ✓ - ∗ (✓)
Ueda et al.
[34] ✓ ✓ ✓ C ✓ - 8 bit data field -

VeCure [37] - ✓ - C ✓ - separate
message -

MaCAN [20] - ✓ ✓ T ✓ - 32 bit data
field ✓

VatiCAN
[28] - ✓ ✓ C + N ✓ - separate

message ✓

vulCAN [7] ✓ ✓ ✓ C + N ✓ - separate
message (✓)

Woo et al.
[38] - (✓) (✓) key refresh ✓ ✓ CAN-FD -

LCAP [21] - ✓ - hash chain - ✓ 16 bit
extended ID ✓

TouCAN [3] - ✓ - - ✓ ✓ 24 bit data
field -

Siddiqui et al.
[33] ✓ ✓ ✓ - ✓ ✓ data field -

CAN-TORO
[15] ✓ ✓ ✓ Authenticated

ID - - - (✓)
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its own counter. Its value changes automatically with each
new message: An ECU sending/receiving a message reduces
its local counter value by 1 and authenticates/verifies the
message including the counter with a MAC.-is idea can be
also applied to any other bus network.

-e procedure of BusCount is described in more detail as
follows (see Figure 3 for a schematic representation):

First, a sender ECU starts transmitting a message m

which is composed of a message ID and the payload msg. As
soon as the transmission starts, the local counter ca of the
sender is temporarily decremented (step 1.1). -e counter is
decremented instead of the usual incrementation because 0
is the dominant bit on the CAN bus thus a lower counter can
overwrite a larger counter. -is property is used for the
synchronization of the counter explained in the next section.
A receiver ECU, when receiving the start of the message,
decrements its local counter cb and uses the result as its new
counter value (step 2.1). Since sending and receiving of
messages is processed simultaneously and thus the sender
also receives its own message, it decrements its counter
analogously. After the counters are decremented the sender
starts sending mgs and both receiver and sender start cal-
culating the MAC over the message m and their respective
local counter using a shared key k. Finally, the tag ta of the
sender’s MAC is transmitted (step 1.3) and received (step
2.3). All ECUs now evaluate the tag.

If the evaluation is positive m can be processed. Oth-
erwise, the receivers whose verification failed immediately
transmit an error frame which has the effect that m is
discarded by every ECU. Note that this effects also ECUs that
do not implement the protocol: -ey will discard messages
overwritten with an error frame. In case multiple errors
occur, a synchronization is necessary.

3.1. Synchronization. Multiple transmission failures may
indicate that an ECU is not synchronized. -is situation can
occur e.g. if the ECU is switched off without having been able
to store the current correct counter value in persistent
storage. Consequently, a synchronization between all enti-
ties of a bus is necessary. Our synchronization concept
utilizes the mechanism used for collision resolving which is
based on the fact that sending a 0 always overwrites a 1 on
the CAN bus. Hence, in BusCount counters are decremented
instead of the usual incrementation.

-e mechanism is illustrated in Figure 4. One ECU
initializes the synchronization by sending a predefined
synchronization ID (Step 1.1). At the same time, each
receiving ECU including the initiator of the synchroni-
zation, receiving the start of message bit, decrements its
local counter. Now all ECUs, having identified the message
as synchronization message, simultaneously start to send
their respective newly decremented local counter in the
data frame (Step 2.1 and 2.2). -e lowest counter will
overwrite larger counters and ECUs with larger counters
stop sending (Step 3). An ECU with the lowest counter
value (the actual sender of the synchronization message)
sends a MAC over the ID and the counter value (Step 4.1 or
4.2). Each ECU as a recipient of this message verifies the

correctness of the MAC and compares the counter to its
local one. In case one check by any of the receivers fails, the
rest of the message is overwritten with an error frame and is
discarded by all controllers. Otherwise, every receiver re-
places its local counter with the counter of the synchro-
nization message.

In case multiple ECUs have the lowest counter in the
network, each sends the samemessage without noticing each
other. -is concept has been used for example in [28] to
implement a key exchange on a CAN bus.

In contrast to other approaches that use a counter for
every message ID, our approach allows to synchronize all
participants of a bus communication with just one message.
Further, no central entity is needed for the process, any ECU
connected to the bus can initialize it. -e only condition for
it to work is that at least one ECU owns and processes the
correct counter value.

In Section 7.2 we will discuss design decisions and in-
troduce our proof of concept implementation. In the next
section we will briefly introduce the Security Modeling
Framework SeMF that is then used in Sections 5 and 6,
respectively, to formally model and verify both the generic
counter approach and our bus counter approach with re-
spect to the desired security properties. -e achieved results
will then be discussed in Section 7.1.

4. The Security Modeling Framework SeMF

We use our Security Modeling Framework SeMF (see [29]
for a detailed description) to formally model and verify the
two counter systems discussed in this paper. SeMF is a
powerful modeling framework that we have already suc-
cessfully applied to a variety of different domains and ab-
straction levels. For example, we used it to verify that specific
security properties of service based systems are preserved
under composition [30]. We also applied it to model and
verify the integration of device authentication based on TPM
attestation with secure channel establishment via SSL [31].
Another example is [32] where we proved preservation of

Transmit
CAN message
m := ID|msg

1.1: Send ID and
set ctmp := ca − 1

1.2: Send msg
and set ta :=

MAC (m|ctmp, k)

1.3: Send ta

2.1: Receive
ID and set
cb := cb − 1

2.2: Receive pay-
load and set tb :=

MAC (m|cb, k)

2.3: Receive ta 3: ta = tb

4: Process m

5: Error frame

y

n

(Wait for next message)

Figure 3: Process of CAN message transmission of BusCount.
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specific security properties for the composition of abstract
security patterns.

-e basic idea of SeMF is to describe the system behavior
by sequences of actions that capture essential changes in the
system. As underlying formal semantics SeMF uses prefix
closed formal languages (see e.g. [33]) whose alphabet is
composed of the actions in the system. More specifically, it
uses a set of agentsP (where the term “agent” can denote any
entity acting in the system such as a human being, an ECU,
etc.), and a set of actions Σ (e.g. specifying sending and
receiving messages on a bus) performed by the agents. -e
system’s behavior is then formally described by a prefix
closed formal language B⊆Σ∗ (Σ∗ denoting the set of all
words composed of elements in Σ with ε ∈ Σ∗ denoting the
empty word), i.e. by the set of its possible sequences of
actions. A system model further comprises the agents’ local
views (denoted by λP for agent P). -e local view of different
agents usually differs since it describes which parts of the
system behavior the agents can actually see (an ECU for
example may see its own internal actions, but not those of
other ECUs). A system model finally includes the so-called
agents’ “initial knowledge” WP ⊆Σ∗ which is defined to be
prefix closed and to contain B. -is concept is used in order
to specify system constraints and assumptions.

Security properties are defined in terms of the system
specification. -e underlying formal semantics then allows
formal validation, i.e. allows proving that a specific formal
model satisfies specific security properties.

-e following notations are used: For Υ⊆Σ∗ and ω ∈ Υ,
ω− 1(Υ) denotes the set of all continuations of ω in Υ. For
Γ ⊆Σ and ω ∈ Σ∗, card(Γ,ω) denotes the number of oc-
currences of any action of Γ in ω, alph(ω) denotes its al-
phabet (i.e. the set of its actions), pre(ω) is its set of prefixes,
pre1(ω) denotes its first and suf1(ω) its last action. For ω �

x1 . . . xk ∈ Σ∗ and i ∈ 1, . . . , k{ }, prevact(xi, P,ω) denotes
the last action before xi in ω performed by agent P (in case xi

is P ’s first action, prevact(xi, P,ω) � ε). For ω ∈ Σ∗, the
function actCnt: Σ × Σ∗ ⟶ Ns enumerates strictly
monotonically increasing the actions of ω in their order of
occurrence: actCnt(a, ε) ≔ 0 for all a ∈ Σ, act Cnt(a,ω) ≔ 1
for ω � a, and for card(Σ,ω) � k> 1 we define act Cnt(suf1
(ω),ω) ≔ act Cnt(suf1(prek− 1(ω)), prek− 1(ω)) + 1.

We extend SeMF by a formal specification of actions and
a homomorphism to extract any parameter of an action:

Definition 1 (Set of actions). Let P � par1, . . . , parn􏼈 􏼉 a set of
parameters (n ∈ N) and for j ∈ 1, . . . , n{ } let Vj the set of
possible values of parj with V1 ≔ A a set of action names and
V2 ≔ P a set of agents. 0en the set Σ of actions of a system S

can be defined as follows:

Σ⊆ ∪
pari1∈A,pari2∈P, i3 ,...,ik{ }⊆ 3,...,n{ }

pari1
, . . . , parik

􏼐 􏼑. (1)

-e sending of a message on a CAN bus can for example
be formalized by (send,ECU, bus,msg). See Sections 5.1 and
6.1 for the concrete sets of actions of the two models

Synchronize
counter

1.1: ECUa send
sync ID and set

ca := ca − 1

1.2: ECUb
receive sync
ID and set
cb := cb − 1

2.1: ECUa
send ca and set

ta := MAC (ca, k)

2.2: ECUb
send cb and set

tb := MAC (cb, k)

3: ca > cb

4.1: ECUa
send ta

4.2: ECUb
send tb

5.1: tb =
MAC (cb, k)

^ ca ≤ cb

5.2: ta =
MAC (ca, k)

^ ca ≥ cb

6.2: ECUa
set ca := cb

7: Error frame

6.1: ECUb
set cb := ca

yn

y y

n n

Figure 4: Synchronization of BusCount.
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introduced in this paper. In order to express relations be-
tween parameters of different actions, we need to extract
them from the actions:

Definition 2 (Parameter extraction). Let Σ be defined as in
Definition 1. We define a homomorphism 􏽢κparι: Σ⟶ P∪Σ
by

􏽢κparι par1, . . . , park( 􏼁( 􏼁 ≔
pari, if pari � parι,

par1, . . . , park( 􏼁, else.
􏼨

(2)

-e security property provided by a MAC mechanism
can be formally specified by the concept of authenticity
introduced in [34] : A set of actions Γ is authentic for agent P
after a sequence ω of actions has happened if in all sequences
that P considers possible after ω, some time in the past an
action in Γ must have happened. Formally:

Definition 3 (Authenticity). A set of actions Γ ⊆Σ is authentic
for P ∈ P after a sequence of actions ω ∈ S with respect to WP

if alph(x)∩ Γ≠∅ for all x ∈ λ− 1
P (λP(ω))∩WP.

-e following weaker property describes that in all se-
quences of a language L that contain a specific action b, this
action is preceded by one of the actions contained in Γ ⊆Σ:

Definition 4 (Precedence). For L⊆Σ∗, Γ ⊆Σ, b ∈ Σ the
property precL(Γ, b) holds if for all ω ∈ pre(L) with
b ∈ alph(ω) follows Γ ∩ alph(ω)≠∅. We simply write
prec(Γ, b) if from the context the language referred to is clear.

Additionally to authenticity, we require the counter
systems to provide immediacy and non-repeatability. In
order to define a respective security property within SeMF
we introduce the concept of a phase class that allows
modeling that a particular action occurred within a
particular period of the system. We base our definition on
the concept of a phase introduced in [35]. Here a subset of
Σ∗ is a phase for B if it is a prefix closed language con-
sisting only of words which, as long as they are not
maximal, show the same continuation behavior within the
phase as within B. Our definition transforms this to ar-
bitrary subsets of Σ∗, not requiring them to be prefix
closed:

Definition 5 (Phase class). Let Υ⊆Σ∗. A languageΦ(Υ)⊆Σ∗
is a phase class for Υ if the following holds:

1. Φ(Υ)∩Σ≠∅
2. ∀ω, u ∈ Υ with ω � uv and v ∈ Φ(Υ)\(max(Φ(Υ)) ∪

ε{ } ) holds: ω− 1(Υ)∩Σ⊆ v− 1(Φ(Υ))∩Σ

-us, a phase class is characterized by being closed with
respect to concatenation. Maximal words in a phase class,
denoted by max(Φ(Υ)), are those v ∈ Φ(Υ) for which holds
va ∉ Φ(Υ) for all a ∈ Σ (i.e. no matter whether or not exists
ω � uva ∈ Υ).

A phase class can be a very complex construct. However,
in many cases phase classes are of interest that can be defined
by the actions that start and terminate, respectively, the

words. -e following definition takes into account that an
action can occur more than once in a word. Each starting
action occurring in a word ω ∈ Υ starts a word of Φ. -e
word ends with the first ji occurrences of an action in Ti:

Definition 6 ((S,T)-phase class). Let Υ⊆Σ∗, S⊆Σ, T � T1 ∪
. . . ∪Tk ⊆Σ (k ∈ N) with Ti ∩Tj � ∅ for all i≠ j. 0en ,
Φ ≔ Φ(Υ, S, (T1, j1) . . . , (Tk, jk)􏼈 􏼉)⊆Σ∗ is a phase class for
Υ starting with S and terminating with respect to
(T1, j1), . . . ,􏼈 (Tk, jk)} if

1 Φ is a phase class for Υ,
2 Φ(Υ)∩Σ � S

3 for all v maximal in Φ the following holds: For ω, u ∈
Υ, z ∈ Σ∗ with ω � uvz it follows z � ε or there exists
i ∈ 1, . . . , k{ } such that suf1(v) ∈ Ti, card(Ti, v) � ji,
and card(Tl, v)< jl for all l ∈ 1, . . . ,{ i − 1, i + 1, . . . , k}.

We call such a phase class an (S, (T1, j1), . . . , (Tk, jk)􏼈 􏼉)

-phase class for Υ. If all words in the phase class terminate
with the first occurrence of any t ∈ T, we simply call it an
(S, T) -phase-class for Υ, denoted by Φ(Υ, S, T).

It can easily be shown that an (S, T) -phase class for a
prefix closed language is itself prefix closed. (S, T) -phase
classes are a very useful concept for the concrete specifi-
cation of freshness properties. We can further combine these
two concepts with authenticity:

Definition 7 (Authenticity within a phase class). Let B⊆Σ∗
be the behavior of a system, ω ∈ B, b ∈ alph(ω), and
Φ(WP)⊆Σ∗ a phase class for agent P’s initial knowledge WP.
A set of actions Γ ⊆Σ is authentic for P after ω within Φ(WP)

andwith respect to λP and b if (i) it is authentic forP after ω and
if (ii) for all x ∈ λ− 1

P (λP(ω))∩WP for which exists u, z ∈ Σ∗
and v ∈ Φ(WP) such that x � uvz and b ∈ alph(v) it follows
alph(v)∩ Γ≠∅. If the property holds for all ω ∈ B, we denote
this property shortly by authWiPhase(Γ, b, P, Φ(WP)).

5. FormalizationandVerificationof theGeneric
Counter Approach

In this section, we introduce our SeMF model of the generic
counter system described in Section 2.5 (denoted by GenCnt
henceforth) and formally prove to which extend it satisfies
the protection goals data origin authenticity, immediacy and
non-repeatability of messages.

5.1. 0e Formal Generic Counter Model. Our SeMF model
shall be as simple as possible. It needs to include ECUs
connected to a bus whose messages shall be proven to be
protected. It also needs to reflect our attack model intro-
duced in Section 2.2, hence must include devices (e.g. ECUs)
that an attacker can use to monitor, record, resent and
manipulate messages sent on the bus. It is obvious that
messages sent on one bus may be accepted by ECUs con-
nected to another bus if the key used for protecting these
messages is the same for both buses. Hence we disregard this
aspect and restrict our model to one group of honest devices,
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all owning the same MAC key for message protection, and a
further device Eve representing dishonest behavior. All
devices are connected to the same bus. Our model can easily
be extended, for example by adding more groups, keys and
buses, in case other aspects than those addressed in this
paper shall be investigated. A special honest device is the
Fresh Value Master (FvM) that is responsible for the syn-
chronization of ECUs regarding their counter. We assume
all honest devices to act according to a given specification
(see Section 5.1.3). FvM only sends synchronization mes-
sages, i.e. messages withmsgid � sync. Other honest devices
receive synchronization messages and send and receive
functional messages with msgid � fmsg. We do not dis-
tinguish between different types of functional messages and
use just one with its corresponding message counter. Eve can
send and receive all types of messages but does not own the
MAC key and can thus not generate MACs.

We use four different types of actions: sending and
receiving (i.e. accepting) of messages, reading a message
without processing it, and an action that models an ECU
losing the correct message counter (denoted by genCnt
henceforth).-is action comprises any situation in which an
ECU is not synchronized anymore, i.e. owns a counter
smaller than the current correct counter value.

While in many systems (e.g. in [4]) messages only
contain a truncated message counter andMAC, respectively,
in our model the counter’s complete value is included. -is
way we model the assumption that the recipients always
succeed in determining the counter values used by the
senders (after all, this aspect is not in the focus of our
investigations).

5.1.1. Agents, Parameters and Actions. For the formal
specification of actions according to Definition 1, we use the
following sets:

(1) Set of agents:
PgCnt ≔ ECUgC ∪ Eve{ } with ECUgC ≔ ECUgC

1 ,􏽮

ECUgC
2 , FvM} whose members are connected to the

only bus of the system. FvM denotes the synchro-
nization master and Eve denotes a further device
being connected to the bus but not being member of
ECUgC.

(2) set of action names: AgCnt � sendgC, readgC,􏽮 recvgC,

loseCntgC}

(3) set of parameters:
PgCnt ≔ aname,{ ecu, ecukey, ecucnt, prevcnt,
bus,mackey, msgid,msg, cnt} with aname ∈
AgCnt, ecu ∈ PgCnt, ecukey, mackey ∈ key􏼈 􏼉∪N, key
being the key all honest ECUs use for MAC gen-
eration and verification, while ecukey ∈ N for
ecu � Eve. Further, ecucnt, prevcnt, cnt ∈ N∪
nocnt{ }, bus ∈ bus{ },msgid ∈ sync, fmsg􏼈 􏼉, and
msg ∈M (M being an arbitrary set of messages).

(4) -e set of actions ΣgCnt is then defined as follows:

(1) (sendgC, ecu, ecukey, ecucnt, prevcnt, bus,
mackey, msgid, msg, cnt): ecu ∈ PgCnt sends a

message on bus � bus. -e message’s MAC (not
explicitly modelled by a parameter of this action)
is generated with mackey and covers msgid,msg
and cnt. ecu ∈ ECUgC if none of the entire
message bits as illustrated in Figure 1 has been
written to the bus by Eve. ecu may or may not
have generated the MAC. For ecu ∈ ECUgC, the
parameter ecukey denotes ecu ’s MAC genera-
tion and verification key key, ecucnt denotes its
local counter value after having performed the
sendgC action, and prevcnt denotes the counter
value resulting from ecu’s previous action (see
Section 5.1.3 for the specific operations regarding
an ECU’s counter). -e message can be a
functional message, indicated by msgid � fmsg,
in which case the counter contained in the
message’s payload is explicitly modelled by cnt,
or a synchronization message with
msgid � sync. In this case the message’s payload
msg only contains the counter determined by the
sender and the parameter cnt contains the
constant nocnt. Note that there is the possibility
that themessage is altered (by a technical error or
by Eve) after having been sent and may thus only
cause a readgC action (see below).

(2) (readgC, ecu, ecukey, ecucnt, prevcnt, bus,
mackey, msgid,msg, cnt) denotesecu ∈ PbCnt

reading a message without processing it (i.e.
without accepting it).-e action does not change
the local message counter ecucnt if ecu ∈ ECUgC

(see Prop.A10 below).
(3) (recvgC, ecu, ecukey, ecucnt, prevcnt,

bus,mackey,msgid,msg, cnt) denotes the suc-
cessful reception and processing of a message by
ecu ∈ PgCnt.

(4) With the action (loseCntgC, ecu, ecucnt,
prevcnt,msgid) we model the fact that ecu ∈
ECUgC has lost the correct counter value for
some reason. -is action comprises any situ-
ation in which an ECU is not synchronized
anymore. As a consequence, its counter is set
to a value smaller than the correct counter
value.

-e idea of a generic counter-based system is that
counter values should be strictly monotonically increasing.
However, in real systems message transmission may fail
due to transmission errors of the bus (e.g. by flipping a bit).
Such a message is not accepted in which case the sender
simply repeats it, using the same counter as before. We
abstract from this since incidents of this type are not se-
curity relevant and assume all messages sent by an honest
ECU not to suffer from physical failures of the system. -is
leads to the following definition of the correct counter for a
specific action.

Definition 8. Let ω � x1 . . . xr ∈ Σ∗gCnt and k ∈ 1, . . . , r{ }.
0en the correct counter for action xk in ω is defined as
follows:

Security and Communication Networks 9



cor CntgC xk,ω( 􏼁 ≔

1, if k � 1,

card xi ∈ alph(ω) | i ∈ 1, . . . , k{ }∧􏼈(

􏽢κa name xi( 􏼁 � sendgC

∧􏽢κcnt x1( 􏼁< · · · < 􏽢κcnt xk( 􏼁􏼉,ω􏼁, if k> 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

-is definition assumes that the very first message of any
action sequence of the system is sent by an honest ECU.

5.1.2. Introducing a Phase Class into the Model. In the
GenCnt system, only messages with correct counters shall be
received and accepted, i.e. their values shall be strictly
monotonically increasing. Each counter therefore identifies
a phase of the system that starts with sending the message
containing it. Hence we use send actions to identify phase
classes: Each send actions starts a new phase class, and the
phase class ends with the next send action that in turn starts
a new phase class. -e formal definition of this particular
(S, T)-phase class is based on Definition 6:

Definition 9. For Υ⊆Σ∗gCnt and a ∈ ΣgCnt with
􏽢κaname(a) � sendgC we define

Φ(a,Υ) ≔ Φ Υ, a{ }, a′. ∈ 􏽘
gCnt

|􏽢κaname a′( 􏼁 � sendgC

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠.

(4)

From a recipient’s point of view, when having performed
a receive action b containing a specific counter, the phase
class “activating” this counter starts with the send action that
writes this particular message onto the bus. Considering the
characteristics of a CAN bus as described in Section 2.1,
there cannot be any other send action between these two
actions on the bus. Recall that a message manipulated by Eve
is considered to have been sent by her. Consequently we do
not have two consecutive sendgC actions. Hence for each
receive action b occuring in a sequence of actions, the
corresponding send action, denoted by σ(b), is unique.
Consequently, each b determines a unique phase class
Φ(a,Υ) with a � σ(b). -us for a specific receive action
b ∈ ω we can rename the phase class it determines and
denote it by Φ(σ(b),Υ). For the sake of completeness, for a
send action s we define σ(s) ≔ s.

For the rest of the paper we will use the particular phase
class Φ(σ(b), WgCnt) determined by a recvgC action b with
WgCnt denoting all ECUs’ initial knowledge that we assume
to be identical. In Section 5.2 we will explain how this phase
class can be used to model immediacy and non-repeatability.

5.1.3. Agents’ Local View and Initial Knowledge. -e defi-
nition of the ECUs’ local view must take into account that
they can see the messages sent on the bus they are connected
to but cannot see who sent them nor the local parameters of
the sender. Further, except for these send actions, ECUs can
only see their own actions. Hence for all P ∈ PgCnt and for all
a ∈ ΣgCnt we define λP as follows:

(1) 􏽢κecu(a) � λP(a) ≔ a

(2) 􏽢κecu (a)≠P∧􏽢κaname(a) ∈ readgC,􏽮 recvgC, loseCntgC}

⇒ λP(a) ≔ ε
(3) 􏽢κecu(a)≠P∧􏽢κaname(a) � sendgC⇒λP(a)≔ (sendgC,

bus, 􏽢κmackey(a),􏽢κmsgid (a),􏽢κmsg(a),􏽢κcnt(a))

Agents’ Initial Knowledge-e agents’ initial knowledge
captures the constraints and assumptions that we know to
hold for our system. If not specified otherwise, the properties
refer to ω ∈WgCnt.

Prop. A1. A receive action on bus is always preceded by the
corresponding send action that writes the message onto the
bus. Obviously, the parameter values of mackey, msgid, msg
and cnt in b and σ(b) are identical (we forgo the formal
specification of this statement). -e only actions that can
happen in between are readgC, recvgC and loseCntgC actions
by ECUs other than sender and receiver. Formally:

For all b ∈ ΣgCnt with 􏽢κaname � recvgC holds

(1) precWgCnt
(σ(b), b)

(2) ∀v ∈Φ(WbCnt, σ(b){ }, b{ })∀a ∈ alph(v): 􏽢κecu(a) �

􏽢κecu(σ(b))∨ 􏽢κaname(a) � sendgC⇒a � pre1(v) � σ(b)

and􏽢κecu (a) � 􏽢κecu(b)⇒a � suf1(v) � b

Prop. A2. Only members of ECUgC own and can use key.
Since Eve does not own this key and honest ECUs use only key
to generate and verify aMAC, theMAC key contained in a send
or receive action being equal to the ECU’s key and this being
equal to key is equivalent to the ECUbeingmember ofECUgC.
∀a ∈ alph(ω) : 􏽢κaname(a) ∈ sendgC, recvgC􏽮 􏽯⇒ (􏽢κmackey

(a) � 􏽢κecukey(a) � key⇔ 􏽢κecu(a) ∈ ECUgC).

Prop. A3. A recvgC action performed by an honest ECU (i.e.
a member of ECUgC ) must be preceded by the respective
send action of an agent having generated the MAC, i.e.
owning the key used for MAC generation:

∀ecu∈ECUgC: precWgCnt
( (sendgC,ecu′,ecukey′,􏽮 ecucnt′,

prevcnt′,bus,mackey,msgid,msg, cnt)|ecukey′�mackey �

key},(recvgC,ecu,ecukey,ecucnt,prevcnt, bus,mackey, msgid,

msg,cnt))
Again, obviously, the parameter values of mackey,

msgid,msg and cnt in b and the send action are identical.

Prop. A4. -e parameter prevcnt of an action performed by
an honest ECU denotes the local message counter the ECU
has used in its previous action. For the very first action of an
ECU it is defined as the minimal value (which we assume
without loss of generality to be equal to 1) of bCnt.
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∀a∈alph(ω):􏽢κecu ∈ECUgC⇒􏽢κprevcnt(a)�􏽢κecucnt(prevact
(a, 􏽢κecu (a), ω)). If for all ai∈ω with actCnt(ai,ω)<actCnt
(a,ω) holds 􏽢κecu(ai)≠ 􏽢κecu(a), it follows 􏽢κprevcnt(a)�1.

Prop. A5. FvM is the only ECU that sends synchronization
messages. It does not perform any other action.
∀a ∈ alph(ω): 􏽢κecu (a) � FvM⇔ 􏽢κaname(a) � sendgC∧

􏽢κmsgid(a) � sync∧􏽢κecucnt(a) � 􏽢κmsg(a).

Prop. A6. It is obvious that synchronization messages in-
cluding a wrong (i.e. too small) counter value open possi-
bilities for all kinds of attacks. Hence we assume that a
synchronization message sent by FvM always contains the
correct counter value according to Definition 8.
∀x ∈ pre (ω): 􏽢κecu (suf1(x)) � FvM⇒ 􏽢κmsg(suf1(x)) �

corCntgC(suf1(x), x).

Prop. A7. When an honest agent different to FvM receives
(i.e. accepts) a synchronization message, it verifies that the
message’s payload (which contains the counter) is greater
than the local counter used in its previous action and then
sets its local counter to the value of the message counter:
∀a ∈ alph(ω): 􏽢κaname(a) � recvgC ∧ 􏽢κecu(a) ∈ ΕCUgC\

FvM{ }⇒ 􏽢κmsg(a) � 􏽢κecucnt(a)≥ 􏽢κprevcnt(a) + 1.

Prop. A8. An honest agent other than FvM only sends
functional messages. When doing so, it increments the counter
used in its previous action by 1, uses this value as its new local
counter value and as the value of cnt for MAC generation.
∀a∈alph(ω):􏽢κaname(a)�sendgC∧􏽢κecu(a)∈ΕCUgC\ FvM{ }

⇔ 􏽢κmsgid(a)�fmsg∧􏽢κecucnt(a)�􏽢κcnt(a)�􏽢κprevcnt(a)+1.

Prop. A9. When an honest agent different to FvM receives
(i.e. accepts) a functional message, it verifies that the mes-
sage’s counter is greater than the local counter used in its
previous action and then sets its local counter to the value of
the message counter:
∀a ∈ alph (ω): 􏽢κaname (a) � recvgC∧􏽢κecu(a) ∈ ΕCUgC\

FvM{ }⇒ 􏽢κcnt(a) � 􏽢κecucnt(a)≥ 􏽢κprevcnt(a) + 1.

Prop. A10. An important property of the generic counter
system GenCnt is that an ECU increases its counter value only
in case it has received and accepted a message with a bigger
counter value. Hence an action readgC by an honest ECU does
not change ecu’s local counter value: ∀a ∈ alph (ω): 􏽢κaname
(a) � readgC∧􏽢κecu(a) ∈ ΕCUgC⇒ 􏽢κecucnt(a) � 􏽢κprevcnt(a)

Prop. A11. An action loseCntgC performed by an honest
ECU resets the ECU’s counter value to a value smaller than
the correct one:
∀x ∈ pre(ω): 􏽢κaname (suf1(x)) � loseCntgC∧􏽢κecu(suf1

(x)) ∈ ΕCUgC ⇒ 􏽢κecucnt(suf1(x))< corCntgC(suf1(x), x)

Prop. A12. When an honest ECU performs two recvgC

actions with its local genCnt value of the first one being
bigger than or equal to the local genCnt value of the second
one, it must have performed a loseCntgC action in between.

For ω � x1 . . . xk, 1≤ i< l< j≤ k, if 􏽢κaname(xi) � 􏽢κaname
(xj) � recvgC and 􏽢κecu(xi) � 􏽢κecu(xj) ∈ ΕCUgC and 􏽢κecucnt
(xi)≥ 􏽢κecucnt(xj) then there exists xl ∈ alph(ω) with 􏽢κaname
(xl) � loseCntgC and 􏽢κecu(xl) � 􏽢κecu(xi) � 􏽢κecu(xj).

-is concludes our systemmodel specification. In the next
section, we will show that the model allows certain states
which violate a property that can be used for the specification
of authenticity, immediacy and non-repeatability.

5.2. Formal Verification of the Generic Counter Concept.
As stated in Section 2.5, the security requirements the generic
counter system (denoted by BgCnt) shall satisfy are data origin
authenticity, immediacy and non-repeatability. More pre-
cisely, an honest ECU shall accept onlymessages authentically
generated and sent by another honest ECU, thus providing
data origin authenticity. Further, the message must contain
the correct counter which ensures that no counter is accepted
twice (since the correct counter is strictly monotonically
increasing), thus providing non-repeatability. In order to
express this, we use the phase classΦ(σ(b), WgCnt) as defined
in Definition 9 with b being a recvgC action. Each time an
honest ecu receives a message, the message must authentically
for ecu have been sent by a member of the same group, and
this send action must be the one to trigger ecu’s recvgC action
b, i.e. must be the start action σ(b) of the phase class de-
termined by b. Since the time period between sending and
receivingmessages on a CAN bus is very short, we can assume
that it never exceeds the specified limit which implies im-
mediacy. -is can be formalized as follows:

Theorem 1. Let ω ∈ BgCnt and b ≔ ( recvgC, ecu, ecukey,

ecucnt, prevcnt, bus,mackey,msgid,msg, cnt) ∈ alph (ω)

with ecu ∈ E CUgC. 0en the following property holds:

authWiPhase􏼒 sendgC, ecu′, ecukey′, ecucnt′,􏼐􏽮

prevcnt′, bus,mackey,msgid,msg, cnt􏼁|ecu′ ∈ ECUgC􏽯,

b, ecu,Φ(σ(b), WgCnt) 􏼓

(5)

Proof 1. Assume one of the honest ECUs different to FvM that
is member of the group receives (i.e. accepts) a message.
Without loss of generality assume it is ECUgC

1 ∈ ECUgC and
b ≔ (recvgC,ECUgC

1 , ecukey, ecucnt, prevcnt, bus,mackey,

msgid,msg, cnt) ∈ alph(ω) for some ω ∈ BgCnt. By definition,
λECUgC

1
keeps this action, thus b is also contained in each x ∈

λ− 1
ECUgC

1
(λECUgC

1
(ω)). Further, b is contained in ω ∈ BgCnt

⊆WgCnt. So let x ∈ λ− 1
ECUgC

1
(λECUgC

1
(ω))∩WgCnt arbitrarily

chosen. Since ECUgC
1 ∈ ECUgC, Prop.A2 implies that

ecukey � mackey � key. Further, by Prop.A3, there is an ac-
tion a1 ≔ (sendgC, ecu1, ecukey1, ecucnt1, prevcnt1 , bus,
mackey, msgid,msg, cnt) ∈ alph(x) before ECUgC

1 ’s receive

Security and Communication Networks 11



action containing the same message, message ID and counter
value and with ecukey1 � mackey � key. Applying again
Prop.A2 it follows ecu1 ∈ ΕCUgC. Hence the message received
in b has authentically for ECUgC

1 been sent by a member of
ΕCUgC, i.e. data origin authenticity is satisfied.

-erefore ecu1 � FvM and msgid � sync (Prop.A5) or
ecu1 � ECUgC

2 and msgid � fmsg (Prop.A8) (we disregard the
fact that in principle ECUgC

1 could itself be the originator of this
message and assume this issue to be addressed by e.g. unique
message IDs). By Prop.A1 b is preceded by σ(b) � (sendgC,

ecu′, ecukey′, ecucnt′, bus,mackey,msgid,msg, cnt) that
starts the phase class identified by b. By definition, the local
view of ECUgC

1 does not reveal the sender, hence assume
ecu′ ≠ ecu1 and σ(b)≠ a1, i.e. assume that the authentic action
a1 is not performed in the required phase class. Assume further
that after having performed their respective last actions before
a1 (denoted by a2 and a3, respectively), ecu1 and ECUgC

1 are
synchronized, i.e. own the same counter which is the correct
one for these actions. Let us assume ECUgC

1 performs a3, ecu1
performs a2 and 􏽢κecucnt(a2) � 􏽢κecucnt(a3) � k � corCntgC

(a2, x) � corCntgC(a3, x).
Assume ecu1 � ECUgC

2 and 􏽢κmsgid(a1) � fmsg. -en
Prop.A8 implies 􏽢κecucnt(a1) � 􏽢κprevcnt(a1) + 1 � 􏽢κcnt(a1).
Since a2 is the last action of ecu1 before a1, Prop.A4 implies
that 􏽢κprevcnt(a1) � 􏽢κecucnt(a2). Prop.A3 implies cnt � 􏽢κcnt(b)

� 􏽢κcnt(a1) and it follows 􏽢κcnt(a1) � 􏽢κecucnt(a1) � 􏽢κecucnt
(a2) + 1 � k + 1. -is situation, depicted in Table 2 , is the
basis for the subsequent case-by-case analysis (note that it is
irrelevant whether a3 precedes a2 or vice versa). □

5.2.1. Losing the counter. Assume that ECUgC
1 receives the

message sent by ecu1 in a1 by performing an action a4 (i.e.
σ(a4) � a1). -en 􏽢κcnt(a4) � 􏽢κcnt(a1) � k + 1 (Prop.A1) and
Prop.A9 implies 􏽢κecucnt(a4) � 􏽢κcnt(a4) � k + 1. Prop.A9 also
requires 􏽢κecucnt(a4)≥ 􏽢κprevcnt(a4) + 1. -is is the case, as by
Prop.A4 we can conclude 􏽢κprevcnt(a4) � 􏽢κecucnt(a3) and thus
k + 1 � 􏽢κecucnt(a4)≥ 􏽢κecucnt(a3) + 1 which by the assumption
of ECUgC

1 and ecu1 being synchronized before a1 is equal to
􏽢κecucnt(a2) + 1 � k + 1, hence 􏽢κecucnt(a4) � k + 1≥ k + 1 is
satisfied. Since with action b, ECU1 receives and accepts
cnt � k + 1, Prop.A12 implies that ECUgC

1 performs an action
a5 ≔ (loseCntgC,ECUgC

1 , ecucnt5, prevcnt5, bus) between a4
and b, and Prop.A11 implies that ecucnt5 is smaller than the
correct counter value for this action which in turn is equal to or
bigger than 􏽢κcnt(a5) � k + 1. Assume that between a4 and a5
there have been k′ send actions by members of ECUgC other
than ECUgC

1 with correct counters, increasing its value to k +

1 + k′ without changing ECUgC
1 ’s counter value (e.g. because it

does not perform any action other than a5 between a4 and b). It
follows ecucnt5 < corCntgC(a5, x) � k + 1 + k′. On the other
hand, in bECUgC

1 receives and accepts themessage sent in σ(b)

with the counter cnt � k + 1. So assuming ECUgC
1 ’s loseCntgC

action a5 to be its last action before b, Prop.A4 and Prop.A9
imply k + 1 � 􏽢κcnt(b) � 􏽢κecucnt(b)≥ 􏽢κprevcnt(b)+ 1 � ecucnt5.
Both inequalities are satisfied for ecucnt5 ≤ k + 1 − 1 � k.-us
ECUgC

1 may very well receive and accept the message sent in
σ(b) by ecu′ ∉ ECUgC.

-e resulting sequence of actions is depicted in Table 3.
While it satisfies data origin authenticity, it violates im-
mediacy, assuming that only the time period between
writing a message onto the bus and reading it does not
exceed the specified limit. It also violates non-repeatability as
the message sent in a1 is accepted twice.

It is not surprising that counter loss without timely
synchronization opens up attack possibilities. -e same
result can be shown in case ecu1 � FvM sends a synchro-
nization message in a1. We then need to consider the fact
that between a2 and a1, ECU

gC
2 may have sent n messages

that increase the correct counter of a1 accordingly. Further,
instead of applying Prop.A8 we need to take into account
that the counter is sent as themessage’s payload, i.e. modeled
by the parameter msg, and apply Prop.A5.

We will now investigate whether sending of synchroni-
zation messages prohibits the above described attack. Assume
therefore that with the loseCntgC action ECUgC

1 sets its local
genCnt value to k′′ < k + 1 + k′ and that between the
loseCntgC action and b, ECUgC

1 receives one or more syn-
chronization messages with a6 being the last one before b.
Since cnt � k + 1 is the counter accepted by ECUgC

1 in b and
since the counter sent in a synchronization message is
contained in its payload, 􏽢κmsg(a6) � msg6 ∈ [k″ + 1, k]. As-
sume further these are the only messages sent on the bus.
-en again by Prop.A4 and Prop.A7, cnt� k +1� 􏽢κcnt(b) �

􏽢κecucnt(b)≥􏽢κprevcnt(b) +1� 􏽢κecucnt(a6) +1� 􏽢κmsg(a6) +1�

msg6 +1≥k″ +2 which implies k″≤msg6 − 1≤k +1 − 2
� k − 1. According to Prop.A1, a6 is preceded by an action
σ(a6) in which the synchronization message received by
ECUgC

1 is written to the bus.-e property further implies that
between σ(a6) and a6, ECU

gC
1 does not perform any further

action, hence σ(a6) happens after ECU
gC
1 ’s loseCntgC action

and in particular after a1. Recall now that we have assumed k

to be the correct counter value of both a2 and a3 and that
􏽢κcnt(a1) � k +1. If 􏽢κecu(σ(a6)) was FvM, Prop.A6 would
imply 􏽢κmsg(σ(a6))≥k +1+1� k +2. Yet what ECUgC

1 accepts
in a6 is msg6≤k +1 − 1� k. -us 􏽢κecu(σ(a6))≠FvM and since
by Prop.A8 an honest agent other than FvM only sends
functional messages, it follows 􏽢κecu(σ(a6)) �Eve.

While by Prop.A3, a6 is preceded by an action a7 ≔
(sendgC, FvM, . . . , sync, . . .msg6, . . .), this does not neces-
sarily interfere with the attack we are constructing here,
assuming that ECUgC

1 does not receive (i.e. accept) this
message but only performs a readgC action which does not
change its local counter. -is attack is illustrated in Table 4.

-is attack uses an important characteristic of the ge-
neric counter system GenCnt, captured in Prop.A10: It
causes ECUgC

1 to keep the too small and thus incorrect
counter since it does not correctly receive and accept the
synchronization messages sent by FvM between a5 and b.
-e attack again violates immediacy and non-repeatability.

5.2.2. Not losing the counter. Let us now consider the case in
which ECUgC

1 only performs readgC actions between a3 and b

and in particular does not perform an action a4, i.e. does not
receive and accept the message sent by ecu1 in a1. As above, by
Prop.A1 and Prop.A3 we know 􏽢κcnt(a1) � 􏽢κcnt (b) � 􏽢κcnt
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(σ(b)). Since by Prop.A10 a readgC action does not change
ECUgC

1 ’s counter, consecutive application of Prop.A4 to the
sequence of these readgC actions implies 􏽢κprevcnt(b) � 􏽢κecucnt
(a3) and by Prop.A9 it follows k + 1 � cnt � 􏽢κcnt(b) � 􏽢κ
ecucnt(b)≥ 􏽢κprevcnt(b) + 1 � 􏽢κecucnt (a3) + 1 � k + 1. -is
equation is always satisfied which means that there is no
contradiction to 􏽢κecu(σ(b)) � ecu′ ≠ ecu1. -erefore this se-
quence (illustrated in Table 5) is another example for violation
of immediacy based on invalidation and replay of messages.

Note that it does not violate non-repeatability as themessage is
only received and accepted once.

-e only case in which the desired properties hold is if by
performing a4, ECU

gC
1 receives and accepts the message sent

in a1 and does not lose the correct counter value, i.e. does not
perform a loseCntgC action between a4 and b. In this case
ECUgC

1 sets its local counter 􏽢κecucnt(a4) to k + 1 (Prop.A9)
and without losing the correct counter will not accept the
same counter in action b anymore, as 􏽢κprevcnt(b) � 􏽢κecucnt

Table 2: Developing possible sequences

a3 last action by ECUgC
1 before a1 􏽢κecucnt(a2) � k (k is correct counter)

a2 last action by ecu1 before a1 􏽢κecucnt(a3) � k

⋮
no actions by ECUgC

1 and ecu1
⋮
a1 (sendgC, ecu1, ecukey, ecucnt1, prevcnt1, bus,mackey,msgid,msg, cnt) ecucnt1 � prevcnt1 + 1 � 􏽢κecucnt(a2) + 1 � k + 1 � cnt
⋮
σ(b) (sendgC, ecu′, ecukey′, ecucnt′, prevcnt′, bus,mackey,msgid,msg, cnt) cnt � k + 1 by Prop.A1
b (recvgC,ECUgC

1 , ecukey, ecucnt, prevcnt, bus,mackey,msgid,msg, cnt) ecucnt � cnt � k + 1

Table 3: A first attack sequence.

a3 action by ECUgC
1 􏽢κecucnt(a2) � k

a2 action by ecu1 􏽢κecucnt(a3) � k

⋮
no actions by ECUgC

1 and ecu1
⋮

a1 (sendgC, ecu1, ecukey, ecucnt1, prevcnt1, bus,mackey,msgid,msg, cnt) ecucnt4 � cnt � k + 1
􏽢κecucnt(a2) + 1 � k + 1 � cnt

a4 (recvgC,ECUgC
1 , ecukey, ecucnt4, prevcnt4, bus,mackey,msgid,msg, cnt) ecucnt4 � cnt � k + 1

⋮
a5 (loseCntgC,ECUgC

1 , ecucnt5, prevcnt5, bus) ecucnt5 < k + 1 + k′
⋮

no action by ECUgC
1

⋮
σ(b) (sendgC, ecu′, ecukey′, ecucnt′, prevcnt′, bus,mackey,msgid,msg, cnt) cnt � k + 1
b (recvgC,ECUgC

1 , ecukey, ecucnt, prevcnt, bus,mackey,msgid,msg, cnt) ecucnt � cnt � k + 1

Table 4: -e second possible attack sequence.

a3 action by ECUgC
1 􏽢κecucnt(a2) � k

a2 action by ecu1 􏽢κecucnt(a3) � k

⋮
no actions by ECUgC

1 and ecu1
⋮
a1 (sendgC, ecu1, ecukey, ecucnt1, prevcnt1, bus,mackey,msgid,msg, cnt) ecucnt1 � prevent1 + 1 �

􏽢κecucnt(a2) + 1 � k + 1 � cnt
a4 (recvgC,ECUgC

1 , ecukey, ecucnt4, prevcnt4, bus,mackey,msgid,msg, cnt) ecucnt4 � cnt � k + 1
⋮
a5 (loseCntgC,ECUgC

1 , ecucnt5, prevcnt5, bus) ecucnt5 < k + 1 + k′
⋮
a7 (sendgC, FvM, . . . , sync, . . . ,msg6, . . . , )

a8 (readgC,ECUgC
1 , . . . , ecucnt8, prevcnt8, sync, . . . ,msg6, . . .) ecucnt8� prevcnt8� ecucnt5

⋮

σ(a6) (sendgC,Eve, . . . , sync, . . . ,msg6, . . . , ) msg6 ∈ [k″ + 1, k + 1 − 1]

a6 (recvgC,ECUgC
1 , ecukey, ecucnt6, prevcnt6, . . . , sync, . . . ,msg6, . . . , )

ecucnt6� msg6 ≤ k + 1 − 1
prevent6 � ecucnt8 � k″
∧msg6 ≥ k″ + 1

σ(b) (sendgC, ecu′, ecukey′, ecucnt′, prevcnt′, bus,mackey,msgid,msg, cnt) cnt � k + 1
b (recvgC,ECUgC

1 , ecukey, ecucnt, prevcnt, bus,mackey,msgid,msg, cnt) ecucnt � cnt � k + 1
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(a4) � k + 1 and thus 􏽢κcnt(b) � k + 1≯􏽢κprevcnt(b) � k + 1 as
is required by Prop.A9.

Our proof indicating possible attacks is based on the fact
that certain messages are not received but only read by
ECUgC

1 . -is can easily be accomplished by an attacker with
the abilities described in Section 2.2. All she has to do is to
monitor the respective message and then invalidate it and all
following ones related to the relevant counter by changing a
CRC bit or overwriting the message with an error frame.
-is will cause all ECUs connected to the bus to reject the
messages. Since readgC actions do not change the ECUs’
local counter, any message containing a bigger counter will
still be considered correct.

In Section 7.1 we will discuss the results achieved by the
proof and compare them to the formal proofs of the bus
counter-based system to be introduced in the next section.

6. Formalization and Verification of BusCount

In this section, we introduce the formal model and verifi-
cation of our hardware-based counter approach.

6.1. 0e Formal Bus Counter Model. We model the bus
counter-based system (denoted by BusCnt henceforth) as
similar as possible to the generic counter model. One im-
portant difference is that it does not need a central freshness
value master since all ECUs send synchronization messages
simultaneously. Hence the set of agents is defined as PbCnt �

ECUbC ∪ Eve{ } with ECUbC ≔ ECUbC
1 ,ECUbC

2 ,ECUbC
3􏽮 􏽯.

As in GenCnt, the BusCnt system has only one bus bus �

bus all agents are being connected to. Further, members of
ECUbC are honest and own the key key, while Eve, not being
member of this group, does not own this key. We use the
same set of action parameters, but a different specification of
agents’ behavior (after all, we model a different system). -e
set of actions ΣbCnt is defined as follows:

(i) (sendbC, ecu, ecukey, ecucnt, prevcnt, bus,mackey,

msgid,msg, cnt) denotes a send action as described
in Section 5.1.1, except that the counter value cnt is
covered by the MAC but not transmitted. As in the
GenCnt model, the message may be altered (by a
technical error or by Eve) after having been sent and
may thus only cause a readbC action (see below).

(ii) (readbC, ecu, ecukey, ecucnt, prevcnt, bust, mackey,

msgid,msg, cnt) denotes agent ecu ∈ PbCnt reading
a message without processing it afterwards. In
contrast to the respective readgC action of the
GenCnt model, the readbC action of the BusCnt
model changes the state of an ecu being member of
ECUbC by decrementing its local bCnt value (stored
with the last action and thus modeled by the pa-
rameter prevcnt) (see Prop.B13 in Section 6.1.1
below). -is captures the fact that ecu reacts to the
“start of message” bit on bus but discards the re-
spective message (e.g. because the CRC verification
fails) in which case it does not perform the receive
action. Note that the sender of a message always
reads its own action bey performing a readbC action.

(iii) (recvbC, ecu, ecukey, ecucnt, prevcnt, bus, mackey,

msgid,msg, cnt) denotes the successful reception
and processing of a message by ecu ∈ PbCnt.

(iv) As in the GenCnt system, with (loseCntbC, ecu,

ecucnt, prevcnt, bus) we model the fact that ecu ∈
PbCnt has lost the correct counter value for some
reason and thus is no longer synchronized. Since in
the BusCnt system counter values decrease, its
counter is set to a value bigger than the correct
counter value (see Section 6.1.1 for more details).

6.1.1. Agents’ Local View and Initial Knowledge. Again, the
agents’ local view is defined analogously to the generic counter
model: All agents see their own actions completely and see the
messages sent on the CAN bus they are connected to but
cannot see who sent them nor the values of parameters stored
locally by the sender. Further, agents cannot see actions
readbC, recvbC and loseCntbC performed by other agents.

As already pointed out in Section 5.1.3, with specifying
the agents’ initial knowledge we capture the characteristics
of our system. In the following, we list all properties we
assume to be satisfied by the agents’ initial knowledge WbCnt

with reference to the respective property in Section 5.1.3 (if
any) in which case we omit the formalization. Analogously
to Section 5.1.3, if not specified otherwise, the properties
refer to ω ∈WbCnt. We denote the correct counter for a
specific action a in ω by corCntbC(a,ω). In Lemma 2 (see
Section 6.2) we will show how its value is determined.

Table 5: -e third possible attack sequence.

a3 action by ECUgC
1 􏽢κecucnt(a2) � k

a2 action by ecu1 􏽢κecucnt(a3) � k

⋮
only readgC actions by ECUgC

1
⋮
a1 (sendgC, ecu1, ecukey, ecucnt1, prevcnt1, bus,mackey,msgid,msg, cnt) ecucnt1 � prevcnt1 + 1 �

􏽢κecucnt(a2) + 1 � k + 1 � cnt⋮
only readgC actions by ECUgC

1
⋮
σ(b) (sendgC, ecu′, ecukey′, ecucnt′, prevcnt′, bus,mackey,msgid,msg, cnt) cnt � k + 1

b (recvgC,ECUgC
1 , ecukey, ecucnt, prevcnt, bus,mackey,msgid,msg, cnt) ecucnt � cnt � prevcnt + 1 �

􏽢κecucnt(a2) � k + 1
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Prop. B1 (analogous to first statement of Prop.A1). A readbC

and recvbC action, respectively, on bus is always preceded by
the corresponding send action that writes the message onto
the bus. Obviously, the parameter values of mackey,msgid,

msg and cnt in b and σ(b) are identical (we forgo the
formalization of the latter statement).

For all b ∈ ΣbCnt with 􏽢κaname ∈ readbC, recvbC􏼈 􏼉 holds
precWbCnt

(σ(b), b).

Prop. B2 (Prop.A2). Only members of ECUbC own and can
use key � key. Since Eve does not own this key and honest
ECUs use only key to generate and verify a MAC, the MAC
key contained in a send or receive action being equal to key �

key is equivalent to the ECU being member of ECUbC.

Prop. B3 (Prop.A3).A recvbC action performed by an honest
ECU (i.e. a member of ECUbC ) must be preceded by the
respective send action of an agent having generated the
MAC, i.e. owning the key used for MAC generation. Again,
obviously, the parameter values of mackey,msgid,msg and
cnt in b and σ(b) are identical.

Prop. B4 (Prop.A4). -e parameter prevcnt of an action
performed by an honest ECU denotes the local bCnt value as
result of the ECU’s previous action. For the very first action
of an ECU it is defined as the maximal value of bCnt,
denoted by bCntmax. Formally:
∀a ∈ alph(ω): 􏽢κprevcnt(a) � 􏽢κecucnt (prevact(a, 􏽢κecu(a),

ω)) . If for all ai ∈ ω with actCnt(ai,ω)< actCnt(a,ω) holds
􏽢κecu(ai)≠ 􏽢κecu(a), it follows 􏽢κprevcnt(a) � bCntmax.

Prop. B5. In Section 7.2.2 we will discuss which starting
value of bCnt to choose in order to avoid counter overflow.
Further, as explained in Section 2.2, we assume that memory
failures and attacks cannot cause counter overflow. Hence
we can assume that such a failure never results into a local
counter value stored by an ECU being smaller than the
correct one (see Prop.B17 below). For our formal model we
assume that the local counter value of ECUs is always
sufficiently large such that counter decrementation can
result into the value 0 only in the last phase class of an action
sequence. Formally:
∀a ∈ alph(ω): 􏽢κprevcnt(a)> 0

Prop. B6 (analog to Prop.A8).When an honest ECU sends a
synchronization message, it includes as its message payload
the local bCnt value of its previous action decremented by 1
but does not change the local bCnt value.
∀a ∈ alph(ω): 􏽢κaname (a) � sendbC∧􏽢κecu(a) ∈ ECUbC∧

􏽢κmsgid(a)� sync⇒ 􏽢κmsg(a) � 􏽢κprevcnt(a) − 1∧􏽢κecucnt(a) �

􏽢κprevcnt (a).

Prop. B7. We assume that there always exists an ECU
owning the correct counter value. Since our synchronization
concept utilizes the mechanism used for collision resolving
(a 0 written to the CAN bus always overwrites a 1), the
correct counter always overwrites any incorrect one.
-erefore a sendbC action containing a synchronization

message that is actually performed by an honest ECU always
contains the correct counter. Formally:

a ∈ alph(ω)∧􏽢κaname (a) � sendbC∧􏽢κecu(a) ∈ ECUbC

∧􏽢κmsgid(a) � sync⇒ 􏽢κmsg(a) � corCntbC(a,ω).

Prop. B8. When monitoring a synchronization message
being written to the bus, an honest ECU decrements its
previously used counter value by 1 and verifies that the result
is less or equal to the counter sent as the message’s payload.
-e error frame parameter being equal to no indicates that
this check has been successful (and that the MAC check that
we do not formalize explicitly has been successful as well). It
then uses this value as its new local counter.
∀a ∈ alph(ω): 􏽢κaname(a) ∈ readbC,recvbC􏼈 􏼉 ∧􏽢κecu(a) ∈

ECUbC∧􏽢κmsgid(a) � sync∧􏽢κerrorFrame(a) � no⇒􏽢κecucnt(a) �

􏽢κmsg (a)≤􏽢κprevcnt(a) − 1.
While a is actually a recvbC action, our proofs do not

depend on distinguishing between readbC and recvbC actions
of synchronization messages.

Prop. B9 (analog to Prop.A8).When an honest ECU sends a
functional message, it includes as its counter value the local
bCnt value of its previous action decremented by 1 but does
not change the local bCnt value. (It changes the value of
ecucnt with the action of reading its own message that the
ECU performs simultaneously to sending, see Prop.B10 and
Prop.B13.)
∀a ∈ alph(ω): 􏽢κaname(a) � sendbC∧􏽢κecu(a) ∈ ECUbC∧

􏽢κmsgid(a) � fmsg ⇒ 􏽢κcnt (a) � 􏽢κprevcnt(a) − 1∧􏽢κecucnt(a) �

􏽢κprevcnt(a).

Prop. B10 (analog to Prop.A9). When an honest ECU re-
ceives and accepts a functional message, it decrements its
previously used counter value by 1 and verifies that the
message’s cnt value is equal to the result. It then sets its local
bCnt value ecucnt to the message’s counter.
∀a ∈ alph(ω): 􏽢κaname(a) � recvbC ∧ 􏽢κecu(a) ∈ ECUbC∧

􏽢κmsgid(a) � fmsg⇒ 􏽢κecucnt(a) � 􏽢κcnt(a) � 􏽢κprevcnt(a) − 1.

Prop. B11. All honest ECUs, when reading a message, check
the message’s MAC, independently of whether or not they
accept it. In case of a functional message, this involves the
ECU’s local counter, more concretely the counter value used
by the ECU in its previous action decremented by 1. If such a
check succeeds which is a necessary condition for the error
frame being set to no, this value is the one that was used to
generate the message’s MAC. Note that this assumes that an
attacker that owns the correct counter and a MAC cannot
guess the corresponding message.

Let s ∈ alph(ω) with 􏽢κaname(s) � sendbC and v ∈ Φ(s,

WbCnt). -en the following holds:
∀b ∈ a{ ∈ alph(v)|􏽢κaname(a) ∈ readbC,recvbC􏼈 􏼉∧􏽢κecu (a)

∈ECUbC∧􏽢κmsgid(a) � fmsg}: 􏽢κerrorFrame(b) � no⇒􏽢κcnt(b) �

􏽢κecucnt(b) � 􏽢κprevcnt(a) − 1.
Note that in our very simple model with only one type of

functional message, a successful check indicated by
errorFrame � no actually results into a recvbC action.
However, considering also readbC actions with errorFrame �

no allows to extend the model with respect to more types of
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functional messages without having to change the
assumptions.

Prop. B12. As explained in Section 3, if an ECU’s checks
concerning for example a message’s MAC fails and it
therefore writes an error-frame, all other ECUs join in and
write an error-frame as well, no matter whether or not their
checks failed. Hence all readbC and recvbC actions induced by
a specific sendbC action have the same value for the pa-
rameter errorFrame. Since a message is only received and
accepted if all checks have been successful, the error frame of
a recvbC action is always set to no. Formally:

Let s ∈ alph(ω) with 􏽢κaname(s) � sendbC and v ∈ Φ(s,

WbCnt). Let further R(v) ≔ b ∈ alph(v)|􏽢κaname(b) ∈􏼈

readbC, recvbC􏼈 􏼉} denote the readbC and recvbC actions in v.
-en for all bi, bj ∈ R(v) the following holds:

􏽢κerrorFrame(bi) � 􏽢κerrorFrame(bj) and 􏽢κaname(bi) � recvbC

⇒ 􏽢κerrorFrame(bi) � no.

Prop. B13 (in contrast to Prop.A10). When an honest ECU
reads a message, it always decrements its previously used
bCnt value by 1 and uses the result as its new local bCnt
value. -is behavior is independent of whether or not its
checks fail, i.e. independent of the errorFrame value.
Formally:
∀a ∈ alph(ω): 􏽢κaname(a) � readbC∧ 􏽢κecu(a) ∈ ECUbC

⇒ 􏽢κecucnt(a) � 􏽢κprevcnt(a) − 1.

Prop. B14. In a phase class Φ(s, WbCnt) with 􏽢κaname(s) �

sendbC (i.e. a phase class that starts with a specific sendbC

action and ends with the next sendbC action, see Definition
9), all honest ECUs including the sender either read or
receive the message or perform a loseCnt action.-ey do not
perform any other action.

Let s ∈ ΣbCnt with 􏽢κaname(s) � sendbC and v maximal in
Φ(s, WbCnt). -en for all ecu ∈ ECUbC exists exactly one
c ∈ alph(v) such that 􏽢κecu(c) � ecu and 􏽢κaname(c) ∈ readbC,􏼈

recvbC, loseCntbC}.

Prop. B15 (analog to Prop.A6). In every phase class
Φ(s, WbCnt) with 􏽢κaname(s) � sendbC there is an honest ECU
owning the correct counter and performing a read or recvbC

action in this phase class, but no loseCnt action. Here,
owning the correct counter means that the ECU has used
and stored the correct counter value in its previous action
and can thus use it in the next action.

Let s ∈ alph(ω) with 􏽢κaname(s) � sendbC. -en for all v

maximal in Φ(s, WbCnt) exists an action b ∈ alph(v) with
􏽢κaname(b) ∈ read, recv{ },ECU∗(s) ≔ 􏽢κecu(b) ∈ ECUbC and
􏽢κprevcnt(b) � corCntbC(b,ω) + 1.

Prop. B16 (analog to Prop.A12). If an ECU is not syn-
chronized at a specific action, i.e. does not use the correct
counter relevant for this action, it must have performed an
action loseCntbC before. Note that using a counter value
refers to the parameter prevcnt.

∀a ∈ alph(ω): 􏽢κprevcnt(a) − 1≠corCntbC (a,ω)⇒ ∃a′ ∈
alph(ω): 􏽢κaname(a′) � loseCntbC∧􏽢κecu(a′) � 􏽢κecu(a)∧actCnt
(a′,ω)<actCnt(a,ω)

Prop. B17 (analog to Prop.A11). As explained in Prop.B5,
memory failures never result into decrease of the counter
value stored by an ECU. -is implies that an action
loseCntbC performed by an honest ECU resets the ECU’s
counter to a value bigger than the correct one. For formal
reasons we assign a counter value higher than the maximal
value the system starts with to a loseCnt action if it is the first
action of an action sequence.
∀a ∈ alph(ω):

(1) a≠ pre1(ω)∧􏽢κaname(a)

� loseCnt∧􏽢κecu(a) ∈ ECUbC⇒
􏽢κecucnt(a)> corCntbC(a,ω).

(2) a � pre1(ω)∧􏽢κaname(a) � loseCnt∧􏽢κecu(a) ∈ ECUbC

⇒ 􏽢κecucnt(a) � bCntmax + 1

Analogously to Section 5.1.2 we model immediacy and
non-repeatability by the phase class Φ(σ(b), WbCnt) as de-
fined in Definition 9 determined by a fixed but arbitrary
recvbC action b. In the following section we will show that
BusCnt satisfies both properties.

6.2. Formal Proof of bCnt System. -e idea of the BusCnt
system is that counter values included in the MACs of sent
messages are strictly monotonically decreasing (instead of
strictly monotonically increasing as in the GenCnt system).
However, in contrast to the GenCnt system, in BusCnt each
send action inevitably induces a readbC or recvbC action and
thus a decrement of the counter, no matter whether or not a
check failed. In case a system does not suffer any anomalies (i.e.
all actors act correctly and counter value change is never caused
by physical irregularities), the counter used by the ECUs is
always the correct one. Lemma 2 will show how it is deter-
mined. For its proof we need the following technical Lemma:

Lemma 1. Let ω ∈Wcor
bCnt ≔ ω ∈WbCnt|􏼈 􏽢κecu(a) ∈ ECUbC∧

􏽢κaname(a)≠ loseCnt for all a ∈ alph(ω)}. Let further S(ω)

≔ a ∈ alph(ω)|􏽢κaname(a) � sendbC}􏼈 with actCnt(si,ω)<
actCnt(s(i+k),ω) for all si, si+k ∈ S(ω)(i, k ∈ N). 0en for all
b ∈ alph(ω) with 􏽢κaname(b) ∈ readbC, recvbC􏼈 􏼉 the following
holds:

1. 􏽢κmsgid(b) � fmsg⇒ 􏽢κecucnt(b) � 􏽢κcnt(b)

2. 􏽢κmsgid(b) � sync⇒ 􏽢κecucnt(b) � 􏽢κmsg(b)

Proof 2. If 􏽢κaname(b) � recvbC, the assertions follow directly
by Prop.B10 and Prop.B12 together with Prop.B8, respec-
tively. Let now 􏽢κaname(b) � readbC. We show the assertions
of this case by induction over the number of consecutive
phase classes Φ(si, Wcor

bCnt).

Induction basis: i � 1. Consider v ∈ Φ(s1, Wcor
bCnt) and

b ∈ alph(v). Let 􏽢κmsgid(b) � fmsg and assume
􏽢κecu(s1) � 􏽢κecu(b). -en Prop.B13 and Prop.B4 imply
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􏽢κecucnt(b) � 􏽢κprevcnt(b) − 1 � 􏽢κecucnt(s1) − 1. Further, by
Prop.B1, 􏽢κcnt(b) � 􏽢κcnt(s1). Now by Prop.B9,
􏽢κcnt(s1) � 􏽢κprevcnt(s1) − 1 � 􏽢κecucnt(s1) − 1. Together
this leads to 􏽢κcnt(b) � 􏽢κecucnt(s1) − 1 � 􏽢κecucnt(b).

Assume now 􏽢κecu(b)≠ 􏽢κecu(s1). Since Prop.B1 requires a
send action before any readbC or recvbC action and since s1 is
the first send action inω, there is no other action inω before s1.
Prop.B14 implies that b is the first 􏽢κecu(b) ∈ Ω􏽢κprevcnt(b) �

bCntmax and thus Prop.B13 implies 􏽢κecucnt(b) � 􏽢κprevcnt(b)−

1 � bCntmax − 1. s1 being the first action in ω, it is the first
action of 􏽢κecu(s1) as well and Prop.B4 implies 􏽢κprevcnt(s1) �

bCntmax. By Prop.B9 it follows 􏽢κcnt(s1) � 􏽢κprevcnt(s1) − 1 �

bCntmax − 1. Further, by Prop.B1, 􏽢κcnt(b) � 􏽢κcnt(s1). Together
we can conclude 􏽢κcnt (s1) � 􏽢κcnt(s1) � bCntmax − 1� 􏽢κecucnt(b).

In case 􏽢κmsgid(b) � sync, we can argue analogously by
replacing every occurrence of 􏽢κcnt by 􏽢κmsg and applying
Prop.B6 instead of Prop.B9.

Induction hypothesis: For v ∈ Φ(si, Wcor
bCnt) and b ∈

alph(v), let assertions 1 and 2 hold.
Induction step: Consider v ∈ Φ(si+1, Wcor

bCnt), b ∈ alph(v)

with 􏽢κaname(b) ∈ readbC, recvbC􏼈 􏼉 and 􏽢κmsgid(b) � fmsg. First
we again assume 􏽢κecu(b) � 􏽢κecu(si+1). b being a readbC action,
Prop.B13 implies 􏽢κecucnt(b) � 􏽢κprevcnt(b) − 1 which by
Prop.B4 and Prop.B14 is equal to 􏽢κecucnt(si+1) − 1. Further,
by Prop.B9, 􏽢κcnt(si+1) � 􏽢κprevcnt(si+1) − 1 and 􏽢κecucnt(si+1) �

􏽢κprevcnt(si+1). Since Prop.B1 implies 􏽢κcnt(si+1) � 􏽢κcnt(si+1), it
follows 􏽢κcnt(b) � 􏽢κprevcnt(si+1) − 1 � 􏽢κecucnt(si+1) − 1
� 􏽢κecucnt(b).

Assume now 􏽢κecu(b)≠ 􏽢κecu(si+1). As above, Prop.B13
implies 􏽢κecucnt(b) � 􏽢κprevcnt(b) − 1. Since by Prop.B14 all
ECUs perform a readbC or recvbC action in the previous
phase class Φ(si, Wcor

bCnt) (loseCntbC actions are excluded by
definition), this holds in particular for 􏽢κecu(b) and 􏽢κecu(si+1).
Hence for all maximal v′ inΦ(si, Wcor

bCnt) there exist readbC or
recvbC actions b′ ∈ alph(v′) performed by 􏽢κecu(b) and
a ∈ alph(v′) performed by 􏽢κecu(si+1), being the previous
actions of 􏽢κecu(b) and 􏽢κecu(si+1), respectively. Prop.B4 im-
plies 􏽢κecucnt(b) � 􏽢κprevcnt(b) − 1 � 􏽢κecucnt(b′) − 1 which by
induction hypothesis is equal to 􏽢κcnt(b′) − 1. -is in turn is
equal to 􏽢κcnt(si) − 1 � 􏽢κcnt(a) − 1 by Prop.B1. Again by
induction hypothesis, the latter expression is equal to
􏽢κecucnt(a) − 1. Prop.B4 implies equality to 􏽢κprevcnt(si+1) − 1
which by Prop.B9 is equal to 􏽢κcnt(si+1). Prop.B1 finally
implies equality to 􏽢κcnt(b), hence 􏽢κcnt(b) � 􏽢κecucnt(b).

Again, in case 􏽢κmsgid(b) � sync, the analogous proof is
achieved by replacing every occurrence of 􏽢κcnt by 􏽢κmsg and
applying Prop.B6 instead of Prop.B9. □

Lemma 2. Let Wcor
bCnt and S(ω) as defined in Lemma 1. Let

further ω ∈Wcor
bCnt and a ∈ alph(ω). 0en the following holds:

1. 􏽢κmsgid(a) � fmsg⇒􏽢κcnt(a) � bCntmax − card( s ∈{ S(ω)|

actCnt(s,ω)≤actCnt(a,ω)})≥0
2. 􏽢κmsgid(a) � sync⇒􏽢κmsg(a) � bCntmax − card( s ∈ S{ (ω)

|actCnt(s,ω)≤actCnt(a,ω)})≥0

Further, for all si− 1, si ∈ S(ω) (i.e. with actCnt(si− 1,

ω)< actCnt(si,ω) and i ∈ N, i≥ 2) holds

(i) 􏽢κmsgid(si− 1)�􏽢κmsgid(si)�fmsg⇒􏽢κcnt(si)�􏽢κcnt(si− 1)− 1
(ii) 􏽢κmsgid(si− 1)�􏽢κmsgid(si)�sync⇒􏽢κmsg(si)�􏽢κmsg(si− 1)

− 1
(iii) 􏽢κmsgid(si− 1) � fmsg∧􏽢κmsgid(si) � sync ⇒ 􏽢κmsg(si) �

􏽢κcnt (si− 1) − 1
(iv) 􏽢κmsgid(si− 1) � sync∧􏽢κmsgid(si) � fmsg ⇒ 􏽢κcnt(si) �

􏽢κmsg(si− 1) − 1

Note that item 1 implies that the parameter cnt of actions
concerning a functional message never reaches the value 0
unless there occur no more sendbC actions after the action a.
-e analogous statement holds for the parameter msg of
actions concerning synchronization messages.

Proof 3. We prove assertions 1 and 2 by induction over the
length l ∈ N of a word ω ∈Wcor

bCnt.

Induction basis: l � 1, i.e. ω � a1. Since Prop.B1
requires a sendbC action before any readbC or recvbC

action, a1 cannot be a readbC or recvbC action. Since
further by definition ω does not contain any loseCnt
action, 􏽢κaname(a1) � sendbC. Prop.B4 implies
􏽢κprevcnt(a1) � bCntmax. If 􏽢κmsgid(a1) � fmsg, by
Prop.B9 it follows 􏽢κcnt(a1) � 􏽢κprevcnt(a1) − 1 �

bCntmax − 1 � bCntmax − card( s ∈ S(a1)􏼈 |actCnt(s,

a1)≤ actCnt(a1, a1)}). Further, by Prop.B5
􏽢κprevcnt(a1) � bCntmax > 0 which implies 􏽢κprevcnt(a1)

− 1 � bCntmax − 1≥ 0. -us item 1 holds for ω � a1
containing a functional message. If on the other hand
􏽢κmsgid(a1) � sync, by Prop.B6 it follows
􏽢κmsg(a1) � 􏽢κprevcnt(a1) − 1 which as above implies
the assertion, thus item 2 holds for ω � a1.
Induction hypothesis: Let ωi � a1 . . . ai(i≥ 2, i ∈ N).
-en for all a ∈ alph(ωi) holds:

(1) 􏽢κmsgid(a) � fmsg⇒􏽢κcnt(a) � bCntmax − card( s ∈{

S(ωi) |actCnt(s,ωi)≤actCnt(a,ωi)})≥0
(2) 􏽢κmsgid(a) � sync⇒􏽢κmsg(a) � bCntmax − card( s∈ S{

(ωi) |actCnt(s,ωi)≤actCnt(a,ωi)})≥0
Induction step: Consider ωi+1 ≔ a1 . . . aiai+1.
(1) Assume 􏽢κaname(ai+1) � sendbC. By Prop.B14 and
the fact that ωi+1 does not contain any loseCntbC ac-
tions, it follows that ai is a recvbC or readbC action.-is
in turn is preceded by a sendbC action σ(ai) (see
Prop.B1). So we have ωi+1 � a1 . . . σ(ai) . . . aiai+1
(σ(ai) may ormay not be equal to a1). Let vi amaximal
word in Φ(σ(ai), Wcor

bCnt), i.e. vi starts with σ(ai) and
ends with ai+1, and all other actions in between are
readbC and recvbC actions, the last one being ai. By
Prop.B1, for all these readbC and recvbC actions
b ∈ alph(vi) holds 􏽢κcnt(b) � 􏽢κcnt(σ(ai)) � 􏽢κcnt(ai).
Since all ECUs perform exactly one readbC or recvbC

action in vi, there is exactly one recvbC or readbC action
b∗ ∈ alph(vi) performed by ecu∗ ≔ 􏽢κecu(ai+1), being
the last action performed by ecu∗ before ai+1.

(a) Assume 􏽢κmsgid(ai+1) � fmsg. If 􏽢κmsgid(b∗) � fmsg
as well, Lemma 1 implies 􏽢κecucnt(b∗) � 􏽢κcnt(b∗).
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Since ai+1 contains a functional message, Prop.B9
implies 􏽢κcnt(ai+1) � 􏽢κprevcnta(i+1) − 1 � 􏽢κecucnt
(b∗) − 1 � 􏽢κcnt(b∗) − 1. By Prop.B1 this is equal
to 􏽢κcnt(σ(ai)) − 1 � 􏽢κcnt(ai) − 1. Prop.B1 also
implies 􏽢κmsgid(ai) � 􏽢κmsgid(b∗) � fmsg, hence by
induction hypothesis it follows 􏽢κcnt(ai+1) � 􏽢κcnt
(ai) − 1 � bCntmax − card( s ∈ S(ωi+1)|􏼈 actCnt
(s,ωi+1) ≤ actCnt(ai,ωi+1)}) − 1. Finally, since
ai+1 is the sendbC action directly following ai,
􏽢κcnt(ai+1) � bCntmax − card s ∈ S(ωi+1)|actCnt􏼈

(s,ωi+1)≤ actCnt(ai+1,ωi+1)}. Further, since 􏽢κcnt
(ai+1) � 􏽢κprevcnt(ai+1) − 1 and by Prop.B5
􏽢κprevcnt(ai+1)> 0, it follows 􏽢κcnt(ai+1)≥ 0.
If on the other hand 􏽢κmsgid(b∗) � sync, Lemma 1
implies 􏽢κecucnt(b∗) � 􏽢κmsg(b∗). Using Prop.B9,
we can then deduce 􏽢κcnt(ai+1) � 􏽢κecucnt(b∗) − 1 �

􏽢κmsg(b∗) − 1 which by Prop.B1 is equal to
􏽢κmsg(ai) − 1. As above, the assertion follows.

(b) Assume 􏽢κmsgid(ai+1) � sync. In this case we can use
Prop.B6 to deduce 􏽢κmsg(ai+1) � 􏽢κprevcnt(ai+1) − 1. If
􏽢κmsgid(b∗) � fmsg, the rest of the proof is identical to
the case where this is combined with a functional
message of ai+1, if 􏽢κmsgid(b∗) � sync, the arguments
regarding ai+1 being a synchronization message apply.
-is ends the proof for the case 􏽢κaname(ai+1) � sendbC.

(2) Assume 􏽢κaname(ai+1) ∈ readbC, recvbC􏼈 􏼉. -en
Prop.B1 implies that there is an action σ(ai+1) which
is either equal to ai or occurs before ai.
(a) Let σ(ai+1) � ai. By Prop.B1 it follows
􏽢κcnt(ai+1) � 􏽢κcnt(ai), 􏽢κmsg(ai+1) � 􏽢κmsg(ai) and
􏽢κmsgid(ai+1) � 􏽢κmsgid(ai). Since ai is the last send
action before the recvbC/readbC action ai+1, the
number of send actions before these two actions
including ai is identical, i.e.
card( s ∈ S(ωi+1)|actCnt(s,ωi+1)􏼈 ≤actCnt(ai,ωi+1)})

� card( s ∈ S(ωi+1)|actCnt􏼈 (s,ωi+1)≤actCnt (ai+1,

ωi+1)}). If 􏽢κmsgid(ai) � fmsg, the induction hypothesis
implies 0≤􏽢κcnt(ai) � bCntmax − card( s ∈ S{ (ωi+1)|

actCnt(s,ωi+1)≤actCnt(ai,ωi+1)}) � bCntmax − card
( s ∈ S(ωi+1)|actCnt(s,ωi+1)≤􏼈 actCnt(ai+1,ωi+1)})

� 􏽢κcnt(ai+1). If 􏽢κmsgid(ai) � sync, the induction hy-
pothesis implies 0≤􏽢κmsg(ai) � bCntmax − card( s{

∈ S(ωi+1)|actCnt(s,ωi+1)≤actCnt(ai, ωi+1)}) �

bCntmax − card( s ∈ S(ωi+1)|actCnt􏼈 (s,ωi+1)≤actCnt
(ai+1,ωi+1)}) � 􏽢κmsg (ai+1).
(b) Let σ(ai+1) � : a′ with actCnt (a′,ωi+1)> actCnt
(ai,ωi+1). -en Prop.B14 and the fact that ωi+1 does
not contain any loseCntbC actions implies that ai is a
readbC or recvbC action. Again, by Prop.B1 it follows
􏽢κcnt(ai) � 􏽢κcnt(σ(ai)) � 􏽢κcnt(σ(ai+1)) � 􏽢κcnt(ai+1)

and the equivalent equations for the parameters msg
and msgid. Now we can again conclude that the
number of send actions before ai is identical to those
before ai+1 and as above, by induction hypothesis for
the cases 􏽢κmsgid(ai) � fmsgid and 􏽢κmsgid(ai) � sync,
respectively, it follows the assertion. -is concludes
the proof of assertions 1 and 2.

We now prove assertions (i)–(iv) of the Lemma. So as-
sume the first statement holds regarding functional messages.
-en it holds in particular for two consecutive sendbC actions
si− 1 and si in a word ω ∈Wcor

bCnt, each sending a functional
message. -en 􏽢κcnt(si) � bCntmax − card( s ∈ S{

(ω)|actCnt(s,ω)≤ actCnt(si,ω)}) � bCntmax − (card ( s ∈{

S(ω)|actCnt(s,ω)≤ actCnt(si− 1,ω)}) +1) � bCntmax − card
( s∈ S(ω)|actCnt(s,ω)≤{ actCnt(si− 1,ω)})− 1 � 􏽢κcnt (si− 1)−

1. -e only difference between a sendbC action s containing a
synchronization message and one containing a functional
message is that the value bCntmax minus the cardinality of
sendbC actions happening before s and including s is assigned
to the counter of s in the first case and to the message of s in
the second case. Hence, the respective statements for all other
combinations of synchronization and functional sendbC ac-
tions can be shown analogously. □

-e above Lemma uses properties that describe the
behavior of honest agents when sending, receiving or
reading a message and shows the resulting counter value.
-is behavior does not depend on whether or not any in-
volved send action is performed by an honest ECU. Hence
the counter value included in actions of sequences in Wcor

bCnt

can be considered the correct one for actions in WbCnt.

Definition 10. For ω ∈WbCnt and a ∈ alph(ω) we define

corCntbC(a,ω) ≔ bCntmax − card( s ∈ S(ω)|actCnt(s,ω){

≤ actCnt(a,ω)}).

(9)

We now consider WbCnt again and first show a Lemma
whose important statement is that a synchronization mes-
sage received by an ECU never contains a counter smaller
than the correct one for this action. In general the Lemma
states that an honest ECU owning the correct counter before
processing a readbC or recvbC action (denoted by the pa-
rameter prevcnt of the action), also owns the correct counter
afterwards (denoted by the parameter ecucnt).

Lemma 3. Let ω ∈WbCnt and a ∈ alph(ω). 0en the fol-
lowing holds:

􏽢κaname(a) ∈ readbC, recvbC􏼈 􏼉∧􏽢κprevcnt(a)

� corCntbC(a,ω) + 1⇒ 􏽢κecucnt(a) � corCntbC(a,ω).

(10)

Proof 4. Assume 􏽢κaname(a)�readbC.-en by Prop.B13 􏽢κecucnt
(a)�􏽢κprevcnt(a)− 1�corCntbC(a,ω)+ 1− 1�corCntbC (a,ω).
-e same follows by Prop.B10 for a being a recvbC action of a
functional message. So let 􏽢κaname(a)�recvbC and
􏽢κmsgid(a)�sync. Prop.B12 implies 􏽢κerrorFrame(a)�no and thus
by Prop.B8 it follows 􏽢κecucnt(a)≤􏽢κprevcnt(a)− 1� corCntbC

(a,ω)+1− 1. In case of 􏽢κecucnt(a)�􏽢κprevcnt(a)− 1 the assertion
holds. So let 􏽢κecucnt(a)<􏽢κprevcnt(a)− 1, i.e. 􏽢κecucnt(a)<
corCntbC(a,ω). Prop.B16 implies that before a, 􏽢κecu(a)

performs a loseCnt action a′ and by Prop.B17, if a′≠pre1(ω),
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it follows 􏽢κecucnt(a′)>corCntbC(a′,ω). For simplicity we
assume that a′ is the last action of 􏽢κecu(a) in ω before a. By
Prop.B14, every ECU performs only one action per phase
class, hence a′ happens in the phase class Φ(s′,WbCnt) that
ends with σ(a), i.e. in the phase class directly occuring before
the one including a. Lemma 2 implies that
corCntbC(a′,ω)�corCntbC(a,ω)+1. So we have
corCntbC(a,ω)+1�􏽢κprevcnt(a)�􏽢κecucnt(a′)>corCntbC (a′,ω)�

corCntbC(a,ω)+1. -is constitutes a contradiction, hence
􏽢κecucnt(a)�corCntbC(a,ω) holds. In case a′ is not the previous
action of 􏽢κecu(a), we can argue analogously.

Let a′ � pre1(ω). Since a′ is the first action and not a
sendbC action, Lemma 2 implies corCntbC(a′,ω) � bCntmax.
As above, we have corCntbC(a,ω) + 1 � 􏽢κprevcnt(a) � 􏽢κecucnt
(a′) which by Prop.B17 is equal to bCntmax + 1 �

corCntbC(a′,ω) + 1. -is implies corCntbC(a,ω) �

corCntbC(a′,ω). However, since σ(a) happens before the
recvbC action a (and after the loseCntbC action a′), by
Lemma 2 corCntbC(a) � bCntmax − 1≠ bCntmax � corCntbC

(a′,ω). So again this constitutes a contradiction, hence
􏽢κecucnt(a) � corCntbC(a,ω) always holds. □

We can now prove our main-eorem. As in Section 5.2,
the property we want to prove is that whenever an honest
ECU receives and accepts a message (action b), the sendbC

action σ(b) having triggered b and starting the phase class
determined by b must have authentically for the ECU been
performed by an agent beingmember of the same group, and
the message must contain the correct counter. In contrast to
the proof regarding the GenCnt system, for the BusCnt
system (formally denoted by BbCnt) we can show that this
property is always satisfied, i.e. that both immediacy and
non-repeatability hold.

Theorem 2. Let ω ∈ BbCnt and b ≔ (recvbC, ecu, ecukey,

ecucnt, prevcnt, bus, mackey,msgid,msg, cnt) ∈ alph(ω) with
ecu ∈ ECUbC. 0en the following property holds:

authWiPhase send, ecu′, ecukey′, ecucnt′, prevcnt′, bus,mackey,msgid,msg, cnt( 􏼁|ecu′ ∈ ECUbC􏼈 􏼉, b, ecu,Φ σ(b), WbCnt.( 􏼁

(11)

Proof 5. Analogously to Section 5.2, without loss of gen-
erality we assume ECUbC

1 ∈ ECUbC to perform a receive
action b ≔ (recvbC,ECUbC

1 , ecukey, ecucnt, prevcnt, bus,
mackey,msgid,msg, cnt) ∈ alph(ω) and consider an arbi-
trary x ∈ λ− 1

ECUbC
1

(λECUbC
1

(ω))∩WbCnt (which by definition of
λECUbC

1
and BbCnt ⊆WbCnt contains b). Since

ECUbC
1 ∈ ECUbC, by Prop.B2 it follows

mackey � key � ecukey. Further, by Prop.B3 there is an
action a1 ≔ (sendbC, ecu1, ecukey1 , ecucnt 1, prevcnt1
, bus,mackey,msgid,msg, cnt) ∈ alph(x) before the receive
action b by ECUbC

1 containing the samemessage ID, message
and counter value and with ecukey1 � mackey. Again by
Prop.B2 it follows ecu1 ∈ ECUbC which proves that the
message received in b has authentically for ECUbC

1 been
generated and sent by a member of ECUbC.

Further, by Prop.B1 the receive action b by ECUbC
1 is

preceded by a send action σ(b) � (sendbC, ecu′, ecukey′,
ecucnt′, prevcnt′, bus,mackey,msgid,msg, cnt) triggering b.

Let v maximal inΦ(σ(b), WbCnt) with b ∈ alph(v). Since
􏽢κaname(b) � recvbC, Prop.B12 implies 􏽢κerrorFrame(b) � no and
thus 􏽢κerrorFrame(c) � no for all c ∈ alph(v) with 􏽢κaname(c)

∈ readbC, recvbC􏼈 􏼉. By Prop.B15 one of the actions readbC,

recvbC in v is performed by an ECU owning the correct
counter, i.e. there exists c∗ ∈ alph(v) with 􏽢κaname(c∗)

∈ readbC, recvbC􏼈 􏼉,ECU∗(σ(b)) ≔ 􏽢κecu(c∗) ∈ ECUbC,

􏽢κerrorFrame(c∗) � no and 􏽢κprevcnt(c∗) � corCntbC(c∗, x) + 1.
Lemma 3 implies 􏽢κecucnt(c∗) � corCntbC(c∗, x). Recall that
Prop.B1 and Prop.B3 imply that the values of the parameters
msg,msgid and cnt in a1, σ(b), b and c∗ are identical.

(1) Assume 􏽢κmsgid(c∗) � fmsg and assume further that
when sending the message, ecu1 is synchronized, i.e.

includes the correct counter as the message’s counter
value. By Prop.B9 it follows 􏽢κcnt(a1) � 􏽢κprevcnt(a1)

− 1 � corCntbC(a1, x). Since all readbC and recvbC

actions in v have errorFrame � no, Prop.B11 implies
􏽢κcnt(c∗) � 􏽢κecucnt(c∗), hence 􏽢κcnt(c∗) � corCntbC(c∗,

x). It follows 􏽢κcnt(σ(b)) � 􏽢κcnt(a1) � 􏽢κcnt(c∗) �

corCntbC(c∗, x). Now if a1 ≠ σ(b), the number of
sendbC actions until a1 is smaller than the number of
sendbC actions until σ(b). Since by Lemma 2 the
correct counter minus any number of sendbC actions
is always bigger or equal to 0, it follows that the
correct counter for σ(b) is different to the one for a1.
More specifically, it is smaller, i.e.
corCntbC(σ(b), x)≤ corCntbC(a1, x) − 1. Further,
again by Lemma 2, the number of send actions
having occurred until σ(b) is equal to those having
occurred until a readbC or recvbC action induced by
σ(b), i.e. corCntbC(σ(b), x) � corCntbC(c∗, x). -is
implies 􏽢κcnt(a1) � 􏽢κcnt(σ(b))

� 􏽢κcnt(c∗) � corCntbC(c∗, x) � corCntbC(σ(b), x)≤
corCntbC(a1, x) − 1. -is constitutes a contradiction
to our assumption that ecu1 is synchronized in a1
and sends 􏽢κcnt(a1) � corCntbC(a1, x). -us
a1 � σ(b).

(2) Assume 􏽢κmsgid(c∗) � sync and ecu1 is synchronized
which by Prop.B7 implies that it sends the correct
counter as the message’s payload, i.e. 􏽢κmsg(a1) �

corCntbC(a1, x). Further, c∗ being a readbC or recvbC

action with 􏽢κerrorFrame(c∗) � no, Prop.B8 implies
􏽢κecucnt(c∗) � 􏽢κmsg(c∗)≤ 􏽢κprevcnt(c∗) − 1. Hence it
follows corCntbC(c∗, x) � 􏽢κecucnt(c∗) � 􏽢κmsg(c∗)≤
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􏽢κprevcnt(c∗) − 1 � corCntbC(c∗, x) and thus 􏽢κmsg(c∗)

� corCntbC(c∗, x). Assume a1 ≠ σ(b). As above,
Lemma 2 implies corCntbC(σ(b), x)≤ corCntbC

(a1, x) − 1 and corCntbC(σ(b), x) � corCntbC

(c∗, x). Since by Prop.B1 􏽢κmsg(a1) � 􏽢κmsg(σ(b)) �

􏽢κmsg(c∗), it follows corCntbC(a1, x) � 􏽢κmsg(a1) �

􏽢κmsg(c∗) � corCntbC(c∗, x) � corCntbC(σ(b), x)≤
corCntbC(a1, x) − 1. -is again constitutes a con-
tradiction, thus it follows a1 � σ(b).

(3) Assume ecu1 is not synchronized in a1. By Prop.B16 it
has performed an action loseCntbC before a1, denoted
by a2. If a2 ≠ pre1(x), by Prop.B17, 􏽢κecucnt(a2) is set to
a value bigger than the action’s correct counter value:
􏽢κecucnt(a2)> corCntbC(a2, x). If a2 � pre1(x),
Prop.B17 implies 􏽢κecucnt(a2) � bCntmax + 1>
corCntbC(a2, x) as well. Assume for simplicity that
ecu1 ’s next action after a2 is a1. -en 􏽢κprevcnt(a1)

� 􏽢κecucnt(a2)> corCntbC(a2, x). Let 􏽢κmsgid(a1) �

fmsg. -en by Prop.B9, 􏽢κcnt(a1) � 􏽢κprevcnt(a1) − 1 �

􏽢κecucnt(a2) − 1> corCntbC(a2, x) − 1. Now a1 is the
first sendbC action after a2 since a sendbC action in
between would imply another action by ecu1
(Prop.B14). Lemma 2 implies corCntbC(a2, x)−

1 � corCntbC(a1, x). Hence ecu1 not being syn-
chronized results into 􏽢κcnt(a1)> corCntbC(a1, x). If
a2 is not ecu1 ’s last action before a1 we can argue
analogously only with a longer sequence of actions
and counters in between a2 and a1 to consider, being
decreased step by step. By Prop.B1 􏽢κcnt(a1) � 􏽢κcnt
(σ(b)) � 􏽢κcnt(c∗) always holds. Hence corCntbC

(a1, x)< 􏽢κcnt(c∗) � 􏽢κcnt(a1). By Lemma 2 and the
definition of corCntbC, corCntbC(σ(b), x) � corCntbC

(c∗, x), and since ECU∗ owns the correct counter in
c∗, by Prop.B15 it follows 􏽢κprevcnt(c∗) � corCntbC

(c∗, x) + 1 and Lemma 3 implies 􏽢κecucnt(c∗) �

corCntbC(c∗, x). Together these statements imply
corCntbC(σ(b), x) � 􏽢κecucnt(c∗). Further, Lemma 2
implies corCntbC(a1, x)≥ corCntbC(σ(b), x), no
matter whether or not a1 and σ(b) are identical.
Hence 􏽢κecucnt(c∗) � corCntbC(σ(b), x)≤ corCntbC

(a1, x) and therefore 􏽢κecucnt(c∗)≤ corCntbC(a1,

x)< 􏽢κcnt(c∗). Prop.B11 implies 􏽢κerrorFrame(c∗) � yes,
and by Prop.B12 it follows 􏽢κerrorFrame(b) � yes and
therefore 􏽢κaname(b)≠ recvbC, a contradiction to the
assumption we started the proof with. Hence
corCntbC(a1, x) � 􏽢κcnt(a1) in the case of 􏽢κmsgid(a1)

� fmsg.
If 􏽢κmsgid(a1) � sync, we can decude
􏽢κerrorFrame(b) � yes and thus the same contradiction
by exchanging the parameter cnt by msg and ap-
plying Prop.B6 instead of Prop.B9 to deduce
􏽢κmsg(a1)> corCntbC(a1, x). Further, Lemma 2 im-
plies 􏽢κmsg(a1) � 􏽢κmsg(σ(b)) � 􏽢κmsg(c∗) and it follows
􏽢κmsg(c∗)> corCntbC(a1, x). With the same argu-
ments as above, this implies 􏽢κmsg(c∗)> 􏽢κecucnt(c∗).
Prop.B8 implies 􏽢κerrorFrame(c∗) � yes and again by by
Prop.B12 it follows 􏽢κerrorFrame(b) � yes and therefore

􏽢κaname(b)≠ recvbC. So again the assumption of ecu1
not being synchronized leads to a contradiction.-is
concludes our proof.

-e above, proof shows that our approach indeed sat-
isfies data origin authenticity as well as immediacy and non-
repeatability. In contrast, the generic counter system violates
the latter ones. In the next section, we will discuss the se-
curity related differences in more detail. We will then in-
troduce our proof of concept implementation showing its
practicability and design decisions that substantiate our
formal proof. □

7. Evaluation

In this section, we will evaluate both the security and the
practicability of our bus counter approach. More specifically,
in the next section we will discuss the formal proof results
concerning the satisfaction of the security requirements
immediacy and non-repeatability by the generic and the
BusCnt system, respectively, and highlight the differences. In
Section 7.2 we will then demonstrate the feasibility of our
BusCnt approach based on a practical implementation and
discuss design decisions.

7.1. Security Aspects. One fundamental difference between
our approach and the generic counter-based approach is that
in the BusCnt system the pulse generator is an integral
component of the system itself:-e very writing onto the bus
causes a change of the local bus counter values of all ECUs
connected to it as they inevitably read (part of) the message
(even if not accepting it) and decrement their counters. By
this read action, the message’s counter and thus its MAC is
invalidated. Hence, any subsequent message written onto
the bus must use a smaller counter in order to be accepted.
-is prohibits message delay and replication.

Another important aspect is the assignment of com-
putations to the controller that in traditional CAN com-
munication systems is processed by the application layer.
-is concerns in particularMAC calculation and verification
and checks regarding the size of the message’s counter.
Performing these checks on controller level enables to use
the error frame mechanism of CAN in case of a failed check
which in return results in invalidation of the respective
message and prevention of its acceptance by any of the ECUs
connected to the same bus.

-ese two aspects together allowed to formally prove
that the BusCnt system satisfies both immediacy and non-
repeatability, provided at least one of the ECUs owns the
correct counter. -e inevitable decrease of the counter value
with every new message prohibits message delay, and the
checks performed by the controllers allow immediate in-
validation of any manipulated message.

One of the core assumptions of our proof is the cor-
rectness of at least one counter value in the bus network. It
is based on two observations: First, ECUs are designed to be
safe and thus hardware or software failures occur signifi-
cantly less often compared to regular PC hardware. Second,
an incorrect counter value may be the result of the
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shutdown process, as an ECU may not be able to store the
counter value in time to persistent storage. However, the
likelihood for this failure to occur is reduced in our ap-
proach since only a single value per bus needs to be stored.
In contrast, traditional counter-based approaches use
various counters for different types of messages. Moreover,
a bus has a large number of ECUs connected to it and only
one needs to store the correct counter value at the end of a
ride. -erefore, the probability that our assumption does
not hold is insignificant.

On the other hand, an ECU not being synchronized, i.e.
not owning the correct counter, may in principle cause a
safety problem: If it sends a functional message, MAC
verification by ECUs owning the correct counter will fail and
result into an error frame. If the ECU itself receives a
functional message containing the correct counter, its own
MAC verification will fail and cause an error frame as well.
Too many error frame events will cause the ECU to change
into an inactive state. -is safety problem can be minimized
by adequate synchronization approaches as discussed in
Section 7.2.2 below.

In contrast to the BusCnt system, our proof of the ge-
neric counter-based approach indicates that it exhibits
several weaknesses. First, it cannot ensure immediacy and
non-repeatability (neither of synchronization nor of func-
tional messages) in case an ECU loses its counter. Once
being active again the ECU will accept any replayed message
whose counter is still in the required range (i.e. bigger than
its own counter). -is violates immediacy, assuming that
only the period between writing a message onto the bus and
reading it does not exceed a specified limit. It also violates
non-repeatability since the attack is possible even if the
replayed message has already been accepted before.

-e counter synchronization mechanism of GenCnt
does not prohibit this attack as synchronization messages
themselves are susceptible to delay attacks, i.e. recorded and
then invalidated by an attacker by destroying their CRC or
by interrupting the message with an error frame. -ese
messages will then not be accepted by the ECUs with the
consequence that an unsynchronized ECU cannot be syn-
chronized. It will therefore accept delayed synchronization
and functional messages at any later point in time the at-
tacker chooses for a replay, thus violating immediacy.
Hence, the synchronization mechanism of the generic
counter-based system is no guarantee for ensuring imme-
diacy and non-repeatability.

Even if no counter loss occurs, violation of immediacy by
a delay of messages cannot be prohibited. -is is due to the
fact that the counter value stored by the intended recipients
of a message does not change as long as all messages relevant
for the respective counter are invalidated by the attacker and
thus not accepted. Consequently, the intended recipients will
accept any relayed message since it still contains a counter
being valid from their point of view.

One question that comes to mind is whether it would be
sufficient to equip the Fresh Value Manager FvM of the
GenCnt systemwith the ability to perform all security checks
by the controller in order to avoid the above-described
attacks. However, it turns out that this measure alone is not

enough. First, the FvM behavior would need to be changed
as it must increment its own local counter value with every
sent message, independently of whether or not the message
is accepted. In other words, the determination of what is the
correct counter for a message would need to be adapted to
the one used for the BusCnt system. Otherwise, the FvM
would not be able to detect the repetition of a message as it
would still consider the old counter to be correct. Since the
sender of a message that has caused an error frame normally
simply resets its counter and resends the message, the FvM
would additionally need to adjust the sender’s counter.
Secondly, the system would need to be changed to using one
single counter per bus since otherwise the FvM is not able to
assign an error frame to the counter used in a message that
has been interrupted before writing the message ID to the
bus. All these changes result in a system that is in some of its
main aspects equivalent to the BusCnt system.

-ere are some assumptions in our proof regarding the
satisfaction of immediacy and non-repeatability by the
BusCnt system that need to be substantiated by specific
design decisions. -is concerns for example the size of the
counter that must prohibit overflow. In the BusCnt system,
an attacker can accelerate the pulse generator by inserting
messages onto the bus. Independently of being accepted,
they will cause the connected ECUs to decrement their
counters faster than they normally would. However, in
Section 7.2.2 below, we discuss the counter length necessary
to avoid counter overflow even in the presence of such an
attack and show how this length can be implemented in
praxis. Other assumptions concern storage errors that we
assume never to result in a counter being smaller than the
correct one as this could lead to counter overflow as well.
-is is an issue for all counter-based approaches, adequate
measures for detection of such incidents is out of the scope
of this paper.

A final security aspect concerns the truncation of MACs
which in principle enables an attacker to construct its own
message and to determine the corresponding truncated MAC
by brute force. -is holds in particular for synchronization
messages. So if an attacker was able to construct and insert a
synchronization message containing e.g. the counter 0. . .0
with a correct MAC, it could take over the whole bus com-
munication. -is is an issue for all approaches using MAC
truncation (e.g. for AUTOSARs SecOC). As a counter-mea-
sure, we have chosen a specific number of failed synchroni-
zation messages as indicator of a brute force attack which we
deem small enough to recognize such attacks and on the other
hand big enough to not cause unnecessary dysfunction of the
bus. See Section 7.2.2 for more details on this aspect.

7.2. PracticalAspects. To evaluate the practical aspects of our
work we implemented a proof of concept of BusCount to
demonstrate the general feasibility of the mechanisms.
Moreover, we want to show the suggested approach can be
implemented at a low cost. We first introduce our devel-
opment setup and describe the design decisions before
presenting the evaluation we performed bsaed on this
implementation.
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7.2.1. Setup. For the implementation of our security en-
hanced CAN controller, we chose a low-cost FPGA
(ICE40HX8K-B-EVN) with only 7680 logic cells and a
maximum frequency of 12 MHz. -e FPGA is connected
with a CAN transceiver (MCP2561) that converts logical
CAN messages into physical signals for a CAN bus.

We used an open-source implementation1 as a basis for
our CAN controller. We extended the controller with an
SLCAN2 protocol to communicate with a connected ECU.
-e ECU is simulated by a Raspberry Pi 2B running a default
Linux SocketCAN3. -e software does not need to be
modified besides the fact that the payload is reduced by the
length of the MAC. A second FPGA with the same setup was
introduced to perform MAC verifications and synchroni-
zation tests. -e correctness of the CAN implementation
and the compatibility with regular CAN bus devices was
evaluated with a remaining bus simulation using a Vector
VN5610 in combination with CANoe v9. -e hardware
setup of our proof of concept (see Figure 5) contains:

7.2.2. Design Decisions. We decided to use a truncatedMAC
value with a size of 24 bit to be compatible with AUTOSAR
SecOC. Since CAN has a very limited message size per
package we decided to use the counter implicitly. -is re-
quires more explicit synchronizations yet does not disrupt
the system’s functionality due to the fast synchronization
mechanism of our protocol. Corresponding to the 24 bit
MAC the remaining payload of a CAN message is 40 bits.
-e counter transferred with the described synchronization
mechanism would then also be restricted to these 40 bits. A
CAN bus can transmit up to 17,543 messages per second
[36], thus a 40 bit counter suffices for about 725.4 days
(240/17, 543 · 60 · 60 · 24) of non-stop communication be-
fore an overflow occurs. An attacker may even reduce the
duration by starting CAN messages and stopping them
immediately with an error frame. -is increases the number
of messages sent by an attacker (15 bits per message)
compared to a regular sender (minimum 44 bits per mes-
sage) to about 51,459 messages per second (17, 543 · 44/15).
We consider a counter value that could overflow after only
247.3 days (240/51, 459 · 60 · 60 · 24) not sufficient in an
attack scenario, thus we increased the counter by additional
18 bits which can be transmitted using the extended message
ID of the CAN specification for synchronization messages.
-e 58 bit counter is sufficient for about 82,884.75 years
(258/51, 459 · 60 · 60 · 24 · 365). In order to counter brute
force attacks and to increase the security of the truncated
MAC we suggest renewing the key regularly by deriving it
from the current counter value.

Furthermore, we needed to make sure the synchroni-
zation cannot be attacked by a brute force attack. An attacker
may try to forge a synchronization message setting the
counter to 0 which would lead to an overflow or would
establish the number 0 as the counter value of all subsequent
messages. Since we suggest to transfer only a 24 bit MAC,
attacks cannot be prevented by the key size. For this reason
we count the number of failed synchronizations. If more

than 16 failed synchronizations during a car ride or 128
failed synchronizations in total have been detected, the
ECUs need to consider the bus no longer trustworthy and
must enable the driver to safely stop the car. -e 128
synchronizations give an attacker a 0.000977%

128
1􏼠 􏼡

224

127
􏼠 􏼡 / 224

128
􏼠 􏼡􏼠 􏼡 chance to forge a synchro-

nization message successfully. A recovery process for a car
network is out of the scope of this paper. Compared to the
generic counter-based approach, our synchronization so-
lution has the advantage that it is independent of functional
disruptions regarding a central entity (fresh value master):
Any ECU can initialize synchronization, and all ECUs join
in, sending their respective synchronization messages si-
multaneously. -is mechanism allows the synchronization
of all ECUs connected to one bus during the transmission
time of only one message.

-e bus counter-based security protocol does not change
the CAN frame and thus it can work with default CAN
controllers in one network. -e adaptation to CAN FD and
CAN XL is also possible. Further, it is compatible with
SecOC with respect to the message structure.

-e introduction of error frames in conjunction with
security checks potentially changes the safety consider-
ations of ISO26262 regarding CAN bus communication. A
CAN controller sending a message which results in an error
frame increments its error counter by 8 while receiving
controllers increment their error counter by 1. Successful
message transfer reduces the counter by 1. If an error
counter exceeds the value 128, the respective controller
changes into bus-off mode and is not able to send or
receive data anymore and a hardware reset is necessary.
However, there are only two cases that our security
mechanisms could cause a bus-off state. In the first case,
the attacker is the sender of unauthorized messages by
delay, replay, or forging of messages. In this scenario, the
attacker performs a denial of service attack which she could
also perform in every other secure or non-secure CAN BUS
by inserting error frames.-e second scenario is the startup
of a vehicle where every CAN controller is out of syn-
chronization. In the worst case, ECUs might join the
network one by one, each of them sending an error frame
caused by a failed check based on its wrong counter value,
and then initiate a synchronization. To prevent this we
suggest that after waking up and before starting to send
error frames, a CAN controller first initiates a synchro-
nization in case of an invalid message. -us, the ECU is in
sync as soon as it joins the network.

7.2.3. Performance Evaluation. -e CAN controller
implementation we adapted to work on the ICE40HX8K
consumed 4,483 of the 7,680 logic cells. -e remaining logic
cells need to be sufficient for processing a MAC algorithm,
the synchronization, and the counter mechanism.Moreover,
the MAC algorithm needs to be fast enough to calculate the
MAC during the transmission of the truncated MAC value
(24 · 4 � c). -e time consumed by the sending process is
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longer since much more bits are transmitted prior to the
truncated MAC value. Finally, the MAC algorithm needs to
calculate theMAC over at most 131 bits (58 bit counter value
+ 29 ID + 4 bit data length + 40 bit data) for classic CAN.

-e remaining 3,197 cells are not sufficient to implement
a regular cipher, like AES or HMAC with SHA2, with low
latency together with the counter and synchronization
mechanism. For this reason, we evaluated several lightweight
ciphers regarding their number of rounds, state size, and
table size. Based on these results we implemented our CAN
controller in combination with the two CBC-MAC algo-
rithms Present80 [37] and Prince [38] and the HMAC al-
gorithm SipHash [39]. All three have a block size of 64 bit, so
two blocks need to be processed at most. We evaluated the
number of cycles each algorithm needs for this task. Table 6
shows the results of our evaluation. -e number of cycles as
well as the number of logical cells needed for the CAN
controller including the different ciphers.

-e smallest (in terms of cells needed) but also the
slowest algorithm was Present80. Our implementation of
the controller with Present80 needed 5,599 logic cells and
68 cycles for two blocks. Prince only needed 30 cycles
while increasing the number of logic cells needed to 5,947.
SipHash was only slightly larger with 6,024 logic cells, but
needs only 13 cycles to compute a MAC over two blocks.
Since the security of Present80 is lower and the number of
blocks increases drastically regarding CAN FD (10 blocks
for 579 bits of authentic data) and CAN XL (258 blocks for
at most 16,466 bits of authentic data), we recommend
SipHash for a fast and size efficient MAC algorithm in our
approach. Additionally, cryptanalysises [40,41] of
SipHash did not reveal problems with this cryptographic
primitive.

8. Conclusions and Future Work

In this paper, we have presented a detailed discussion and
formal evaluation of our hardware-based approach Bus-
Count for the security protection of automotive CAN
networks. We further opposed this to the characteristics of
counter-based approaches currently being used.

-e fundamental difference between currently consid-
ered approaches and ours is that in ours the pulse generator
is an integral component of the system itself: -e very
writing onto a bus causes a change of the counter values of all
ECUs connected to it as they inevitably read the message
(even if not accepting it) and decrement their counters. Since
the number of messages sent on the bus cannot be ma-
nipulated, the correct counter value cannot be manipulated
as well. By this read action, the message’s counter and thus
its MAC is invalidated. Another important aspect is the
assignment of MAC calculation and verification and checks
regarding the size of the message’s counter to the controller.
-is enables to use the error frame mechanism of CAN
communication in case of a failed check which results in
invalidation of all messages whose MAC is not based on the
correct counter value. -ese messages will then not be ac-
cepted by any of the ECUs. Software-based approaches do
not have this possibility since they verify the MAC on

CAN controller ICE40HX8K-B-EVN
CAN transceiver MCP2561
ECU Raspberry Pi 2B
Remaining bus simulation Vector VN5610

ECUa ECUb

ICE40HX8K ICE40HX8K

MCP2561 MCP2561 VN5610

SLCAN SLCAN

RX RXTX TX

CAN high

CAN low

Figure 5: Evaluation setup for BusCount.

Table 6: Evaluation of ciphers for secure CAN controller.

Algorithm Cycles Logic cells (total)
Plain CAN controller - 4,483
SipHash [39] 13 6,024
Prince [38] 30 5,947
Present80 [37] 68 5,599
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application-level after the controller completely received the
message.

We formally proved that our bus counter approach
satisfies data origin authenticity as well as immediacy and
non-repeatability (also denoted by message freshness), both
during regular operation and in case an ECU loses its
counter. Our proof is based on the assumption that si-
multaneous loss of counter values does not occur, i.e. that
there is always at least one ECU per bus owning the correct
value. -is assumption seems appropriate, given the low
possibility of it being violated. It enables our synchroniza-
tion mechanism to take advantage of the physical charac-
teristics of a CAN bus and ensures that always the correct
counter value is sent.

On the other hand, current counter-based systems
cannot assure message freshness if an ECU loses its counter.
Immediacy is even violated in case an ECU does not lose its
counter: An attacker can invalidate all messages relevant for
a specific counter and insert them again at a later point in
time without the ECU being able to notice this manipula-
tion.-is is due to the fact that the ECU’s local counter value
only changes if it actually accepts a message.

Compared to other approaches, our bus counter
mechanism offers several practical advantages: It avoids the
necessity to include (parts of) the counter in the messages
which saves bandwidth, and it requires only one counter per
bus to be stored instead of one counter per message ID
favored by currently discussed approaches. -is reduces
both storage capacities and the risk of ECUs being
unsynchronized.

-e synchronization solution of BusCount has the ad-
vantage that it is independent of functional disruptions
regarding a central fresh value master that is being used by
other counter-based approaches: Any ECU can initialize
synchronization, and all ECUs join in, sending their re-
spective synchronization messages simultaneously. -is
mechanism allows the synchronization of all ECUs con-
nected to the same bus during the transmission time of only
one message.

It must be noted that our approach cannot be realized
with currently available ECUs. On the other hand, it does
not change the CAN frame and can thus work with default
CAN controllers in one network. It can also be adapted to
CAN FD and CAN XL and is compatible with SecOC with
respect to the message structure. Moreover, our proof of
concept implementation described in Section 7.2 shows that
our approach is not only theoretically interesting, but is
functionally working in a CAN network. However, an
implementation needs to respect a couple of considerations.
One of them is that our approach allows pulse acceleration,
hence the counter must be sufficiently long in order to
prohibit counter overflow during the lifetime of a car. We
consider 58 bits as suggested in Section 7.2.2 adequate.
Further, a concrete synchronization mechanism must for
example prohibit brute force attacks on truncated MACs of
synchronization messages and must ensure a synchronized
network as soon as possible after the startup process.

In the future, we plan to extend our attack model and
address an adversary that can manipulate devices connected

to the bus. One possible countermeasure that at least reduces
the severity of this attack is to assign specific roles to different
ECUs and to enable ECUs to authentically identify the
sender of messages. Hence, we plan to investigate how our
approach can be extended by sender authentication
mechanisms. Further, we will explore whether and how
techniques to protect the devices’ integrity can be integrated
in order to prohibit manipulation of genuine ECUs.
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[35] R. Grimm and P. Ochsenschläger, “Binding telecooperation -
a formal model for electronic commerce,” Computer Net-
works, vol. 37, no. 2, pp. 171–193, 2001.

Security and Communication Networks 25



[36] W. Voss,AComprehensible Guide to Controller Area Network.
Greenfield,Massachusetts, Copperhill Technologies Corpora-
tion, Greenfield, MA, USA, 2008.

[37] A. Bogdanov, L. R. Knudsen, G. Leander et al., “PRESENT: an
ultra-lightweight block cipher,” in Proceedings of the Cryp-
tographic Hardware and Embedded Systems - CHES 2007, 9th
International Workshop, Pascal Paillier and Ingrid Verbau-
whede, Ed., vol. 4727, pp. 450–466, Springer, Vienna, Austria,
September, 2007.

[38] J. Borghoff, A. Canteaut, T. Güneysu et al., “Prince - a low-
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