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(e rapid development in network technology has resulted in the proliferation of Internet of (ings (IoT). (is trend has led to a
widespread utilization of decentralized data and distributed computing power. While machine learning can benefit from the
massive amount of IoT data, privacy concerns and communication costs have caused data silos. Although the adoption of
blockchain and federated learning technologies addresses the security issues related to collusion attacks and privacy leakage in
data sharing, the “free-rider attacks” and “model poisoning attacks” in the federated learning process require auditing of the
training models one by one. However, that increases the communication cost of the entire training process. Hence, to address the
problem of increased communication cost due to node security verification in the blockchain-based federated learning process, we
propose a communication cost optimization method based on security evaluation. By studying the verification mechanism for
useless or malicious nodes, we also introduce a double-layer aggregation model into the federated learning process by combining
the competing voting verification methods and aggregation algorithms. (e experimental comparisons verify that the proposed
model effectively reduces the communication cost of the node security verification in the blockchain-based federated
learning process.

1. Introduction

With the continuous expansion of the scale of Internet of
(ings and the rapid development of artificial intelligence,
the amount of data generated is growing at an unprece-
dented speed. If these resources distributed in the edge of the
Internet of (ings are effectively used, this will greatly
improve the efficiency of machine learning and reduce the
cost of machine learning. (erefore, how to use the data
generated by Internet of(ings devices efficiently becomes a
hot topic. However, with the deepening of research, how to
transfer the value of data under the premise of ensuring data
security has become a key problem to be solved. On the one
hand, the centralized management of the existing Internet of
(ings may lead to data centralization, which leads to the
problem of single point failure and affects the smooth op-
eration of the whole network. On the other hand, in the
process of information transmission, due to the openness of
wireless network, wireless signals between transmission

devices are easily eavesdropping, interfering and shielding,
and being attacked by DDoS and Sybil, which will affect the
security of privacy data. In view of the above problems, the
combination of blockchain and federated learning advan-
tages and application in the field of Internet of (ings can
effectively improve the security of the Internet of (ings.

Blockchain is an emerging and rapidly developing
technology. Due to its wide commercial application, many
research directions have been formed. (rough the com-
bination of various technologies, we have obtained unique
advantages and capabilities and greatly expanded some
application fields and functions. Blockchain can effectively
integrate resources to form a perfect architecture and
promote the development of machine learning technology
[1]. Some examples include helping doctors make more
accurate diagnosis [2] and providing more humanized and
intelligent services for the Internet of (ings [3]. At present,
researches on federated learning based on blockchain are
increasing. (e main research direction in this field is to use
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blockchain to replace the central node in federated learning
and use the decentralization of blockchain to overcome the
privacy leakage and single point of failure problems caused
by the node.

In traditional scenarios, enterprises or institution
training models need to collect, store, and process a large
amount of data. (is means higher network, storage, and
computing capabilities, as well as training costs. In the
process of data transmission and sharing, the following
challenges are encountered: (i) “Data island” phenomenon,
(ii) stricter security regulations, and (iii) the data storage
capacity that cannot meet the practical application re-
quirements. To overcome these challenges, federated
learning (FL) came into being. In FL process, the training
node uses the local data set to train a local model. (en, the
training node sends the parameters of the local model to the
central coordinator, which aggregates multiple local models
to get a global model. Finally, the training node downloads
the parameters of the global model to update the local model
and then trains on the local data set again, so that n rounds of
iterations are carried out until the global model converges.
FL can cooperate with or learn in depth on the Internet of
(ings edge network to ensure data security because the data
set does not need to be migrated throughout the learning
process. However, due to the complexity of the Internet of
(ings, different edge devices show different quality and
stability in the learning process. (is leads to different re-
quirements for communication cost, privacy protection, and
resource allocation, which increases a certain bottleneck for
the wide spread of federated learning. Some researchers have
proposed some schemes, such as verification process and
algorithms, to overcome the “free-rider” and “model poi-
soning” attacks in the federated learning process. However,
the current solution needs to verify and audit all local models
one by one, which not only results in the waste of computing
power but also increases the communication cost of the
whole training process.

(e main contribution of this paper is to compare
existing verifiable federated learning frameworks based on
blockchain and propose a double-layer aggregation model
based on security evaluation to address its high commu-
nication cost. At the same time, the proposed incentive
mechanism ensures that rational workers can gain the
maximum benefit by remaining honest. (e combination
with the incentive model allows the proposed model to
reduce the communication cost of training without relying
on any heavy encryption and special hardware and to defend
against poisoning attacks and free-rider attacks.

(e rest of the paper is organized as follows. We discuss
the existing works in more detail and compare them with
our work in Section 2. (e double-layer polymerization
model based on safety evaluation is described in Section 3.
Section 4 gives the conclusion.

2. Related Works

Federated learning can train the local model and aggregate
the global model on the premise that the private data does
not leave the local, to protect the security of the private data.

However, there are still some defects in the model aggre-
gation and the benign incentive of participating nodes in
federated learning, which leads to a series of researches.

In terms of security of model aggregation, Fu et al. [4]
proposed a privacy-protected verified federated learning
(VFL) algorithm. (is algorithm used Lagrange interpola-
tion to carefully set the interpolation points verifying the
correctness of the polymerization gradient, which preserved
the safety of the aggregation model. If no more than n − 2 of
n participants collude with the aggregation server, VFL
could guarantee the encrypted gradients of other partici-
pants not being inverted.

In decentralized federated learning, Kim et al. [5] pro-
posed a blockchain federated learning (BlockFL) architec-
ture. Since the local training results included a verification
process, BlockFL overcame the single point of failure and
expanded its federated scope to untrusted devices in public
networks. Besides, it promoted the combination of more
equipment withmore training samples by providing rewards
proportional to the number of training samples. Bao et al. [6]
proposed a centered, public-audited, and healthy federated
learning ecosystem called FLchain in trust and incentive. In
FLchain, blockchain is used to replace the traditional fed-
erated learning central coordinator. With the tamper-re-
sistant nature of blockchain, the behavior of participating
nodes can be trusted, so that benign and malicious par-
ticipating nodes can be identified and incentivized and
punished accordingly. Majeed and Seon [7] proposed a new
blockchain architecture. (e concept of channels is used to
learn multiple global models of this architecture. (e local
model parameters for each global iteration are stored as
blocks in a channel-specific ledger. Zhang et al. [8] proposed
a decentralized, collaborative privacy protection training
method based on a multizone blockchain system for medical
image analysis. (is method allowed researchers from dif-
ferent medical institutions to collaborate when training
machine learning models without sharing sensitive patient
data.

In the area of security collaboration, Yin et al. [9] de-
veloped a federated learning-based security data collabo-
rative (FDC) mechanism for handling the safety
collaboration of multiparty data in the IoTenvironment.(e
blockchain was used to record the multipartial interaction
content addressing the privacy and security issues of the IoT
data. Federated learning was used to solve the problem of
large-scale multiparty security collaboration in the IoT. Kim
and Hong [10] et al. proposed a local learning weighting
method based on node identification, and the experimental
results show that the method proposed in this paper per-
forms better in terms of learning speed and stability com-
pared to the traditional federated learning. Martinez et al.
[11] addresses the issues of data privacy, security, and fair
rewards in distributed machine learning using blockchain
and federated learning. An in-depth workflow, off-chain
record database that can be used in conjunction with
blockchain and an architecture for scalable recording and
rewarding of gradients are proposed. Zhang et al. [12]
proposed a blockchain-based federated learning method to
detect equipment failures in the IoT. (is method enables
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the authentication integrity of client data. To solve the data
heterogeneity problem in failure detection, a novel centroid
weighted joint average algorithm called CDWFEDAVG is
proposed. Finally, to motivate customers to participate in the
federated learning process, an incentivemechanism is designed
based on the customer data used in local model training.

In terms of privacy protection, Lu et al. [13] design a
secure data-sharing architecture supporting zone chains. By
adopting federated learning, data sharing was expressed as a
machine learning problem. (ey also showed that the data
privacy could be protected by sharing data models rather than
the actual data. Zhao et al. [14] designed a federated learning
system using credit mechanisms. (is system allows house-
hold appliance manufacturers to predict customer needs and
consumption behaviors based on machine learning models
trained using customer data. (ey also proposed a new
standardization technology, which achieved a higher test
accuracy than the bulk standardization while retaining the
extraction characteristics privacy of each participant data.
Besides, by using differential privacy, the opponent could be
prevented from inferring the customer’s sensitive informa-
tion. Yu et al. [15] proposed a new privacy-preserving fed-
erated learning scheme. Based on the trusted execution
environment (TEE), the training Integrity Protocol of the
scheme was designed. (e protocol can detect causal attacks
and ensure the integrity of the deep learning process. Kim
et al. [16] proposed a blockchain federated learning (BlockFL)
scheme. (is scheme uses the method of combining block-
chain technology and federated learning to solve the problem
that the central coordinator which the centralized federated
learning system depends on is vulnerable to attack. Wang
et al. [17] proposed a new secure decentralized multiparty
learning system based on blockchain technology. (e authors
design two types of Byzantine attacks in the system and design
secure off-chain sample mining and on-chain sample mining
schemes to resist the attacks.

At present, there are not particularly many blockchain-
based federated learning technologies and platforms, and
most of the research in this field uses blockchain instead of
central servers to ensure the security and accuracy of fed-
erated learning aggregation. Meanwhile, the incentive
mechanism of blockchain can attract more nodes to par-
ticipate in training. However, there is less research related to
node security verification, which deserves in-depth study.

3. The Double-Layer Aggregation Model
Based on Safety Evaluation

In this section, we introduce the two main models of the
current blockchain-based verifiable federated learning
framework and subsequently introduce the double-layer
aggregation model proposed in this paper with its security
evaluation index and finally present our comparative ex-
periments and the analysis of the results.

3.1. Comparison of Verified Federated Learning Frameworks.
(ere are currently two main models of blockchain-based
verifiable federated learning frameworks: (i) the centralized

verification model of the verification set and (ii) the dis-
tributed verification model of all submodels.

An example of the first model is the EOS blockchain of
Martinez et al. [11], which proposed a new concept based on
the data segmentation of the edge node customizing the
verification data set called class sample verification error
schemes (CSVES), as shown in Figure 1. (is method is
recommended to be used before the start of training. (e
collection of all available classes is defined as
C � C1, C2, . . . , Cp . For edge node D ∈ D, the article puts
the collection CD as a collection of all categories of data.
(en, CD ⊆C, since there might be a class Ci ∈ C, making all
local data points d ∈ d, where d ∉ Ci. D sends a data set CD

to O and receives a validation set, CD. (e data set of the
verification set CD is only selected from the chain data set of
O. Once the verification set is received,D starts with the local
training data set d and the received verification set training
model Tk. During the training, the model applies the ver-
ification set to the training model and records the verifi-
cation errors. If the number of verification errors is reduced,
the model is considered to be improved. At the end of the
training, D sends the authentication error information and
other parameters of the call function UploadGradient ().
Reference [11] improved on this feature to observe the
overall trend of verification errors during model training. If
the verification error is reduced, δ is a valuable and valid
gradient update, and the model is rewarded based on its data
cost n.

Toyoda et al. [18] proposed another competitive model
update method called IABFL, as shown in Figure 2. IABFL
was a low-cost approach achieving the expected goals in the
event of reasonable action of participants.(emain focus was
on federated learning to introduce duplicate competition,
which allowed the rational workers to follow the agreement
and maximize their profits. Each worker selected in a par-
ticular round picked the top update model submitted by the
last round of worker and used it to update their model.

EOS and IABFL are able to validate the child model
updated by the edge node participating in the training to
prevent useless or malicious models from joining to the
global model. In the EOS, each training round requires
participants to claim the validation data set from the training
process on the blockchain based on the local data set.

(e size of the validation data set is not as large as the
local data set, but, in the overall framework, it requires the
blockchain to send different validation sets to each edge node
participating in the training. (e number of edge nodes in a
typical federation learning framework is measured in tens of
thousands and multiplied by the total number of rounds in
the whole training process, the communication consumption
of the scheme will be very large, and the communication cost
of training a completed model will be tens or even hundreds
of times higher than that of unverified federation learning.

In the IABFL, the submodel of each node is transmitted
between blockchains as the communication data during the
verification process. (e amount of submodel data is not
voluminous compared to the verification data set; hence, the
communication cost of the programwill be much lower than
that of the EOS.
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In this model, it is assumed that n worker members are
involved in training each round, and the traffic created by
transmitting a single model parameter in the network is t. First,
n worker members submit a local model to the block and
synchronize the child model of all other nodes on the chain.
(is process requires a data traffic of C1, which can be
expressed as

C1 � n ×(n − 1) × t. (1)

Assuming that the amount of data consumed by a single
vote is 1, n worker participating in training completes voting
on the chain and synchronizes the data traffic that needs C2;
that is,

C2 � n ×(n − 1). (2)

(e data traffic created by n worker in the IABFL is
denoted as Cpre, which can be calculated as

Cpre � C1 + C2 � n ×(n − 1) × t + n ×(n − 1). (3)

(rough the analysis of communication cost, it can be
found that the current work has solved the problem of
security verification of nodes relatively well, but it brings a
significant increase in communication cost, and the effect is
doubtful in practical application, so this chapter wants to
propose a corresponding solution to the problem of high
communication cost.
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3.2. 0e Double-Layer Polymerization Model. In the tradi-
tional blockchain-based federated learning process, training is
vulnerable to model poisoning attacks or free-riding attacks.
(e current verifiable federated learningwill add a large amount
of data communication on the basis of the original training to
verify the quality of nodes or data in various ways to solve the
above problems. However, the sharp increase in communica-
tion costs will reduce the willingness of each node to participate,
so we propose a step-by-step federated learning platform based
on blockchain with a verification mechanism design.

(e key idea behind our platform is to introduce repeated
models to update the competition design, and through in-
centive mechanisms any rational worker can work hard and
abide by the agreement to maximize their profits. (e pro-
posed design will naturally enable rational workers to act
honestly without any heavy encryption and special hardware.
As shown in Figure 3, in a specific round, all the nodes
participating in the training are divided into multiple small
clusters. (e submodels of several nodes in a small cluster are
first partially aggregated into a step-by-step model, and each
child node will select the upper A round of the best k model
updates submitted by a small cluster and update its ownmodel
based on these updates. (e reason is that the reward for
workers in the previous round depends on the results of the
voting. (e motivation for choosing the model with the best k
models is that its model updates will have more chances to be
voted in the next round, which means that they will get more
return. (e workers in the next round still cannot be
destroyed, because their models are also competed and voted
on by the workers in the next round. In the following, we will
discuss the systemmodel and themechanism process in detail.

(e symbols used later are described in Table 1.
(ere are four roles in the system: administrator, requester,

worker, and consensus node. Table 2 lists the role information
of each participant. (e role of the administrator is to deploy a
series of smart contracts [19] on a public blockchain, such as
Ethereum [20], and to register requesters and workers to the
platform upon request. It is assumed that the participants know
how to access the location of the smart contracts through a
forum or website. (e requester may have neither the data for
training nor the equipment for training deep learning models.
(e worker, on the other hand, needs to have both data for
training and equipment for training the deep learning model.
Any type of data can be processed on this platform, such as
images, text, and audio. Enter the data set of worker i for task t.
Subscript t is omitted because the next are for a specific task t. It
is assumed that the data sets owned by workers for a specific
task are independent and homogeneously distributed. (is
assumption is natural because a requester submitting a model
for a specific task, such as a deep learningmodel for identifying
cats in pictures, would require that only workers with data sets
specific to that task can join.

(e platform consists of seven procedures: user regis-
tration, task release, task joining, task start, model update,
reward assignment, and task completion. In this article,
Ethereum is used as the blockchain, which is one of the most
popular cryptocurrencies that support intelligent contracts.
However, the proposed model is applicable to any other
technology with intelligent contract support.

3.2.1. User Registration. Administrators need to register all
participating users on the platform based on their requests.
Each user must share their Ethereum address with the
administrator for receiving tasks and rewards, besides de-
claring whether to register as a requester or worker. After the
registration is completed, the requester can release the FL
training task on the blockchain, and the worker can join the
task to update the model and get the corresponding reward.

3.2.2. Task Release. Any user registered as a requestor can
issue federated learning training tasks through a smart
contract. To do that, the requester must specify the
following:

(1) Model description, for example, loss functions, data
formats, learning rates, layers, unit numbers, and
activation functions

(2) (e parameters, for example, the training period,
safety evaluation index, start time, the number of
workers, and the total rewards

(3) Deposits of the total rewards, D, which are equal to
r × N

3.2.3. Task Joining. After the requester posts the task, event
notifications will be sent to all registered workers via the
Ethereum’s event processing function. Each worker will then
decide whether to participate in that task. If the worker
decides to join, the intelligent contract should be called
before the task begins. Based on the requirements, the in-
telligent contract can only be called when the caller is
registered as a worker; otherwise, the abort code is executed.
From the perspective of code implementation, the EMI
address of a worker is stored in an array.

3.2.4. Task Starts. After the task application period, the
requester enrolls in the group of workers Wt joining the
task t. (en, they select the number of the model updates N
and the number of worker members participating in each
round. However, the requester should not disclose in ad-
vance to the worker the number of rounds N to be used for
model updates. It is necessary to show the worker at the end
of the N-wheels. (e cause of this will be detailed later.
Besides, the requester needs to introduce the federated
learning model parameters into ω0 and submits them into
the blockchain. (e requester can use any algorithm to
initialize the model [21].

3.2.5. Model Update. After model training, each round of
worker k is randomly selected among all members registered
with the intelligent contract. (en, the number of indi-
viduals in each cluster is calculated according to the safety
evaluation algorithm, which will be detailed in the next
sections. Each worker gets the local aggregation model
parameters of the previous round of each cluster from the
blockchain and verifies and votes them. (en, they calculate
the global model for the model update based on the selected
top model. Finally, each worker is trained based on the local
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data set to derive the submodel for this round and submits it
to the blockchain consensus node of the cluster. (e con-
sensus node locally aggregates the submodels of all workers
of the cluster according to the average aggregation algorithm
to obtain the local model parameters of the cluster and
submits them to the chain together with the voting results of
each node. (e algorithm for model update is shown as
Algorithm 1.

In lines 1–6 of the algorithm, themain task is to select the
best top models, a, for voting and provide them for use in
subsequent model aggregations. (is is done as follows: if it
is not the first round at the beginning of the training task,
each worker uses the local data set to validate the local
aggregation models of the g clusters from the previous
round and selects a model that they consider the best for
voting; otherwise, this step is skipped. In lines 7–11 of the
algorithm, the role is to compute the underlying global
model for this training round. (is is done by using the
initialization parameter ω0 provided by the requester as the

Table 1: Symbols table.

Symbol Paraphrase
W (e entire collection of workers
i Worker’s index
e Index of each round

a (e number of top model updates selected by the staff
in the next round

K Total number of workers participating in task t
C Percentage of workers per round

k Number of workers selected in each round,
k � max(K · C, 1)

di Data set owned by worker i in round e
B Batch size in deep learning
η Learning rate in deep learning
s (e security value
g Number of clusters in federated learning

τ(·)
Loss function, such as the mean square error in deep

learning
split(d, B) Function to randomly divide data set d into batch B

Requester

Two-layer aggregation platform for federated learning based on blockchain

Deposit + task
description 

···
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Worker update local model
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Worker update local model
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aggregation

Local
aggregation
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3)· · ·

4) 
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Figure 3: (e double-layer FL aggregation platform based on blockchains.
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parameter of the global model if it is the first round at the
beginning of the training task; otherwise the a local models
selected in lines 1–6 of the algorithm are averaged and
aggregated to obtain the global model. In lines 12–18 of the
algorithm, each worker performs local model training using
the local data set based on the global model computed in
lines 7–11 of the algorithm to train the submodel parameters
for that round. It is worth noting that there are E rounds of
local training, and the data set in each round is not the entire
local data set, but the data set is first randomly divided into b
batches before training, and each round of local training uses
one of these batches.

3.2.6. Reward Assignment. As shown in the algorithm in the
model update, in the submission phase of the model update,
each worker in round e votes for the first g local models
(only one vote can be cast for a model). Based on the
combined votes, the smart contract calculates the number of
votes received by each cluster in round e − 1. Based on the
result of the number of votes, the reward is assigned to each
cluster by r1 ≥ r2 ≥ · · · ≥ rk ≥ 0. (us, the cluster with the

most votes receives a reward of r1, the cluster with the
second most votes receives a reward of r2, and so on. Each
cluster distributes the profit according to the amount of data
involved in training by the child nodes in each cluster based
on the respective rewards obtained.

(e total reward of each round is set to r, and the profit
relationship between each cluster is given as


j∈[1,k]

rj � r.
(4)

3.2.7. Task Completion. After model update and reward
assignments are repeated N − 1 times, since there is no
training task as well as workers in the next round, it is not
possible to vote on the model updates completed by the
workers in the last training round N. (erefore, the rewards
from the last round of tasks are equally distributed to all
workers involved in the training. However, this may neg-
atively affect the working of the worker, because if the
worker knows that they are selected to participate in the last
round, they can get a reward only if they send one of the

Table 2: (e role of each participant.

Participant Task Availability of
data

Availability of equipment for
model training

Administrator Deploy smart contracts on the public blockchain and register requesters
and workers to smart contracts upon request — —

Requester Submit a training task to obtain a trained model Unnecessary Unnecessary
Worker Train the task model submitted by the requester for the reward Yes Yes
Consensus
node

Local aggregation, synchronization of blockchain information, and
distribution of rewards to submodels in the cluster Unnecessary Unnecessary

Input: model updates submitted by all clusters in round e − 1, ωi,e− 1 
i∈g(when e≥ 2) or ω0(when e � 1)

Output: trained model parameters ωi, Voting results Mi,e

/∗1. Use local data to select the best a model to update (except the first round)∗/
(1) if e≥ 2 then
(2) for m ∈ g do
(3) lm � 1/|di|j∈di

τ(Xj, yj;ωm,e− 1)

(4) end
(5) Mi,e⟵ chose a models whose lm is the smallest.
(6) end

/∗2. Aggregation with a models value ∗/
(7) if e �� 1 then
(8) ωi,e

′ ⟵ω0
(9) else
(10) ωi,e

′ ⟵ 1/am∈Mi,e
ωm,e− 1

(11) end
/∗ Update the model with local data ∗/

(12) β⟵ split(di, B)

(13) ωi,e⟵ωi,e
′

(14) for each local epochs E do
(15) for each batch b in β do
(16) ωi,e⟵ωi,e − η∇τ(ωi,e, b)

(17) end
(18) end
(19) return ωi,e, Mi,e

ALGORITHM 1: Model update of worker i in round e.
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previous model updates. If that happens, the motivation of
the first few workers will reduce, since their model updates
may not receive the correct vote in the next round.
(erefore, to ensure effective model training, the worker
must not know whether they are in the last round of the
training. So, the requester needs to reveal N to all workers at
the end of theNth round. [22]. In order not to let the worker
guess N value from the remaining deposits, the requester
needs to provide a deposit D larger than the actual total
reward N × r before task initialization. Furthermore, after
the worker completes all tasks, the requester asks them to
return their excess deposits.

3.3. Safety Evaluation Index. Assuming that there are n
training workers and the consensus nodes g connect to the
blockchain in each round, the amount of communication
consumed to transmit a single model parameter in the
network is t. Firstly, the training worker members obtain the
model parameters from the blockchain for the local ag-
gregation of each cluster in the previous round. (is process
requires C1 data traffic, which is calculated as

C1 � n × g × t. (5)

Each worker then updates the local model and submits
the trained model parameters and its own voting results to
the consensus node of the cluster it belongs to, and this
process needs C2 data traffic, which is calculated as follows:

C2 � n ×(t + 1). (6)

Finally, the consensus node g aggregates the child node
model in the cluster into a local model. (e local model and
voting results of the cluster submitted to the block syn-
chronize the local model of all other consensus nodes on
the chain. (is process requires C3 data traffic [23] as
follows:

C3 � g ×(g − 1) ×(t + 1). (7)

In this article, the data traffic consumed by n training
workers in the model architecture Cstep is calculated as

Cstep � 

3

j�1
Cj � n × g × t + n ×(t + 1) + g ×(g − 1) ×(t + 1).

(8)

According to the previous communication cost analysis,
it is known that the amount of data traffic in the IABFL
scheme is Cpre. Here are some definitions:

Csave is the part where the data traffic of single-round
training of the proposed algorithm is less than that of IABFL,
which is shown as

Csave � Cpre − Cmod � n
2
t − nt + n

2
− n − bnt

− b
2
t + bt + n − b

2
+ b.

(9)

Rsave is the saving coefficient, that is, the ratio of the saved
data traffic to the traffic consumed when transmitting a
single model:

Rsave �
Csave

t
� n

2
− b

2
+(1 − n)b − 2n. (10)

Because the saving factor only indicates that the data
traffic of a single-round training of the improved model is
better than that of the original model if it is greater than 0, so
Rsave > 0 and the minimum number of consensus nodes g

equals two; this leads to the following equation:

g ∈ 2,

�����������
5n

2
− 10n + 1


− n + 1

2
⎡⎣ ⎞⎠, (11)

where n is an integer (n≥ 5), so
�����������
5n

2
− 10n + 1


− n + 1

2
≥ 2. (12)

According to the calculation, the algorithm has an im-
pact only when the number of participants in the federated
learning is greater than or equal to five. (e next derivation
is discussed based on this result.

(e security value of the improved model, Csafe, has two
components: (i) the security of the blockchain and (ii) the
security of the edge node. (e principle of the blockchain
states that the more the consensus nodes, the stronger the
various attacks and the more secure the entire blockchain.
(e security value of the blockchain is denoted as g. (ere
are more edge node workers in a single cluster for larger n/g
values, which would “dilute” the polymerization influence
degree of a single node of the local model. Besides, the safety
value of the model is negatively correlated with n/g. Hence,
g/n is taken as the security value of the edge node, which can
be calculated as

Csafe � (s + 1) × g
m

+(g/n)( , (13)

where s ∈ [0, 10] is the security value.
(e safety factor of the model proposed in this article is

denoted as Rsafe. According to the principle of blockchain,
the more consensus nodes, the stronger the ability to resist
various attacks, such as the Byzantine [24], and the more
secure the whole blockchain; therefore, the more consensus
nodes the model has, the lower the proportion of security
value will be got. Hence, Rsafe is negatively correlated with
the size of g; that is,

Rsafe �
Csave

g
� (s + 1) × g

m− 1
. (14)

Next, the value of m and its optimal value in the actual
application are analyzed by modeling. (e overall equal-
ization coefficient of this model ϑ is defined as follows:

ϑ �
Rsave

Rsafe
. (15)

For m � 2, ϑ can be calculated as

ϑ �
Rsave

Rsafe
�

n
2

− 2n

(s + 1)g
−

g

s + 1
+
1 − n

s + 1
. (16)

When s is constant, the values of ϑ and 1/ϑ are shown in
Figures 4 and 5, respectively.
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When m � 3, ϑ is calculated as

ϑ �
Rsave

Rsafe
�

n
2

− g
2

+(1 − n)g − 2n

(s + 1)g
2 . (17)

When s is constant, the values of ϑ and 1/ϑ are shown in
Figures 6 and 7, respectively.

When m� 4, 1/ϑ is calculated as

1
ϑ

�
Rsafe

Rsave
�

(s + 1)g
3

n
2

− g
2

+(1 − n)g − 2n
. (18)

When s is constant, the values of ϑ and 1/ϑ are shown in
Figures 8 and 9, respectively.

When m � 2, Figures 4 and 5 show that the proportion
of Rsave in the balance coefficient is super linear growth with
n, which does not meet the actual situation and expectations.
When m � 4, Figures 8 and 9 show that the proportion of
Rsave in the balance coefficient is super linear growth with g.
Similarly, when m≥ 4, it is more incompatible. When m � 3,
Figures 6 and 7 show that the balance coefficient trend is
relatively stable with the relationship between n and g, which
conforms to the actual situation and expectation and then
further verification.

When m� 3, the number of the edge nodes in a single
cluster, n/g, is taken as a variable, and its relationship with
the balance coefficient is shown in Figure 10.

Figure 10 shows that the proportion of Rsave in the
balance coefficient increases linearly with the number of
edge nodes in a single cluster, n/g. When g> 5, the impact of
g on the overall trend is almost invisible. Also, it is intuitively
clear from the formula that the equilibrium factor ϑ is
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Figure 4: Value of ϑ for n and g, when m � 2.
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0

10
10

20
20

30
30

4040
5050

2000

2500

1500

1000

500

0

Figure 8: Value of ϑ for n and g, when m � 4.
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inversely proportional to the safety value s. It is concluded
that when m � 3, the balance coefficient ϑ complies with the
actual situation and the expectation of the model. (us, the
balance coefficient ϑ is determined as

ϑ �
Rsave

Rsafe
�

n
2

− g
2

+(1 − n)g − 2n

(s + 1)g
2 . (19)

As defined, when ϑ � 1. (e model focuses on saving the
communication cost of the whole federated learning ar-
chitecture when ϑ � 1, the model is in a relative balance
between saving communication consumption and model
security. (e model focuses on the safety of the entire
federated learning architecture when ϑ< 1.(e specific value
can be personalized by the requester during the training task,
and this paper is recommended to take the balance state
ϑ � 1.

When ϑ � 1, Rsave � Rsafe shown as follows:

Rsave − Rsafe � n
2

− (s + 2) × g
2

− n × g � 0, (20)

where g is

g �

�������
4 × s + 9

√
− 1

2 × s + 4
× n. (21)

Using (21), the relational Table 3 is generated.
(e table shows that even if the value of security is

minimized, it can save approximately 25% of the commu-
nication costs. When the security value s≥ 2.79, it can save
about 50% of the communication costs.

3.4. Feasibility Analysis of Double-Layer Aggregation Model.
(e research indicates that the core step in the FedAvg
algorithm is the parameter aggregation of each submodel,
which can be formulated as

ωt+1⟵ 
K

k�1

nk

n
ωk

t+1. (22)

In (22), the global parameter is obtained by accumu-
lating k subparameters based on the weight of the sample
data size. (e total information of each subparameter
consists of two parts: (i) ωk

t+1, the value of the submodel’s
current parameter, and (ii) nk, the number of samples
trained with the model parameter (in federated learning, it
often refers to an edge node participating in training the
amount of data). From another perspective, if a sub-
parameter contains the value of the submodel’s current
parameter and the number of samples fromwhich the model
parameter is trained, then the subparameter can be regarded
as produced by the same training sample.

(erefore, according to the combined rate of addition, it
can be initially obtained that the result of the global pa-
rameter can be obtained by weighting the parameters of the
two submodels, as shown in the following equation:

ω⟵
n1

n1 + n2
ω1

+
n2

n1 + n2
ω2

. (23)

Now, let us expand the added submodel into i (1< i< k)
parts. First, the ki training samples are aggregated according
to FedAvg to obtain the global parameter ωi as

ω⟵ 
K

k�1

nk

n
ωk, (24)

where nk are samples contained in each training sample.
(en, the k training samples are randomly divided into i
(1< i< k) parts. (e i part has a total of ki training samples,
and each training sample is aggregated according to FedAvg
to obtain the local parameter ωi. At this time, ωi is equivalent
to a training sample of i × nk samples. (en, i training
samples ωi are aggregated according to FedAvg to obtain the
global parameter ωα as follows:

ωα⟵ 
I

i�1

ni

nα
ωi, (25)

where nα is

nα � 
I

i�1
ni. (26)
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Finally, the following equation is gathered:

ω⟵ 
K

k�1

nα

n
ωα

⟵ 
K

k�1

nα

n
×

n1 × ω1 + · · · + ni × ωi

nα

⟵ 
K

k�1

nk

n
ωk.

(27)

(e final results of ω and ωα demonstrate that they are
equivalent. (us, it can be concluded that the double-layer
aggregation does not affect the final result of the global
model parameters.(e same applies to the IABFL, where the
following equation expresses the average aggregation based
on the number of nodes:

ωi,e
′ ⟵

1
k


m∈Mi,e

ωm,e− 1. (28)

3.5. Experiments and Result Analysis

3.5.1. Experiments. (e federated learning process of the
IABFL and the double-layer aggregation model is simulated
through multiple virtual nodes. (e aggregation effect, ag-
gregation speed, and the training communication volume
between the two models are compared. (e results revealed
the optimization effect in the availability and communica-
tion cost of the double-layer aggregation model.

(e experiments adopt the controlling variables method.
Experiment 1 is to compare the accuracy of the two models,
while Experiment 2 compares them in terms of aggregation
time. Experiment 3 evaluates the required network/data
traffic, that is, communication cost, when the twomodels are
aggregated. (e experiments use the MINIST training set as
the local data set, and 20% of the same validation set is used
as the test set.

In the experiments, we simulated a small-scale federated
learning environment, where the number of participating
nodes is set to 50, the data set size of each node to 1000, and
the number of local iterations of single-round training to 10.

As mentioned, each iteration used 20% of the local data. We
recorded the accuracy, aggregation time, and network traffic
after each round of the training and averaged the values after
ten times of running.

(e experimental environment is given in Table 4.

3.5.2. Analysis of the Results

Experiment 1. Comparison of the aggregation effects
(e two aggregation models are tested under the same

conditions. Figure 11 illustrates that although the accuracy
of the IABFL in the first three rounds is not as good as the
double-layer aggregation, it becomes slightly better in the
following rounds. Hence, the final difference in accuracy
between the two models is very small. Considering the
amount of data used, the accuracy that the models achieved
is about 84%, which is quite good. (is experiment validates
that the double-layer aggregation model using the safety
evaluation method proposed in this paper is applicable.

Experiment 2. Comparison of the polymerization speeds
Figure 12 depicts that the double-layer aggregation

model consumes more time than the IABFL. According to
the seven rounds repeated ten times, the average time of each
round increases by 0.206 seconds. Analyzing the system
process shows that the increased time is mainly used for the
local aggregation of consensus nodes and the time consumed
by one more segment of network communication. However,
the increased time only accounts for 2.53% of the total model
training, and it does not affect the training timeliness. (is
experiment, therefore, validates that the polymerization
aging of the double-layer aggregationmodel proposed in this
paper is applicable.

Experiment 3. Comparison of communication costs
Figure 13 shows that the communication cost of the

double-layer aggregation model gradually decreases with the
increase of the safety value. Hence, the security value s

should be set in [0, 4] if there is no special requirement. It
can also be seen that although the traffic trend of the double-
layer aggregation model is the same as the previous theo-
retical analysis, there is always a small gap between the two,
which is constant. (is difference might be due to several
factors, such as the network protocol header, various veri-
fication packets (e.g., the three-way handshake packet), and
network fluctuations. However, the model is very close to the
theoretical value, and the difference does not affect the actual
use. (erefore, the model proposed in this paper can still
reduce a large amount of data traffic and hence the

Table 3: Communication volume reduction ratio table.

Value of
security
value, s

(e average number
of edge nodes in each

cluster, n/g

(e proportion of reduction
in communication volume

(%), Csave/Cpre

0 2.00 25
1 2.30 37
2 2.56 45
3 2.79 51
4 3.00 55
5 3.19 59
6 3.37 62
7 3.54 64
8 3.70 66
9 3.85 67
10 4.00 68

Table 4: Experimental testbed specifications.

Environment Model/version
System 64-bit Windows 10 Professional operating system
CPU Intel® Core™ i7-7700 HQ@2.80GHz
GPU NVIDIA GeForce GTX 1050
Software Anaconda3
Python Python� 3.7
Dependency PyTorch, PySyft

Security and Communication Networks 11



5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

Tr
ai

ni
ng

 ti
m

e p
er

 ro
un

d

Training rounds
Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

Traditional aggregation
Double-layer aggregation

Figure 12: Training round versus time of the two aggregation models.

0.00 

10.00 

20.00 

30.00 

40.00 

50.00 

60.00 

70.00 

80.00 

90.00 

Training rounds

Tr
ai

ni
ng

 ac
cu

ra
cy

 (%
)

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

Traditional aggregation
Double-layer aggregation

Figure 11: Training round versus accuracy of the two aggregation models.

0
2
4
6
8

10
12
14
16
18
20

Security value

Tr
affi

c r
eq

ui
re

d 
to

 co
m

pl
et

e u
ni

t t
as

ks

0 1 2 3 4 5 6 7 8 9 10

Traditional aggregation
Double-layer aggregation
�eoretical double-layer aggregation

Figure 13: Security level versus communication volume.

12 Security and Communication Networks



communication cost duringmodel training, which meets the
design goals.

(e above analysis of the experimental results concludes
that the blockchain-based communication cost optimization
and safety evaluation methods proposed can reduce the
communication cost of the learning process while ensuring
the security and availability of the nodes.

4. Conclusions

For the existing protection methods of “free-riding attacks”
and “model poisoning attack” in the federated learning
process, the training models need to be audited one by one,
causing the problem of high communication costs
throughout the training process. A step-by-step aggregation
federated learning platform based on blockchain is pro-
posed, and the architecture and algorithm of the platform
are designed in detail. In this article, we first studied the
verification mechanism of useless or malicious nodes. (en,
using a competitive voting verification algorithm, a block-
chain federation learning communication cost optimization
method based on security evaluation is proposed, and the
security of the model is analyzed in combination with game
theory methods. Finally, through experimental comparison
and analysis, we verify that the proposed method can reduce
the communication cost of the learning process while en-
suring the security and availability of IoT nodes.
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