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Image forgery detection can efficiently capture the difference between the tampered area and the nontampered area. However,
existing work usually overemphasizes pixel-level localization, ignoring image-level detection. As a result, false detection for
tampered image maybe cause a large number of false positives. To address this problem, we propose an end-to-end fully
convolutional neural network. In this framework, multiresolution hybrid features from RGB stream and noise stream are firstly
fused to learn visual artifacts and compression inconsistency artifacts, which can efficiently identify the tampered images.
Furthermore, a tamper-guided dual self-attention (TDSA) module is designed, which can focus the network’s attention on the
tampered areas and segment them from the image by capturing the difference between the tampered area and the nontampered
area. Extensive experiments demonstrate that compared to existing schemes, our scheme can simultaneously effectively achieve
pixel-level forgery localization and image-level forgery detection while maintaining higher detection accuracy and

stronger robustness.

1. Introduction

Image forgery refers to pasting a region (an object or
multiple objects) in a real image to a certain position in
another real image. In the tampered area, postprocessing
operations, such as blurring, smoothing, retouching, and
fusion, are used to cover up the tampering traces. Ac-
cordingly, the tampered image looks more realistic and
natural so that the purpose of tampering with image content
can be achieved successfully. Illegal persons may tamper
with the content to make the images/videos convey incorrect
or misleading information [1]. This is unacceptable in some
application scenarios that are extremely sensitive to image
content, such as military communications, political news
photos, legal forensics, and electronic bill. For this reason,
image forgery detection technology is needed to discrimi-
nate the authenticity of the image. In general, image forgery
detection technology includes image-level forgery detection

and pixel-level forgery region localization, which usually
contain two main issues. First, for image-level detection,
authenticity discrimination should be a prerequisite for the
practical application of image tampering detection tech-
nology. However, according to the observation and testing of
mainstream methods, we find an interesting phenomenon
that most of existing methods usually ignore the capability to
distinguish between true and false. As shown in Figures 1(c)
and 1(d), with an authentic image (untampered image) as
input, the model still outputs a fake area. This flaw makes
these models nearly unusable. On the other hand, for pixel-
level localization, pixel-level manipulation region localiza-
tion is the mainstream solution in this field, and the work in
this area looks more like a simplified semantic segmentation
problem. A series of methods are also adjusted on mature
semantic segmentation models. However, the localization of
pixel-level manipulation regions by simply using the se-
mantic segmentation [2, 3] model is not ideal. As shown in
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Figure 1, the pixel-level localization results of the current
model are also inaccurate.

Regarding the first question, almost all image forgery
detection methods use datasets that only include tampered
images in the training phase and only include tampered
images in the testing phase for evaluation, as shown in
Table 1. Considering the practical value of image forgery
detection, only being able to locate the forged image is
unqualified. In order to solve this problem, authentic images
(untampered images) should be also added in the dataset
during the training phase. However, with the addition of
authentic images, it will inevitably have a negative impact on
the localization performance and can make it difficult for the
model to converge. For the second question, some re-
searchers tried to utilize the semantic segmentation models
to enhance the localization accuracy of pixel-level forgery,
which mainly involve the semantic features [12, 13]. Nev-
ertheless, unlike semantic segmentation, image forgery de-
tection focuses more on tampering artifacts [8] rather than
image content. Correspondingly, apart from semantic fea-
tures, inconsistent features [4-6] should also be considered
for image forgery detection. To this end, we try to add the
noise stream and design a noise inconsistency multi-
resolution feature extractor based on constrained convo-
lution to discover noise inconsistency between authentic and
tampered regions. The union of semantic features and noise
inconsistency features is called hybrid features, such mul-
tiresolution hybrid feature can provide more evidence for
image forgery detection.

This paper designs an end-to-end fully convolutional
neural network to detect and localize tampered regions. The
network includes an RGB stream, noise stream, and a
multiresolution hybrid feature fusion process. In this
framework, the RGB stream is used to learn visual artifacts,
while the noise stream is used to learn noise inconsistency
artifacts. During the fusion stage, multiple resolution fea-
tures from the two streams are utilized to generate the final
mask. Furthermore, a tamper-guided dual self-attention
(TDSA) module is designed to enhance the feature repre-
sentation and reduce false positives from natural regions.
Moreover, to reduce false positives for authentic images
(Figure 1), authentic images are considered during the
training phase to address the drift problem that easily occurs
in other attention mechanisms. Our proposed scheme can
simultaneously achieve pixel-level forgery localization and
image-level forgery detection, which greatly improves the
practical applicability of the network framework.

Our main contributions are summarized as follows:

(i) We propose a novel end-to-end deep network
model, which builds a hybrid feature model by
combining semantic features and multi-resolution
noise-inconsistent features, and meanwhile designs
atamper-guided dual self-attention (TDSA) module
to enhance the fine-grained discriminative capa-
bility from the multiresolution hybrid feature.

(ii) Our proposed scheme can simultaneously effec-
tively achieve pixel-level forgery localization and
image-level forgery detection. With the blessing of
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authentic images, the capability of the proposed
model to distinguish between true and false is
significantly improved, even do not generate any
false positives.

(iii) Extensive experiments implemented over four
public datasets demonstrate that our method out-
performs state-of-the-art methods in terms of de-
tection accuracy and robustness, and shows an
overwhelming advantage on the image-level forgery
detection experiments.

The rest of this paper is organized as follows: Section 2
introduces the related work. The detailed procedure of our
proposed scheme is shown in Section 3. We perform
comprehensive experiments to evaluate the performance of
the proposed scheme and present the results and corre-
sponding discussions in Section 4. Finally, Section 5 con-
cludes the paper.

2. Related Work

2.1. Image Forgery Detection. Image forgery detection aims
to distinguish between tampered images and real images. If
the image is a tampered image, the tampered region should
be accurately located. Table 1 summarizes some recent
forgery detection works. Most of the early work [4-6, 14]
were based on unsupervised algorithms and did not involve
neural networks. For instance, Krawetz et al. [4] used error
level analysis (ELA) to find compression differences for
image forgery detection. Mahdian et al. [5] exploited image
noise inconsistency to detect image forgery. Ferrara et al. [6]
utilized the CFA of nearby pixels to predict a pixel. These
unsupervised methods performed forgery detection by a
statistical manner, which has the advantage of supporting
image-level detection, but the disadvantage is that its pixel-
level localization can only be accurate to the block and can
only support specific forgery types, e.g., splicing, copy-move,
and removal.

With the widespread use of neural networks, DNN-
based image forgery detection [3, 7-11, 15, 16] schemes have
become popular. The performance of pixel-level forgery
localization is greatly improved, and it can also handle many
types of tampered images. For example, J-LSTM [7]
employed a hybrid CNN-LSTM model to capture dis-
criminative features between manipulated and non-
manipulated regions. J-LSTM adopted the Patch-LSTM
network as the backbone network, but the size of the patch
will limit the localization of the tampered area. RGB-N [8]
used a Bilinear pooling method to fuse forensic cues from
RGB features and noise-inconsistent features. However, due
to the use of the steganalysis [17, 18] rich model and Faster
R-CNN, it only provides bounding boxes, which are object-
level localization rather than pixel-level localization. Man-
tra-Net [9] treated tamper detection as anomaly detection. It
detects manipulated pixels by identifying local anomalous
features. FCN [3] was a network for semantic segmentation
tasks and can support inputs of any size. With the network
training, the image-level detection performance of this
network can be greatly increased. This also proves that the
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FIGURE 1: Detection results before and after tampering for the same image. In this figure, the images from left to right belong to tampered/
authentic image, ground-truth, detection results of Mantra-Net, detection results of FCN, and detection results of our scheme.

TaBLE 1: Summary of existing image forgery detection methods.

Method Backbone Forensic clue Fusion method Training data Localization
ELA [4] — Error level analysis — Authentic, tamper  Block-level
NOI [5] — Noise-inconsistency — Authentic, tamper  Block-level
CFA [6] — Local CFA inconsistency — Authentic, tamper  Block-level
J-LSTM [7] Patch-LSTM RGB — Tamper Pixel-level
RGB-N [8] Faster R-CNN  RGB, noise-inconsistency Bilinear pooling Tamper Object-level
ManTra-net [9]  Wider VGG  RGB, noise-inconsistency Feature concatenation Tamper Pixel-level
FCN [3] - RGB — Tamper Pixel-level
CR-CNN [10] Mask R-CNN Noise-inconsistency — Tamper Pixel-level
GSR-net [11] Deeplabv2 RGB — Tamper Pixel-level
Ours HRNet-48 RGB, noise-inconsistency Multi-resolution concatenation, Authentic, tamper Image-level

tamper-guided dual self-attention

Pixel-level

semantic feature based training strategy is effective. CR-
CNN [10] used constrained convolution [19] to extract
noisy inconsistency features and accurately performed
image forensics with a coarse-to-fine architecture. We
believe that this model using only noise-inconsistent fea-
tures is insufficient. GSR-Net [11] localized manipulation
regions by learning to spot boundary artifacts. In general,
combining with Table 1, it can observe that the above-given
DNN-based methods [3, 7-11] only used tampered images
in the training phase, they can only perform pixel-level
image localization but cannot perform image-level forgery
detection.

2.2. Attention Mechanism. Attention mechanism [20-22], as
an efficient low-cost way to enhance features, has been
widely used in various visual tasks [23-26]. The early at-
tention mechanism in the visual field is the squeeze-and-
excitation module (SE) proposed by SENet [20]. It can si-
multaneously extract the spatial and channel information of
the feature map. On the basis of the SE module, CBAM
(convolutional block attention module) [21] extracted the
channel and spatial information by using the tandem
structure. DA (Dual Attention) module [22] modelled the
semantic interdependencies in spatial and channel dimen-
sions, respectively. The position attention module selectively
aggregates the feature at each position by a weighted sum of

the features at all positions, while the channel attention
module selectively emphasizes interdependent channel
maps by integrating associated features among all channel
maps.

However, compared to other vision tasks, image forgery
detection features are more difficult to identify because man-
made tampered areas may appear anywhere in the image so
that spatial attention is hard to be captured. We try to design
a tamper-guided dual self-attention (TDSA) mechanism to
improve the feature expression ability. TDSA mechanism
enables the network to decide the right to use the attention
mechanism through learnable parameters and therefore
makes the use of the TDSA module more flexible. Also, the
traditional attention mechanism inevitably has a drift
problem [27]. For image tampering detection, the network
attention is focused on the nontampering area, which greatly
affects the localization results of the network. To alleviate the
attention drift problem, we use tampered regions for su-
pervision and make the attention mechanism focus on the
forged regions.

3. Proposed Method

The proposed network model is an end-to-end tamper
detection and localization framework, that is also to say,
inputting a tampered image, the proposed network model
can locate the tampered area, and meanwhile output the
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FiGURrE 2: Overall framework of proposed method.

confidence level of image tampering. Figure 2 shows that the
network structure, which consists of an RGB stream, a noise
stream, a fusion stage, and a detection stage. In this model,
the RGB stream focuses on visual cues, while the noise
stream mainly detects noise inconsistency artifacts. The RGB
stream uses HRNet-48 [28] as the backbone network, which
maintains high-resolution outputs throughout the feature
extraction process. To match the multi-resolution output of
the RGB stream, we follow the style of the noise stream of
HRNet-48 [28] and design a multiresolution noise feature
extractor. Furthermore, we introduce a novel fusion method
that does not lose the details of features at any resolution to
fuse the features of the two stages as the hybrid features,
which can be further enhanced by the TDSA module. The
network model finally outputs the predicted mask and
predicted score.

3.1. RGB Stream. Most of the previous work on extracting
visual artifacts from RGB streams uses traditional Resnet
[29], whose disadvantage is that the image will be deeper
with the number increasing of layers of the Resnet, and the
resolution of the output image will be lower. This short-
coming does not meet the requirements of image forensics,
because a large number of upsampling operations are
performed in the network output stage to restore the original
resolution of the image, which may cause the generated
prediction to mask not clear enough. We use HRNet-48 [28]
as the backbone network for RGB streams. As a high-res-
olution network, HRNet-48 can capture detailed features
well and avoid the loss of details due to continuous
upsampling like other backbone. As shown in Figure 2, the
backbone network consists of four stages. The output res-
olution of each stage is gradually reduced to half and the
number of channels is doubled, the high-resolution output
of the previous stage is yet preserved. The output of the
HRStage module can be shown in the following formula:

{f1 f2--+, fi}—HR Stage[i] (x). (1)

3.2. Noise Stream. RGB streams are not sufficient for all
types of tampered images, especially for the case that the

tampered images are processed to hide splicing boundaries
and reduce contrast differences. However, many tampered
images are manipulated so that the splice boundary are not
recognized, making the tampered area look more natural
and thus fooling the algorithm. The noise stream is not
affected by the above-given problem. Accordingly, we add a
noise stream to solve this problem. The SRM filter [30] are
widely used to capture noise-inconsistent cues. Nevertheless,
these noise-inconsistent cues cannot be learned by the
network, and they thus are more vulnerable to robust at-
tacks. In contrast, we use constrained conv [19] to directly
adaptively learn noise-inconsistent features, obtaining better
generality and robustness. Specifically, the constraint is
applied as follows:

wk (0, 0) = —1,
Y wi(mn) =1, (2)
m,n#0

where w, denotes the k,, convolution kernel, and (0,0) is
the center coordinate of wy. wy is updated with the entire
model, and then the above constraint process is performed.
Through formula (2), the noise map is fed into our designed
noise stream. As shown in Figure 2, the structure of the noise
stream extracts noise-inconsistent features of the forgery
image by connecting high-resolution to low-resolution
convolutions in parallel. On this basis, information exchange
is carried out between the individual resolution features. The
output feature map of the noise stream includes three
resolutions (1/8,1/16,1/32). These noise features will be
fused with the features extracted from the RGB stream, and
then are input to the hybrid feature fusion stage.

3.3. Multiresolution Hybrid Feature Fusion. We combine the
RGB stream with the noise stream for manipulation de-
tection in the hybrid feature fusion stage. Most methods
[9, 10] only perform simply feature combining, e.g., bilinear
pooling [8, 31]. However, bilinear pooling is not learnable,
and the pooling operation is easy to lose details, which is not
conducive to manipulation localization. Therefore, the
current manipulation detection tasks [11, 32] mostly adopt a
no-pooling method.
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To solve the above-given problem, we design a multi-
resolution hybrid feature fusion module. We firstly utilize a
channel to concatenate the features of the same resolution
from the two streams. The features of different resolutions
can be fully information exchanged through a hybrid feature
fusion unit. As shown in Figure 3, the four cells on the left
are fused to generate the rightmost cell. Specifically, for low-
resolution features, they are firstly processed by an
upsampling operation (bilinear interpolation) to achieve the
same size as the high-resolution feature. Then, the processed
features pass through a 1x1 convolution and perform
elementwise addition with the high-resolution features.
While for high-resolution features, they are downsampled to
the size of the low-resolution features through a 3x3
convolution with stride 2 (one or more). Correspondingly,
the high-resolution features and low-resolution features are
fused using elementwise addition. After performing hybrid
feature fusion, the network can output multiresolution
hybrid features. Finally, the low-resolution features are
upsampled and added into the highest-resolution features.

3.4. Tamper-Guided Dual Self-Attention Module. In the
previous stage, multi-resolution features from the RGB
stream and Noise stream are sequentially fused. However,
multiresolution feature fusion inevitably introduces some
redundant information, that is to say, some redundant
features that may affect the localization accuracy are also
fused, which should be further removed to preserve clues
related to forged regions. Considering that the attention
mechanism [20-22] can effectively implement feature fil-
tering and select important features from the input infor-
mation, we design a tamper-guided dual self-attention
(TDSA) module to enhance the feature representation about
forgery cues. Our TDSA module is built on DA attention
[22] and consists of channel attention and tamper-guided
position attention. TDSA module uses a self-attention
mechanism to capture interchannel or interposition de-
pendencies, where channel attention uses all channel at-
tention map weights to update each channel attention map
and tamper-guided position attention aggregates all position
features to update the attention map, in which the weights
are determined by the feature similarity between two po-
sitions. In the TDSA module, any two positions may be
associated, and the spatial distance is no longer limited by
the receptive field. Moreover, the tamper areas may be in
nonsalient areas of the image, and the attention network
may cause an attention drift problem [27] to make it focus
on nontampered areas. To address the attention drift
problem, we add tamper regions supervision in the position
attention map. In this way, the position attention can be
forced to locate to the tampered region, which can enhance
the expressive capability of the feature, and further improve
the overall accuracy of the network.

3.4.1. Channel Attention Module. The pipeline of the
channel attention module is shown in Figure 4(left side). We
calculate the channel attention map M€ € R“C from the

hybrid features F e R“W*H  where C,W,H represent

channel, width, and height dimensions, respectively. First,
the input F € R®W>H is reshaped to F' € R™*W*H_Then,
the reshaped feature F! is transposed to get F? ¢ R (W)€
and a matrix multiplication is performed between F' and F?.
Finally, a softmax layer is applied to obtain the channel
attention map M€ € R,
. exp(F; - F;)
M =GC T Ay 3)
2ili eXP(R‘ 'Fj)

where m¢, stands for the impact of the i'" channel on the j*".
Furthermore we perform a matrix multiplication between F1
and M€ and result to FCAMJ € ROW=H,

Feam,j = A Zm],F] +F, (4)

where A, controls the importance of the channel attention
map over the input feature map F. A, gradually learns a weight
from 0. This formula takes the weighted channel features into
the original hybrid features. The channel attention module
selectively emphasizes interconnected channel maps by in-
tegrating relevant features in all channel maps.

3.4.2. Tamper-Guided Position Attention Module. The
pipeline of the tamper-guided position attention module is
shown on the right side of Figure 4. We calculate the position
attention map MP € R W*HXWxH) from the hybrid features
F € ROW*H  gSpecifically, F firstly passes through three

parallel 1 x 1 convolution blocks, resulting in F' € R *WxH,

2 C'xWxH 13 CxWxH
e R& XWX B ¢ R&X

to C/8. Then, F!,
2 ¢ Rc’x(WxH)

, respectively, where C' is equal
F2 is reshaped to F'e RC*WxH)
, respectively. Then, the reshaped feature F!

is transposed to get F' € RMWXHXC" and a matrix multi-

plication is performed between F! and F. We finally apply a

softmax layer to obtain the Position attention map
MP € IR(WXH)X(WXH)

p _ o(F-F))
m;; = ZYZTHGXP(F} F?)’ (5)

where m? ;i evaluates the impact of the i " position on the j*
position. Meanwhile, F* is reshaped to F> € R®*W*H and
performed a matrix multiplication between F° and the

transpose of M” and result to Fp j € ROWxH,
WxH
p
Fpamj =4 Z m],F,+F (6)

where A, is initialized as 0 and gradually learns to assign
more weight. This formula takes the weighted position
features into the original hybrid features. Therefore, similar
features are related to each other regardless of distance.
Notably, since the features of tamper forensics are more
difficult to identify, our proposed supervision mechanism in

the attention map can efficiently alleviate the problem of
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FIGURE 3: Multiresolution hybrid feature fusion.
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FIGURE 4: The structure of TDSA. ® represents the matrix multiplication and & is the elementwise addition.

attention drift and make the attention mechanism focus on the
forged regions. This allows our attention mechanism to force
localization to the forged regions, making the attention map
closer to ground-truth. To be specific, Fpay gets the attention
map through a convolutional layer, and calculates tamper-
guided attention loss with the ground truth. This effectively
removes the negative properties of the attention mechanism
and focuses attention on the forged regions.

3.5. Loss Function. Our network model involves three loss
functions, including pixel-level loss, tamper-guided attention
loss, and image-level loss, where pixel-level loss is used to
improve pixel-level manipulation localization, tamper-guided
attention loss for reducing attention drift, and image-level loss
for improving image-level forgery detection. Since the whole
network is similar to a binary classification problem, we use
BCE loss [33] as our loss function.
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3.5.1. Pixel-Level Loss. Let M be the ground-truth mask, M
be the predicted mask. Since the forged regions in the
forgery images are generally small and imperceptible, we
increase the weights for unbalanced data during training.
The pixel-level loss can be computed as follows:

Zpixel = ‘;Mw -~ log(M;;) = 3 (1-M;;) - log(1-M,). (7)

ij

3.5.2. Tamper-Guided Attention Loss. A tamper mask is used
to guide the training of attention. We reduce the dimension
of the feature map enhanced by position attention and let it
be A. M is the ground-truth mask. Accordingly, the output
of the attention can be normalized as follows:

Anorm _ A —min (A)

" max(A) — min(A)’ ®)

where A represents the attention map and A"™™ is the
normalized attention map. Then, the tamper-guided at-
tention loss can be calculated:

gatte == ZMi,j : log(AE;')rm)
irj

(9)
- 2(1 - M;;)- log(1-AjS™).
ij

Note that, to accelerate network convergence, the above
two functions only compute the loss on forgery images.

3.5.3. Image-Level Loss. Previous works only use fake images
for the training phase, ignoring image-level loss. In our
network framework, we incorporate real images in the
training phase. Nevertheless, we found that applying pixel-
level loss directly on real images may cause a lack of lo-
calization details, since there are no tampered areas in the
real images, and all pixels in the real image are true. In other
words, the real image contains only one class and such data
are bad for a binary classification problem. It is difficult for
the entire network to converge quickly. Therefore, we design
a label-based image-level loss function. Since image-level
detection is based on pixel-level prediction mask M, image-
level confidence scores can be obtained by using a function
of global max pooling on M.

G (M) = Global Max Pooling (M), (10)

where G (M) represents the image-level confidence scores,
and G(M) € (0,1). Specifically, the higher the G (M) value,
the less realistic the image. Furthermore, we combine this
score with the image-level label to calculate the loss.

gimage = _(label) : IOg(G(M))

_ (11)
— (1 —label) - log(1-G(M)),

where label = {0, 1}, the label of the authentic image is 0, and
the label of the tampered image is 1. Notably, this loss can
work well for both tamper and authentic images.

Finally, the total loss for the entire network can be
presented as follows:

gtotal = (lable) ' ((X : gpixel + ﬁ : =‘?atte)
t(l-a-p)-Z

(12)

image>

where label = {0, 1} ,and &, 8 € (0, 1) are weight parameters.

4. Experimental Results

4.1. Experimental Datasets. Table 2 lists the image datasets
used in the experiments. In our experiments, we add a large
number of authentic images for training and evaluation.
Note that, since NIST16 and IMD2020 datasets do not
provide authentic images, only image-level evaluations are
performed on CASIA and COLUMBIA.

(i) CASIA [34, 35]. CASIA contains CASIA v1.0 and
CASIA v2.0. CASIA v1.0 has 920 tampered images
and 800 authentic images, which are mainly ma-
nipulated by splicing and copy-move. CASIA v2.0
contains more images, a total of about 13000 im-
ages. Overall, CASIA v2.0 is mainly used for net-
work training, while CASIA v1.0 is mainly used for
testing.

(ii) COLUMBIA [36]. Columbia has a total of 363
images, including 180 tampered images and 183
authentic images. The tampered images are created
using only the splicing operation, e.g., copying and
pasting visually salient objects in Adobe PhotoShop
to the authentic ones.

(iif) NIST16 [37]. NIST16 is an authoritative high-res-
olution dataset, which includes 564 images that
mainly cover three manipulation types: copy-move,
splicing, and removal. It is worth noting that there is
no corresponding authentic image provided in
NIST16, and only the tampered image and the
ground mask are provided. Our evaluations on this
dataset only involve metrics for tampered images.

(iv) IMD2020 [38]. IMD2020 is a novel dataset con-
sisting of real-life manipulated images as well as
manually created ground-truth masks. IMD2020
includes a total of 2151 images. Since the image
material is collected on the Internet, it is more
convincing than the image generated by the virtual
environment. Note that, this dataset does not
provide any real images corresponding to the
tampered images.

4.2. Implementation Details. We initialize the weights of the
network by pretraining on ImageNet classification [39] for
the network. Our network is a fully convolutional network
and thus supports any resolution image input. The network
is implemented with PyTorch and trained on an NVIDIA
Tesla P100 GPU, using stochastic gradient descent with a
momentum of 0.9 for the optimizer. The learning rate started
from 0.005 and decayed exponentially and the batch size is
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TaBLE 2: The details of training set and testing set (number of images) for four datasets.
Training set Testing set Total

Datasets . . .

Authentic Tamper Authentic Tamper Authentic + tamper
CASIA [34, 35] 7791 5405 800 920 14916
COLUMBIA [36] 133 130 50 50 363
NIST16 [37] 0 414 0 150 564
IMD2020 [38] 0 2010 0 141 2151

13. Moreover, to address the class imbalance, the weight of
pixel-level loss is increased sixfold on tampered class.

4.3. Evaluation Metrics. For pixel-level forgery detection,
following previous work [8], we compute pixel-level pre-
cision and recall and then report their F,. AUC (Area
Under Curve) is defined as the area under the ROC curve
enclosed by the coordinate axes, as a decision threshold free
metric, is also reported. For image-level forgery detection,
in order to measure the miss detection rate and false alarm
rate, we also report TNR (specificity), their F; and AUC,
respectively.

Precision x Recall

Fy=2x x 100%. (13)

Precision + Recall

Notably, since there are no authentic images in the
evaluation of other methods, for fair comparison with other
methods, the authentic images in each testing set are only
used for image-level detection. Meanwhile, to measure the
equalization performance of the model, we report combine-
F, in image-level detection, which is an average of pixel-level
F, and image-level F,.

TNR x 100%. (14)

“FP+ TN

4.4. Comparison with State-of-the-Arts. We compare our
proposed method with several state-of-the-art baseline
methods, which belong to two different categories: clas-
sical unsupervised methods, e.g., ELA [4], NOI [5], CFA
[6], and fine-tuned models, e.g., FCN [3], J-LSTM [7],
RGB-N [8], ManTra-Net [9], CR-CNN [10], GSR-Net [11].
We compare pixel-level localization capabilities with these
methods and provide prediction masks with Mantra-Net
[9] and FCN [3]. In this experiment, we retrain the FCN by
adding real images and using our training strategy.
Moreover, we also compare image-level detection capa-
bilities with three existing schemes [3, 10, 11] and provide
their prediction masks. Note that, image-level detection
can only be performed on two datasets (Columbia, CASIA)
that provide authentic images.

4.4.1. Pixel-Level Localization. We perform pixel-level im-
age manipulation localization in four standard datasets.
Since IMD2020 dataset is just created recently, it has not
been tested with many methods. The performance of dif-
ferent models is shown in Table 3. Our model leads the F,

scores on Columbia, NIST16, and IMD20 and obtains the
second on CASIA. In addition, GSR-Net [11] has a slight
advantage over CASIA. This may be because GSR-Net [11]
performs boundary refinement. Nevertheless, our scheme
obtains a significant advantage comparing with GSR-Net
over the other three datasets. Specifically, our F; score on
NIST16 is more than double it. We can explain this phe-
nomenon that the NIST16 dataset has a more natural
transition between the real area and the fake area, leading to
little difference in contrast, while GSR-Net is a specially
designed network for boundary artifacts, so it does not work
well on this dataset.

In terms of AUC scores, our model achieves the best
performance over four datasets. To be specific, for un-
supervised methods, our improvement is between 24%
and 56% and with an average of 40% improvement. For
the fine-tuned methods, the average improvements are
10.8% in NIST16, 9.9% in COLUMBIA, and 6.6% in
CASIA, respectively. IMD2020 contains incomplete
data, but the improvement can still get 22.9% through
rough calculation. This illustrates that our method is
applicable to various types of forgery. Although adding
real images may be not conducive to pixel-level locali-
zation, our training strategy makes up for this deficiency,
enabling pixel-level localization to achieve a leading
performance.

In order to more intuitively express the localization
capability of our model, we provide prediction masks on
four datasets, which are shown in Figure 5. It can be clearly
seen that our method can generate accurate predicted masks,
which are very close to the ground truth. Also, it can be seen
that Mantra-Net [9] can only superficially see the outline of
the forged area, but, accompanied by a large number of false
positives. Moreover, in contrast to FCN [3], a relatively
accurate mask can be obtained. However, we can find an
interesting phenomenon that FCN has false positives in real
(nontamper) regions, while our prediction mask does not
suffer from the problems of the above two methods. This is
mainly because our TDSA module can force the network’s
attention to the tampered area, effectively reducing the false
positives of the real area.

4.4.2. Image-Level Detection. We believe that it is necessary
to design an image-level evaluation for image forgery de-
tection because our purpose is not only to accurately locate a
known tampered image but also to identify the authenticity
of an unknown image. Otherwise, once some real images are
added to the dataset, the localization capability of the net-
work will be greatly weakened. However, most of the existing
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TaBLE 3: Pixel-level localization AUC and F, are reported. The symbol “—

B

> indicates that the experimental results are not provided in the

corresponding literature. The significance of bold emphasis is to show that the value is the maximum in current column.

NIST16 COLUMBIA CASIA IMD2020

Method Type

AUC F, AUC F, AUC F, AUC F,
ELA [4] Unsupervised 42.9% 23.6% 58.1% 47.0% 61.3% 21.4% — —
NOI [5] Unsupervised 48.7% 28.5% 54.6% 57.4% 61.2% 26.3% — —
CFA [6] Unsupervised 50.1% 17.4% 72.0% 46.7% 52.2% 20.7% 58.6% —
J-LSTM [7] Fine-tuned 76.4% — — — — — 48.7% —
RGB-N [8] Fine-tuned 93.7% 72.2% 85.8% 69.7% 79.5% 40.8% — —
ManTra-net [9] Fine-tuned 79.5% 73.7% 82.4% 70.3% 81.7% 45.2% 74.8% —
CR-CNN [10] Fine-tuned 99.2% 92.7% 86.1% 79.0% 78.9% 47.5% — —
GSR-net [11] Fine-tuned 94.5% 45.6% - 62.2% 79.6% 57.4% — —
OURS Fine-tuned 99.4% 93.8% 94.8% 90.8% 86.4% 56.9% 83.7% 63.3%

(b

(©)

(d)

FIGURre 5: Comparison of pixel-level localization prediction results of different methods. From top to bottom, the figures sequentially
represent (a) the tampered images, (b) the ground-truth, (c) Mantra-Net, (d) FCN, and (e) our method.

TaBLE 4: Image-level detection evaluation over COLUMBIA and CASIA. TNR, Image-F,, AUC, and Combine-F, are reported in this
experiment, respectively. The significance of bold emphasis is to show that the value is the maximum in the current column.

Method COLUMBIA CASIA
etho

TNR (%) Image- F;, (%) AUC (%) Combine-F, (%) TNR (%) Image- F, (%) AUC (%) Combine-F; (%)
FCN [3] 28.7 42.3 68.9 — 57.5 59.5 80.9 —
CR-CNN [10] 24.6 39.2 78.3 59.1 224 36.1 76.6 41.8
GSR-net [11] 1.1 2.2 50.6 32.2 1.1 2.2 50.2 29.8
OURS 99.9 83.2 99.1 87.0 98.4 78.5 85.7 67.7

works always ignore this detection. Table 4 presents our
results comparing with other methods. In each experiment,
we retrain the FCN [3] and add authentic images to the
training set. The other two methods use the trained model
provided in the paper. TNR, also known as specificity,
represents the ratio of the predicted true image to the actual
true image, which can accurately describe the detection at
the image level.

From the results, our method can obtain the best per-
formance in several schemes. This is mainly because other
methods always generate a large number of false positives on

authentic images, making them almost unusable. We
summarize the reasons for the false positives shown in
Table 1. Almost all DNN-based methods are trained without
authentic images. Among them, the “Combine-F,” in Ta-
ble 4 represents the average value of pixel-level F, and
image-level F,. It can be seen that the performance of our
model can achieve more than 40% improvement on the
COLUMBIA dataset, and about 30% on the CASIA dataset
compared to other methods. In Figure 6, we present some
visualization results of real images. It is not difficult to see
that our method produces hardly any false positives, while
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Figure 6: Comparison of image-level detection results of different methods. From top to bottom, the figures are sequentially: (a) the

tampered images, (b) Mantra-Net, (c) FCN, and (d) our method.

TaBLE 5: Ablation experiment evaluation on NIST16 and COLUMBIA. Accuracy, F,, and AUC are reported in this experiment, respectively.

NIST16 COLUMBIA
Network
Accuracy (%) F, AUC (%) Accuracy (%) F, AUC (%)
Proposed 99.7 93.8% 99.4 98.9 90.8% 94.8
Proposed without TDSA 98.4 90.7% 98.5 97.7 89.5% 92.1
RGB stream only 99.2 91.6% 96.5 97.5 86.4% 90.1
Noise stream only 97.9 89.3% 94.5 98.6 88.7% 92.5

the other two produce a large number of false positives. The
reason for this achievement is that we add an image-level
loss function, which can greatly increase the image-level
detection capability of the network without affecting the
pixel-level localization capability. Overall, our models are
more adaptable in the real world.

4.4.3. Ablation Experiment. To verify the effectiveness of
different modules in our network, we compare our full
network with three combination models (combinations
of different modules). Experimental results are shown in
Table 5, where “Proposed” represents our proposed full
model, “Proposed without TDSA” stands for a model
that does not include the TDSA attention module, “RGB
Stream only” indicates detection using only RGB features
in the hybrid features, and “Noise Stream only” repre-
sents detection using only Noise features in the hybrid
features. Our ablation experiments are evaluated over
two standard datasets, NIST16 and COLUMBIA. As can
be seen from Table 5, the performance of our full model is
better than other combination models in the three
evaluation indicators (Accuracy, F;, AUC). The first two
rows in the table demonstrate that our network achieves
better performance after adding the TDSA module. The
reason for this phenomenon is that our designed TDSA

module can focus the network’s attention to the tam-
pered regions. Correspondingly, the TDSA module
eliminates the redundancy generated in the multi-res-
olution fusion stage and improves the representation of
features in tampered regions.

Apart from the second row, the other three rows of data
also verify that our model can easily achieve the best per-
formance with hybrid features. Specifically, “RGB Stream
only” performs better on the NIST16 dataset, and “Noise
Stream only” performs better on COLUMBIA dataset. Since
the tampered images are diverse, using only one feature for
image forgery detection may be unstable. Accordingly, we
combine the two features with multiple resolutions to finally
achieve the best performance.

4.4.4. Robustness Analysis. To analyze the robustness of
pixel localization capability, we follow the settings in SPAN
[32], and conduct a series of experimental evaluations over
the NIST16 dataset and COLUMBIA dataset. In this ex-
periment, we apply the standard OpenCV [40] built-in
functions for image processing, image processing operations
(attack) include image resizing with different scales,
Gaussian blur with kernel size k, Gaussian noise with
standard deviation 0, and compressing images with different
compression factors QF. The above-mentioned image
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TABLE 6: Robustness evaluation using AUC score over NIST16 and COLUMBIA. Different parameters are tested and Mantra-Net and SPAN

are compared to show the performance evaluation.

. NIST16
Image processing Parameter

COLUMBIA
Mantra-net [9] (%) S PAN [32] (%) O URS (%) Mantra-net [9] (%) S PAN [32] (%) O URS (%)
No manipulation — 78.0 83.9 99.4 77.9 93.6 94.8
Resize 0.78x 77 4 83.2 89.8 69.0 89.9 90.4
Resize 0.25x 75.5 80.3 81.4 68.6 69.0 78.2
Gaussian blur k=3 77.4 83.1 87.7 67.7 78.9 84.1
Gaussian blur k=15 74.5 79.1 79.8 62.8 67.7 73.3
Gaussian noise c=3 67.4 75.1 82.6 68.2 75.1 80.5
Gaussian noise o=5 58.5 67.2 70.3 54.9 65.8 67.2
JPEG compression QF =100 77.9 83.5 97.0 75.0 93.3 92.9
JPEG compression QF =50 74.3 80.6 88.2 59.3 74.6 87.5

processing operations are common operations for image
dissemination in social networks.

Table 6 presents the AUC results of the robustness
analysis of several models under pixel-level localization.
Combining the data in Table 6, we observe that our model
can obtain more robustness in all respects than Mantra-Net
[9] and SPAN [32]. To be specific, under the image resizing
operation, when the image is resized to 0.25x size, our model
only achieves a slight advantage comparing with SPAN over
the NIST16 dataset. But, for other cases, our model has a
significant advantage compared to others, and the image
resize operation has minimal impact on our model. This is
because we extract features with different resolutions, which
can achieve better performance under image resizing op-
erations. In addition, since our training set contains a large
number of real images, the identification model can be fully
trained by combining authentic images and tampered im-
ages. Therefore, our model also obtains better robustness
when applying different levels of Gaussian blur, Gaussian
noise, and JPEG Compression.

5. Conclusions

In this paper, a novel end-to-end network framework was
proposed to meet the challenge of image forgery detection. We
designed the TDSA module by self-attention mechanism to
capture interchannel or interposition dependencies, which can
precisely locate the tampered regions. Then, the image-level
training strategy was designed, where the authentic images
were added into the training set to improve the robustness of
the detection model. By introducing an image-level training
strategy, the ratio of the predicted true image to the actual true
image (TNR) was greatly improved. Our network is validated
over four different datasets. We experimentally demonstrate
the importance of multi-resolution hybrid features, which can
cope with more complex situations.

Although our scheme can achieve a superior perfor-
mance comparing with a series of existing works, we should
note that our scheme is actually not sensitive to smaller
tampered regions. If the tampered region is too small, the
extracted features are hard to reflect the unusual statistics
information of the operation region, leading to more false
positives. In the future, we will further strengthen hybrid
features to enhance their anti-interference capability. We

will also study the balance between image-level detection
and pixel-level detection under the same framework.
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