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With the flourishing of the open-source software community, the problem of software vulnerabilities is becoming more and more
serious. Hence, it is urgent to come up with an effective and efficient code vulnerability detection method. Source code vul-
nerability detection techniques used in practice today like symbolic execution and fuzz testing suffer from high false positives and
low code coverage, respectively. Traditional machine-learning-based solutions fail to cope with the diversity of vulnerabilities. To
overcome these drawbacks, a large number of deep-learning-based code vulnerability detection works have emerged, aiming at
building powerful neural network models to fully learn code semantics and vulnerability patterns. In this survey, we mainly focus
on code vulnerability detection approaches based on deep sequence modeling and graph modeling technologies. Our goal is to
investigate how these two methods are applied to facilitate code vulnerability detection. We also go over current prevailing
datasets that are used to evaluate detection models. At last, we identify the current challenges in this field and share our views on

future work.

1. Introduction

Nowadays, with the increasing number of disclosed software
vulnerabilities, software vulnerability detection technology
has become a major concern in the software industry and the
field of cyber security. Especially, the booming of the open-
source software community produces a large number of
supply chain attacks. Recent work [1] has shown that at-
tackers can abuse the open-source package managers to
distribute malware, posing significant security risks to both
the developers and the users and causing substantial dam-
ages financially and socially.

One of the effective mitigation methods is to scan the
source code using code vulnerability detection tools before
the software deployment. In practice, developers or security
engineers mainly rely on code analysis or testing tools to
detect and fix bugs [2, 3]. These code analysis techniques can
be classified into static, dynamic, and hybrid methods. Static
methods like rule-based analysis [4-9] and symbolic exe-
cution [10, 11] analyze the source code statically without

execution. These methods often suffer from a high false-
positive rate [12], leaving engineers with tedious work to
verify false alarms. The current prevailing dynamic tech-
nique is fuzz testing [13-16]. Though it is an effective ap-
proach to discovering 0-day vulnerabilities, it faces the
challenges of low analysis efficiency and low code coverage.
Hybrid techniques combine static and dynamic analysis to
overcome their respective drawbacks, but they are still in-
efficient to work in practice [17].

To overcome the aforementioned weaknesses of code
analysis techniques, several advances have been made in
applying machine learning (ML) to identify code vulnera-
bilities. ML-based methods often regard code vulnerability
detection as a binary classification task. They train a su-
pervised ML model and use that model to predict whether an
unknown code sample is vulnerable or not. Early research
works [18-20] mainly rely on expert experience to construct
hand-crafted features which are then fed into machine
learning algorithms like random forests [21] to detect vul-
nerabilities. However, the code patterns vary between
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different types of code weaknesses [22]. Thus, it is im-
practical to design manual features that can express the
characteristics of all vulnerability types.

Aiming to improve the detection accuracy and to free
human experts from the intense labor of constructing hand-
crafted features, lots of research works [12, 23-36] employed
deep learning (DL) models and investigated the potential of
deep neural networks on automated vulnerability detection.
Based on source code representation methods and the type of
neural networks, DL-based code vulnerability detection ap-
proaches can be classified into two categories: sequence-based
methods and graph-based methods. Sequence-based ap-
proaches [12, 23, 24, 31, 33, 34] firstly preprocess the source
code into token sequences. Though works such as [12, 23]
exploit data dependency graphs to extract code gadgets, they
all end up representing the code gadget as a sequence of
tokens. The “token” here can be either a whole line of code or
a coding unit split by space. Then, a deep sequence model
such as GRU [37], LSTM [38], and Transformer [39] is used to
learn contextual information and defect-related semantics of
source code. Graph-based methods [17, 25, 26, 28, 35, 36]
convert source code into a specific graph structure. Four
commonly used graph representations of code are abstract
syntax tree (AST), control flow graph (CFG), program de-
pendency graph (PDG), and code property graph (CPG) [17].
Though Zhou et al. [25] added the natural code sequence
edges into CPG and Wang et al. [26] proposed an augmented
AST, their graph designs are still based on the four graph
backbones. After extracting the graph structure, a graph
neural network (GNN) model is employed to extract the
structural information and implement vulnerability detection.

The current study indicates that sequence models and
graph models have comparable performance on code vul-
nerability detection. In this survey, we mainly focus on these
two approaches and investigate how these two kinds of
models can be applied to facilitate code defect discovery. We
also show current mainstream datasets that can be used to
evaluate sequence-based and graph-based detection methods.
Then, we highlight the current challenges in DL-based code
vulnerability detection and share our potential solutions.

To summarize the work of this paper, the key contri-
bution is three-fold:

(i) firstly, we classify the current deep-learning-based
code vulnerability detection approaches into se-
quence-based and graph-based methods. We review
the latest research progress in the two fields,
summarize their unified detection frameworks, and
compare the different strategies used in detail.

(ii) Secondly, we review current prevailing and available
datasets that can be used to evaluate a sequence-
based or graph-based code vulnerability detection
approach. We also present the characteristics of
different datasets to help future researchers choose
proper datasets or construct their own.

(iii) Finally, we discuss the challenges that this research
field is facing. We also propose future work to
address these issues.
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2. Preliminaries

In this section, we explain the definition and the target of
code vulnerability detection. Then, we present the basic
knowledge of prevailing sequence and graph neural network
models.

2.1. Code Vulnerability Detection. Code vulnerability de-
tection is formalized as a binary classification problem, i.e.,
predicting whether a given piece of raw source code is
vulnerable or not. As for deep-learning-based code vul-
nerability detection, let a vulnerable code dataset be defined
as ((cp y)lc; €6,y € Y), i €{l,2,...,n}, where € de-
notes the set of pieces of codes, % = {0, 1}" represents the
label set with 1 for vulnerable code and 0 for benign code,
and #n is the number of instances. The goal is to learn a
mapping from € to %, f: €— ¥ to predict whether a piece
of code is vulnerable or not. The prediction function f is
expressed as a deep neural network, which can be learned by
minimizing the loss function shown in

min )" Z(f (¢ yile;)) + A (f), (1)
i=1

where Z(-) is the cross-entropy loss function, w(:) is a
regularization to prevent overfitting, and A is an adjustable
weight to determine the regularization degree.

The target piece of code ¢; in (1) can be a file, a
function, a code gadget [23], or even a line of code. Based
on the granularity of the target code, we classify code
vulnerability detection tasks into the coarse-grained task
and the fine-grained task. In the former task, the model
learns to predict whether a source file or a function is
vulnerable or not [17, 18, 23, 40]. Here, we also consider
the code gadget as coarse-grained data because it con-
tains quite a few lines of inter-procedural code. Besides,
in the fine-grained task, the model can identify vulner-
able statements in the code [29, 30]. Vulnerable state-
ments are defined as those code lines that are relevant to
the vulnerability. It should be noted that in this paper, we
mainly review studies related to coarse-grained vulner-
ability detection. We also discuss current and future
potential solutions regarding the fine-grained task in
Section 6.5.

2.2. Sequence Models

2.2.1. Recurrent Neural Network. The recurrent neural
network (RNN) is a classical model to process serialized
data. At each time step, the RNN correlates the input and its
“memory” to update “memory” and generate an output. Due
to the vanishing gradient, long short-term memory (LSTM)
and gated recurrent unit (GRU) are proposed to improve the
vanilla RNN. RNN-based code vulnerability detection ap-
proaches [12, 23] often split code into tokens which are then
fed into models such as bidirectional LSTM (BLSTM) for
prediction.
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2.2.2. Transformer. With its powerful feature extraction ca-
pabilities, the transformer has dominated both NLP [41] and
CV [42] fields. We mainly focus on the transformer encoder
proposed by [39]. Taking a token sequence X as the input, it first
converts the sequence into vectors H°, which is computed by
summing the token embeddings and positional embeddings.
Then, the model applies N transformer layers to generate
contextual  representations  H" = Transformer, (H,_,),
n € [1, N]. Each transformer layer contains a multi-head self-
attention operation followed by a feed-forward layer over the
input H""!, which is formalized as

G" = LN(MultiAttn(H"“) + H“‘l), 2)

H" = LN(MLP(G") +G"), (3)

where MultiAttn represents a multi-head self-attention
mechanism, MLP is a two-layer fully-connected neural
network, and LN is the layer normalization. For the nth
transformer layer, the MultiAttn part is computed via

Q =H""WOK,=H"'WK,v,=H"'W/,

yel
head; = softmax(Q’—’ + M)Vi, (4)

Vi
G" =[head,;...;head,]W?.

Here, H" ! is linearly projected into query (Q,), key
(K;), and value (V;) wusing trainable parameters

4

W, WK WY, respectively. d, is the dimension of a head, u
is the number of heads, and W© is the model parameters. M
is a mask matrix to avoid computation between normal
tokens and padding tokens, where M;; is 0 if ith token is
allowed to correlate with jth token otherwise —co.

A typical successful application of transformer is BERT
[41], which is a pretraining model firstly trained on a large
corpus based on the combined task of masked language
modeling (MLM) and next sentence prediction (NSP) and
can then be fine-tuned on downstream NLP tasks.

Many recent works apply natural language models to
achieve programming language understanding
[31, 33, 43, 44]. Inspired by BERT, they generally follow the
pretraining scheme in which the model is firstly pretrained on
a large corpus containing both programming language and
natural language. Then, the model is fine-tuned on a variety of
downstream tasks, such as code summary generation, code
clone detection, code completion, and code vulnerability
detection. It is worth mentioning that these works aim at
designing an effective model and pretraining tasks but not
code vulnerability detection. Although it is only a down-
stream task to validate their approach. These researches
demonstrate that transformer-based models achieve prom-
ising performance in code vulnerability detection. We will
show methods based on sequence models in Section 3.

2.3. Graph Neural Network. Graph neural networks (GNNs)
are proposed to apply deep learning on graphs, which is a
non-Euclidean data structure. GNNs are capable of graph-

related tasks like node classification, link prediction, and
graph classification. Recently, a lot of research on GNNs has
emerged because of its wide application in the fields of social
network [45], molecular analysis [46], and so on. GNNs
follow the scheme of message passing neural network
(MPNN) [47], where each node aggregates embeddings of its
neighbors to update its embedding. After k iterations of
aggregation, one node embedding involves information
from nodes within its k-hop neighborhood. These node
embeddings can be utilized to perform link prediction and
node classification. As for the graph classification task, a
pooling method merges node embeddings into a graph
embedding which is then fed into a fully-connected clas-
sifier. Studies on improving GNN structure focus on
modifying either aggregation or pooling method. Previous
works like GCN [48] and GAT [49] aim at enhancing the
aggregation algorithm, while sort-pooling [50] and self-at-
tention pooling [51] are proposed to improve the pooling
method.

Different from regarding code as token sequences in
sequence models, code vulnerability detection based on
GNNs often converts source code into a graph-structured
format like AST, CFG, PDG, and CPG [17, 25, 26]. Then, the
graphs are fed into a GNN to compute the graph repre-
sentation and the binary classification results. We will show
some of these works explicitly in Section 4.

3. Method Based on Sequence Models

In this section, we review studies that adopt deep sequence
models for code vulnerability detection. We first conclude a
general pipeline from existing methods and then discuss
them in terms of strengths and weaknesses.

3.1. Pipeline. Current studies based on deep sequence
models generally follow the process of preprocessing, vec-
torization, and neural network modeling as shown in Fig-
ure 1. In data preprocessing, the raw source code is parsed
into a sequence of tokens. Slicing and normalization tech-
niques can be employed to produce a finer-grained node
snippet and a smaller token vocabulary. Then, a tokenization
algorithm is used to split the piece of code into tokens. Note
that some work omits the slicing and normalization process,
they directly generate tokens from the raw source code.
These two different preprocessing strategies are distin-
guished in Figure 1 by red and blue arrows. After pre-
processing, the tokens are transformed into vectors that are
amenable to the neural network. As for modeling, an RNN
or a transformer-based model is used to learn the contextual
information inside token sequences and make the final code
defect prediction. We show methods based on sequence
models in Table 1.

3.1.1. Serialized Preprocessing. In preprocessing stage, to
adapt the sequence input form of a sequence model, the raw
source code should be transformed into a sequence of
tokens.
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Normalized Code Snippet

|

1 |int main(int argc, char **argv) 1 | int func_0(int var_0, char **var_1)
2 L] 2 | char *var_2;

3 char *str; 3 |var_2 =var_1[1];

4 if (arge > 1) { (1) 4 | func_1(var_2);

5 str = argv[1];

6 test(str);

7 }

8 return 0; I

9|t

main / func_0

2 A %(3) 2

Vectorized Token Sequence

1 2 s m

F1Gure 1: An illustration of code vulnerability detection based on sequence models. (1), (2), and (3) represent serialized preprocessing, token

vectorization, and sequence modeling, respectively.

TaBLE 1: Code vulnerability detection approaches based on sequence models.

Method Slicing Normalization Tokenization Vectorization Model
VulDeePecker [23] Code gadget v Lexical analysis word2vec BLSTM
Code gadget, . .
¢ VulDeePecker [12] Code attention v Lexical analysis word2vec BLSTM
SySeVR [24] SeVC +/ Lexical analysis word2vec BGRU
Transformer’s Transformer
CodeT5 [34] X X Byte-level BPE Embedding Encoder
CoTEXT [33] X X SentencePiece Transformer’s Transformer
Embedding Encoder
. . Transformer’s Transformer
SynCoBERT ([31] X X BPE, lexical analysis Embedding Encoder

RNN-based works [12, 23, 24] firstly convert the source
code into a finer-grained code snippet, namely code gadget
used in VulDeePecker [23] and y VulDeePecker [12], and
SeVC proposed in SySeVR [24]. The code snippet consists of
statements that are data-dependent or control-dependent on
potentially vulnerable statements described by a set of rules.
To reduce the size of code vocabulary, they map user-defined
variable and function names to symbolic names (e.g.,
“var_07, “var_1”, “func_0”, “func_1” in Figure 1), resulting
in a normalized code snippet. This normalization operation
mitigates the effect of customized names on model ro-
bustness because changing these names will not affect the
model’s prediction results. Then, a tokenization technique is
used to split the code snippet into a sequence of tokens.
RNN-based works achieve this via lexical analysis, which can
identify identifiers, keywords, operators, and symbols
automatically.

Transformer-based approaches often omit the code
slicing and normalization strategies, they directly perform
tokenization on the source code. Thanks to various toke-
nization strategies applied in the field of NLP, CodeT5 [34]
uses byte-level byte-pair-encoding (BPE) [52] to segment the
code into tokens. BPE repeats replacing pairs of adjacent
symbols that occur most often with a new symbol until the
size of vocabulary reaches the expectation. Byte-level BPE
applies BPE on raw bytes instead of characters. Besides,
CoTEXT [33] uses SentencePiece [53] model to extract
tokens. Different from these two methods, SynCoBERT is a
multi-modal model which uses both the code token se-
quence and the AST token sequence. The code token se-
quence is generated via BPE tokenization, and the AST token

sequence is extracted by performing a depth-first traversal
on the AST leaf nodes. Since AST generation relies on lexical
analysis, we consider SynCoBERT adopts both BPE and
lexical analysis in the tokenization stage as shown in Table 1.

3.1.2. Token Vectorization. After serialized preprocessing,
tokens should be converted into vectors which can then be
fed into a deep learning model. The above three RNN-based
approaches use word2vec [54], which is a fully-connected
neural network trained on the CBOW or the skip-gram task.
Then, for each word, the vector representation computed by
the hidden layer is regarded as the word representation. In
practice, the vector representations for tokens are fixed and
are directly used to perform the downstream code vulner-
ability detection task. This means that the token vectors
cannot indicate vulnerability-related information.

Transformer-based approaches learn the word embed-
ding by pretraining the transformer on more complicated
tasks compared to word2vec. Besides, the embedding layer
in transformer can be updated when training on down-
stream tasks. Therefore, when applying Transformer-based
models to code vulnerability detection, the token embed-
dings contain more vulnerability-aware features.

3.1.3. Sequence Modeling. The vectorization technique
transforms the sequence of tokens into an input matrix,
where each row represents a token vector. Then, these
vectors are fed into a sequence neural network to achieve the
vulnerability binary classification.
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VulDeePecker and p VulDeePecker exploit the Bidi-
rectional LSTM (BLSTM) instead of the LSTM because a
vulnerable program function call may be affected by both the
earlier statements and the later statements. BLSTM, with the
bidirectional connection between LSTM cells, can perceive
such contextual information. Above the BLSTM layers, some
dense layers are used to reduce the number of dimensions of
the vectors. At last, a SoftMax layer is responsible for
providing the classification probabilities. SySeVR employs
bidirectional GRU (BGRU) as the sequence modeling which
is similar to BLSTM.

As for transformer-based methods, though they design
different complex tasks to pretrain the model, they all use the
original multi-layer transformer encoder [39] when dealing
with the downstream code defect prediction task. The en-
coder consists of twelve transformer layers as described in
Section 2.2 with 768 hidden sizes and 12 attention heads,
which encode the input vectors into contextual represen-
tations. Then, the output vector regarding the [CLS] token
becomes the code representation and is later fed into a dense
classifier to achieve the binary classification. Since these
works aim at building a novel code understanding model,
they pretrain the model with both programming language
and natural language (the corresponding code comment) on
various pretraining objectives. For example, SynCoBERT
adopts identifier prediction and AST edge prediction tasks
and builds a contrastive training framework so that the
model can learn semantic information from the code. The
results from these works demonstrate that semantic features
implicitly help the model better distinguish between vul-
nerable code and normal code.

3.2. Method Discussion. We discuss the strengths and
weaknesses from the aspect of serialized preprocessing,
token vectorization, and sequence modeling. First, ap-
proaches that use RNN as sequence modeling (i.e., Vul-
DeePecker, y VulDeePecker, and SySeVR) obtain more
concise code representations by code slicing techniques
while transformer-based methods (i.e., CodeT5, CoTEXT,
SynCoBERT) directly utilize the source code that may
contain many statements that are irrelevant to vulnerabil-
ities. These redundant lines can weaken the impact of the
vulnerable statements on the detection results. Besides,
RNN-based approaches often apply code normalization to
mitigate the inaccuracy brought by customized identifiers.
One of the possible concerns of code slicing is that the
extracted code representations may not cover all of the
vulnerable code snippets. However, the work of SySeVR [24]
has proved that SeVCs generated based on library function
call, array usage, pointer usage, and arithmetic Expression
can cover more than 90% of the vulnerabilities in 126 kinds
of CWEs. The vulnerability coverage problem can be further
addressed by improving the code slicing strategy. Second,
token vectorization techniques used by transformer-based
methods extract more vulnerability-aware features while
word2vec used by RNN-based approaches only grab the
semantics. The former solution trains the transformer’s
embedding layer together with the whole vulnerability

detection model. Therefore, the embedding layer can im-
plicitly capture vulnerability-related signals from the source
code. By contrast, methods like word2vec are trained by
predicting the adjacent tokens, extracting contextual in-
formation that is not necessarily effective for vulnerability
detection. Third, transformers have been shown to have
better capacity [39] than RNNs due to a large number of
parameters and the attention mechanism. Also, trans-
formers allow for more parallelization than RNN, resulting
in more efficient training and detection.

In general, with the same goal of achieving a precise code
vulnerability performance, RNN-based methods are more
concerned with code preprocessing which slices the source
code into a finer format and replaces the user-defined
contents with normalized symbols. On the contrary, those
transformer-based approaches can extract more vulnera-
bility-aware signals from code tokens and adopt more ex-
pressive models to predict vulnerabilities. Both solutions are
proved to be effective and their advantages can be combined
to obtain a more effective vulnerability detection approach.

4. Method Based on Graph Models

In this section, we will introduce current GNN-based code
vulnerability detection approaches. We explain the pipeline
in detail and then follow with the discussion of the methods’
strengths and weaknesses.

4.1. Pipeline. As with the sequence models-based methods,
GNN-based methods also consist of three steps: pre-
processing, vectorization, and neural network modeling. As
shown in Figure 2, in the preprocessing stage, the source
code is transformed into a graph representation. Common
code graph representations are AST, CFG, PDG, and CPG.
Besides, similar to the approach explained in Section 3.1.1,
code normalization strategy may or may not be used which is
distinguished in Figure 2 by red and blue arrows. After
preprocessing, the nodes and edges are converted into
vectors so that the graph can be fed into a GNN model which
can learn structural information and make the final pre-
diction. We list solutions based on graph models in Table 2.

4.1.1. Graphical Preprocessing. Most of the current GNN-
based works [25, 26, 28, 35] follow the classical code
property graph (CPG) [17], which is a combination of the
abstract syntax tree, control flow graph, and program de-
pendency graph. To better understand the necessity of
employing CPG, we will explain the structures of these four
graphs in detail.

(1) Abstract Syntax Tree (AST). The abstract syntax tree is
often the first intermediate representation generated by
compilers to examine the code syntactic errors. As shown in
Figure 3(a), beginning from the root node representing the
function definition, the code is firstly split into statements,
declaration, predication, etc., and then, it is divided into the
leaf nodes that indicate the most basic code unit such as
identifiers, assignment operators, keywords.
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Vectorized Graph Representation \
1 |int main(int argc, char **argv)
' EN
3 char *str; &
4 if (arge > 1) { 4 N _a
5 str = argv[1]; g
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a
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8 return 0;
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Graph Representation

Normalized Souce Code

int main(int argc, char **argv) char *str

1 |int func_0(int var_0, char **var_1) FunctionDef Identiﬁer DeclStatement
2 |

3 char *var_2;

4 if(var_o>1{ [ ____ >

5 var_2 = var_l1[1]; int arge char **argv

6 func_1(var_2); ReturnType Parameter Parameter

7 }

8 return 0; l l

9

FIGURE 2: An illustration of code vulnerability detection based on graph models. (1), (2), and (3) represent graphical preprocessing, graph
vectorization, and GNN-based graph modeling, respectively.

TaBLE 2: Code vulnerability detection approaches based on graph neural networks.

Method Normalization Graph representation Vectorization Model
Devign [25] X CPG with NCS edges word2vec, one-hot GGNN + Conv
FUNDED [26] v Augmented AST word2vec, one-hot GGNN + Sum
VulSPG [28] X SPG word2vec, one-hot R-GCN + Attention
AI4VA [35] X CPG word2vec, one-hot GGNN + Mean
Feng et al. [36] X AST, CFG, CPG word2vec, one-hot DGCNN

int main (int argc
char*argv)

int main(int argc,
char **argv)

char *str

=
D

) o)

L test(str)

2 R

return 0 |-—

(a) () (©

FIGURE 3: Three common graph representations of the source code is given in Figure 2. In the program dependency graph (c), data and
control dependencies are represented by C and D. (a) Abstract syntax tree (AST). (b) Control flow graph (CFG). (c) Program dependency
graph (PDG).

(2) Control Flow Graph (CFG). The control flow graph
presented in Figure 3(b) explicitly describes the execution
order of all code statements as well as the conditions that

should be met for all the execution branching. Nodes denote
statements and predicates, and the directed edges indicate
the transfer of control.
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(3) Program Dependency Graph (PDG). The program de-
pendency graph in Figure 3(c) shows the control and data
dependencies among the statements and predicates. The two
kinds of dependencies are represented by two types of edges.
The data dependency edge means some variable is declared
in the code of the source node and is later used by the code in
the destination node. The control dependency edge shows
the influence of predicates on the values of variables.

(4) Code Property Graph (CPG). As displayed in Figure 4, the
code property graph [17] uses the nodes of AST and edges of
all AST, CFG, and PDG. It combines the properties of the
three basic graphs into a joint data structure, which captures
both syntactic and structural information of the source code.
The code graph representations that current works
employ are presented in Table 2. Methods like AI4VA [35]
and Feng et al. [36] directly employ the original version of
the four basic graphs as their code representations. Devign
[25], which is the first work that adopts GNN to tackle the
task of code vulnerability detection, adds the natural code
sequence (NCS) edges into CPG to encode the natural se-
quential information of the source code. Based on AST,
FUNDED [26] adds eight additional types of edges including
Data and control flows, Jump, ComputedFrom, GuardedBy,
NextToken, LastUse, and LastLexicalUse to form an aug-
mented AST. Since vulnerable statements have a very small
proportion in real-world functions, CPG contains a large
number of structures that are irrelevant to vulnerable pat-
terns. To mitigate this problem, VulSPG [28] defines a novel
slice property graph (SPG) and extracts SPG via program
slicing technique based on predefined SyVCs criterion.

4.1.2. Graph Vectorization. After graphical preprocessing,
the resulting code graph representations need to be con-
verted into vectors to be fed into the subsequent GNN. As
shown in Figure 2, in a code graph, every node possesses two
attributes: code and type. The code contains the source code
represented by the node and the type of node is defined by
AST. All of the work listed in Table 2 encode the code of each
node through a pretrained word2vec model with the source
code corpus built on the whole dataset. And the type of the
node is encoded as a one-hot representation. Besides, if CPG
is chosen to represent the code, there are multiple types of
edges in the graph. Commonly, one-hot encoding is also
used to encode the edge types.

4.1.3. GNN-Based Graph Modeling. In this stage, the above
extracted vectorized code graphs are fed into a graph neural
network to perform vulnerability detection. Devign, FUN-
DED, and AI4VA make use of GGNN [55], which contains
the gated recurrent unit (GRU) to update the node em-
beddings and the node’s hidden state at each aggregation
layer. However, they apply different pooling methods to
merge node embeddings into a graph embedding. Devign
designs a 1-D convolution module to select features that are
relevant to the final detection task. FUNDED concatenates
the node embeddings computed from all layers and uses
their sum as the graph representation. Besides, AI4VA

simply regards the average of node embeddings as the final
feature. Other than GGNN, VulSPG [28] exploits R-GCN
[56] and designs a novel attention mechanism to fusion the
graph representation. Fent et al. [36] uses the DGCNN [50]
in their graph modeling stage.

4.2. Method Discussion. Methods listed in Table 2 differ
mainly in graph representations and GNN models. All of the
work either use the original CPG or its enhanced version.
Devign improves CPGs by adding natural code sequence
edges to infuse contextual semantics. FUNDED enhances
CPGs by lots of structural information and produces graph
representations with nine kinds of edges. Different from the
above strategies of adding structural information, VulSPG
proposes to eliminate code that is irrelevant to vulnerabil-
ities. It conducts graph slicing on CPGs to produce SPGs. As
for GNN models, GGNN is commonly used due to its ef-
fectiveness. VulSPG uses R-GCN to lean different trans-
formations for different types of edges. In general, GNN-
based code vulnerability detection methods have the ad-
vantage of making the best of the code syntactic and
structural information. In the meantime, the semantics are
relatively underweighted because GNNs are hard to capture
contextual relations between nodes far apart. Also, they
often use the word2vec model to produce code embeddings
that may not be vulnerability-aware. We argue that the
advantages of sequence model-based methods and graph
model-based methods can be fused to build a more powerful
detection model in Section 6.

5. Dataset Review

To evaluate code vulnerability detection methods based on
deep sequence and graph models, a large dataset of vul-
nerable and non-vulnerable source code is necessary. Table 3
summarizes the characteristics of a few popular publicly
available code vulnerability datasets. Except for the type and
the source of the dataset, we also investigate whether the
dataset contains the vulnerability type of each sample which
can be used to build a vulnerability classification model.
Besides, we also consider if the fine-grained labels are
available which are helpful for further research on fine-
grained vulnerable statement localization tasks.

% means that the fine-grained labels are not included in
the original dataset, but they can be obtained manually.

Juliet [57] and S-Babi [58] are both synthetic datasets that
are produced according to predefined patterns. Although a
large number of code samples can be synthesized and the
vulnerability type and the fine-grained label can be obtained
conveniently, the main drawback is the lack of code diversity
compared to datasets generated from real-world programs.

The Devign dataset [25] contains real-world function
examples from GitHub, which are labeled manually according
to commit messages and code diffs. The vulnerability type and
the fine-grained label are not available in this dataset. Besides,
this dataset is included in a programming language under-
standing evaluation benchmark called CodeXGLUE [60], so it
is widely used by those Transformer-based methods.
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TaBLE 3: Publicly available dataset for code vulnerability detection.
Dataset Type Source Vul type Fine-grained label
Juliet [57] Synthetic SARD v v
S-Babi [58] Synthetic — i v
Devign dataset [25] Real-world GitHub X ot
CGD [23] Real-world NVD, SARD v o'
y VulDeePecker dataset [12] Real-world NVD, SARD v ot
SySeVR dataset [24] Real-world NVD, SARD v o'
FUNDED dataset [26] Real-world NVD, SARD, GitHub v X
D2A [59] Real-world GitHub v v

O' means that the fine-grained labels are not included in the original dataset, but they can be obtained manually.

CGD [23], u VulDeePecker Dataset [12], SySeVR Dataset
[24] are all derived from NVD [61] and SARD [62]. Since the
code samples are publicly confirmed bugs, the label quality is
reliable. Though the fine-grained labels cannot be directly
obtained from these datasets, they can be downloaded di-
rectly from SARD. As for samples from NVD, the fine-
grained labels can be generated by comparing the code diffs
files. Therefore, we consider that these three datasets indi-
rectly contain fine-grained labels.

The FUNDED Dataset [26] consists of samples from
NVD, SARD, and GitHub. The authors train a machine
learning model to identify whether the commit is related to a
vulnerability fix or not and use this model to label the
samples from GitHub. The dataset includes ten CWE types
that are applicable for vulnerability classification models.
However, the source of the code sample is missing, so the
fine-grained labels cannot be obtained.

The D2A [59] dataset is constructed based on a differ-
ential analysis labeling approach that can label issues re-
ported by static analysis tools. It is built by analyzing version
pairs from multiple open-source projects. This dataset also
provides abundant vulnerability-related data such as vul-
nerability types, fine-grained labels, and bug traces.

While the size of the synthetic dataset is not a concern,
the model trained on synthetic vulnerable code is difficult to
apply to real-world vulnerability detection due to the dif-
ferences in code patterns. Confirmed vulnerable samples
collected from NVD are used to address this issue. However,
such samples are quite limited and may not be adequate for
model training. As a result, there is an urgent need for
vulnerable samples from real-world programs, which can be
obtained from GitHub by locating vulnerability-fixing
commits. The Devign dataset contains real-world functions,
but their labels are unreliable because all functions patched

by the defect-fixing commit are labeled as vulnerable. The
FUNDED dataset, on the other hand, lacks fine-grained
labels for building DL-based vulnerability locators. The D2A
dataset is collected from real-world projects based on dif-
ferential analysis to label issues reported by static analysis
tools. It contains the most number of samples among all the
datasets and is currently the most effective DL-based code
vulnerability detection dataset.

6. Challenges and Future Directions

In this section, we show the challenges that DL-based code
vulnerability detection methods currently face. Then, we
offer some potentially feasible solutions.

6.1. Code Representation. Current efforts either convert
source code into sequence or graph representations. Se-
quence representations preserve semantic relations but do
not include structural information. On the contrary, the
semantics are underweighted in graph representations
which contain rich structural features. A potential solution is
to use both types of representations to utilize both semantic
and structural information in code.

6.2. Code Embedding Method. Most of the current methods
use pretrained code embedding techniques like word2vec.
However, since these models are trained on NLP tasks like
predicting neighbor tokens, they are hard to extract vul-
nerability-aware features from source code. We argue that
producing better code embeddings can improve the upper
bound of model effectiveness. Therefore, it is essential to
design code embedding networks that can be trained along
with the subsequent detection model. With the weight
update due to the vulnerability detection loss function, the
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code embedding networks can produce vulnerability-aware
signals, enhancing the model performance.

6.3. Model Selection. The sequence model has the disad-
vantage of only capturing contextual correlations between
code tokens while ignoring the rich control and data de-
pendencies of code. Despite taking structured features into
account, the GNN model is poor at learning semantic in-
formation. Though Devign tries to solve the problem by
adding natural code sequence (NCS) edges, due to the
characteristics of the model, GNN is not suitable for learning
the sequential features because it is hard to build long-
distance relations on tokens. A potentially feasible solution is
to combine the advantages of sequence models and graph
models to simultaneously learn both semantic and structural
information from the source code. We can use a sequence
model to extract the semantic representation and employ a
GNN model to extract the structural representation. Then, a
fusion network can be used to merge both features and make
the final prediction.

6.4. Dataset. Due to the lack of a unified benchmark dataset,
each study collects its dataset as shown in Table 3 and
conducts the evaluation. The fairness and reliability of such
experiments are questionable. Though D2A contains large
numbers of vulnerable samples collected from real-world
projects, it only covers six popular software programs.
Therefore, a large-scale real-world dataset that covers
multiple programming languages and contains precise
coarse-grained and fine-grained labels is needed in this field.

6.5. Fine-Grained Vulnerability Detection. Most of the
current works focus on coarse-grained detection. Engi-
neers still have to analyze the entire function and manually
locate the vulnerable statements, which is time-consum-
ing. To raise the level, fine-grained vulnerability detection
models can predict the exact statements that cause the
vulnerability. This technique is more practical because
instead of tediously finding the bugs manually, security
engineers can efficiently identify the location of the vul-
nerability and revise them. Current few works on fine-
grained detection follow the idea of using an explainable
model. IVDETECT [29] adopts an interpretable model
called GNNExplainer [63] that can explain why the model
has generated its decision. Another work is VulDeeLocator
[30], it adds an attention mechanism in the BRNN model
and uses the values of attention weight to decide the
vulnerable code locations. In general, these methods do
not make use of the vulnerability locations provided by the
dataset.

Since most datasets contain fine-grained labels, we
argue that these labels can be used to train a supervised fine-
grained detection model. For sequence-based models, the
vulnerability localization task can be converted into a token
classification task so that the model can predict which part
of the code is vulnerable. Similarly, as for graph-based
models, the fine-grained task can be treated as a node

classification task. The detected vulnerable statements are
the code contained in the vulnerable nodes predicted by the
model.

7. Conclusion

In this survey, we provide a detailed description of the
background and some preliminary code vulnerability de-
tection techniques. We categorize current works into se-
quence-based and graph-based methods, and we explicitly
review and compare their different detection frameworks
and strategies. We argue that sequence-based approaches
capture rich semantic features while graph-based models
make use of the code’s complex structural information. The
current dominant datasets and their characteristics are then
presented. Finally, we discuss the challenges in terms of code
representation, code embedding methods, model selection,
dataset, and fine-grained vulnerability detection. And we
propose future work to address these issues.
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