
Research Article
NormalAttack: Curvature-Aware Shape Deformation along
Normals for Imperceptible Point Cloud Attack

Keke Tang ,1 Yawen Shi ,1 Jianpeng Wu ,1 Weilong Peng ,2 Asad Khan ,2

Peican Zhu ,3 and Zhaoquan Gu 1

1Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
2School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
3School of Artificial Intelligence, Optics, and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Weilong Peng; wlpeng@gzhu.edu.cn and Asad Khan; asad@gzhu.edu.cn

Keke Tang, Yawen Shi, and Jianpeng Wu contributed equally to this work.

Received 11 May 2022; Revised 11 June 2022; Accepted 21 June 2022; Published 12 August 2022

Academic Editor: Keping Yu

Copyright © 2022 Keke Tang et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many efforts have been made on developing adversarial attack methods on point clouds. However, without fully considering the
geometric property of point clouds, existing methods tend to produce clearly visible outliers. In this paper, we propose a novel
NormalAttack framework towards imperceptible adversarial attacks on point clouds. First, we enforce the perturbation to be
concentrated along normals to deform the underlying surface of 3D point clouds, such that tiny perturbation can make the shape
deformed for better attack performance. Second, we guide the perturbation to be located more on regions with larger curvature,
such that better imperceptibility is achieved. Extensive experiments on three representative networks, e.g., PointNet++, DGCNN,
and PointConv, validate the effectiveness of NormalAttack and its superiority to state-of-the-art methods.

1. Introduction

With the development and popularity of deep neural net-
works (DNNs) [1], their performance on 3D point cloud
perception has been significantly improved [2–5]. However,
DNNs are reported to be vulnerable to adversarial attacks
[6], in which case imperceptible modifications on input
samples can lead to erroneous predictions of victim models.
-erefore, point cloud perception solutions based on DNNs
suffer from the hidden security risk of adversarial attacks,
hindering their deployment in safety-critical applications,
e.g., autonomous driving [7], 3D object recognition [8, 9],
and grasp planning of robotics [10].

In the last few years, many efforts have been made on
developing adversarial attack algorithms for DNNs in the
field of point clouds. By utilizing the unstructured nature of
point clouds, many early research performed attack by
adding adversarial points, clusters, and objects [11], or
dropping a small set of salient points [12]. To learn better
from the great success of adversarial attacks on images
[13–15], other branches of attempts focus on applying point-

wise perturbation to change point coordinates, by extending
the popular 2D C&W attack [16] and fast gradient sign
method (FGSM) [17] attack methods. However, without
intentionally considering the geometric properties of point
clouds, the extended methods [11, 18] can hardly adapt well,
and tend to produce clearly visible outliers, hindering their
imperceptibility to humans.

In the view of geometry, point clouds of 3D objects are 2-
manifold surfaces embedded in the 3D space [19].-erefore,
attacking point clouds by perturbing their points in the xyz

axes can only introduce a small portion of perturbation to
change the geometric properties, but leave a large remaining
portion to form noise, hindering the imperceptibility. Be-
sides, different regions of point clouds can withstand per-
turbations of different sizes, e.g., a large modification can be
imperceptible at salient regions, but a tiny modification at
flat regions is still conspicuous. -erefore, applying per-
turbations with a uniform magnitude will lead the attacks to
be perceptible easily.

To resolve the above issues, we propose a novel Nor-
malAttack framework, which applies curvature-aware
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shape deformation along normals for imperceptible point
cloud attack. First, to directly modify the geometric
property of the 2-manifold surfaces, we intentionally en-
force the applied perturbation on each point to be con-
centrated along its normal direction, such that the shape is
deformed for attack while allowing a tiny shift along the
tangent plane, in which way the deformation is averaged by
the local shapes for better imperceptibility. Second, con-
sidering the fact that regions with larger curvature can
tolerate larger modifications, we devise a curvature-aware
attack strategy to guide the perturbation to be concentrated
more at these areas, and thus the attack is more imper-
ceptible. We validate the effectiveness of our NormalAttack
framework by attacking multiple different deep classifi-
cation models. Extensive experimental results validate that
adversarial point clouds generated by our NormalAttack
framework are more imperceptible to those generated by
state-of-the-art methods. Besides, we also show Normal-
Attack is undefendable against adversarial defenses and
transferable to unseen classification models, as shown in
Figure 1.

Overall, our contribution is at least three-fold.

(i) We propose a deformation guiding module that
enforces the perturbation to be concentrated along
normals to deform the underlying shapes of 3D
point clouds for attack.

(ii) We propose a curvature-aware module to guide the
perturbation to be concentrated more at regions
with larger curvature for imperceptibility.

(iii) We validate the superiority of the NormalAttack
framework to the state-of-the-art methods via ex-
tensive experiments on PointNet++, DGCNN, and
PointConv.

2. Related Work

2.1. Deep Learning for Point Cloud Classification. Deep
learning methods have dominated the mainstream solutions
for handling point cloud classification. Early attempts first
convert irregular point clouds into structured grid repre-
sentations, e.g., by projecting point clouds into multiview
images [20] or rasterizing into 3D voxel grids [21], and then
adopting mature 2D convolutional neural networks. How-
ever, these methods either suffer from the loss of detailed
geometric information or high computation costs. -ere-
fore, since the pioneering PointNet [22] validated that the
structure of multilayer perceptrons (MLPs) followed with
maximum pooling can overcome the unorder issue of point
clouds, recent solutions focus on learning from point clouds
directly. To handle the failure of PointNet in recognizing
fine-grained patterns, PointNet++ [2] further captures the
fine geometric structure of point clouds by hierarchically
applying it to the neighborhood of each point. More solu-
tions include convolution-based KPConv [23], PointCNN
[24], and graph-based DGCNN [3]. In this paper, we mainly
evaluate the adversarial robustness of several representative
point cloud classification models.

2.2. Adversarial Attacks on Deep Learning Models for Point
Cloud. Since Szegedy et al. [6] demonstrated the intriguing
property of DNNs that an imperceptible perturbation on
images can lead them to make mistakes, extensive studies have
been made on attacking 2D image classification models
[16, 17, 25, 26].

Adversarial attack has been successfully extended to the
field of point cloud classification. Due to their unstructured
nature, adversarial attack on point clouds can be achieved by
adding or deleting points. Xiang et al. [11] performed adver-
sarial attack by adding a limited number of synthetic points,
clusters, and objects to the point cloud and showed that
PointNet [22] could be fooled in this way. Wicker and
Kwiatkowska [27] proposed to determine the critical points in a
random and iterative manner and then generated adversarial
examples for attack by deleting the critical points. Inspired by
the gradient-guided attack method, Yang et al. [28] found key
points by calculating the importance scores associated with the
labels obtained from the output of the classifier relative to the
gradient of the input and then deleted key points in a similar
manner. Instead of deleting the points, Zheng et al. [12] devised
a more flexible way that moves the points with high saliency
towards the center of the shape, such that these points will not
influence the surfaces. Another direction of adversarial attack is
to perturb point clouds in a similar way as in the field of images.
Liu et al. [18] extended the FGSM [17] by adding a l2-norm
constraint to construct imperceptible adversarial 3D point
clouds. Lee et al. [29] added adversarial noise to the latent space
of an auto-encoder, keeping the decoded shape similar to the
original one. To achieve better imperceptibility, Kim et al. [30]
proposed to perturb minimal subset of points, instead of all of
them.However, very fewwork exploited the geometric property
of point clouds to improve the imperceptibility of generated
adversarial point clouds.

2.3. Geometry-Aware Adversarial Attacks. Geometric prop-
erty is a critical cue for realizing high attack performance and
imperceptibility of the point cloud attack task. Tsai et al. [31]
incorporated the perturbation constraint into the C&W
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AttackType Imperceptibility Defense Transferability

I-FGSM No Easy Low
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Figure 1: Compared with most other iterative-based methods, e.g.,
I-FGSM, that perturb points guided by the gradient, our normal
attack framework enforces the perturbation concentrated along
normals in a curvature-aware manner and is imperceptible, hard to
defend, and highly transferable.
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framework by introducing a k-nearest neighbor loss to ensure
the compactness of the local neighborhoods in the obtained
adversarial examples. Wen et al. [32] enforced the consistency
of local curvature between the adversarial points and benign
ones. Both above studies attempt to apply additional geometric
constraints passively to achieve high imperceptibility. However,
since these constraints are strict, finding a feasible attack so-
lution while satisfying these geometric constraints is usually
very challenging. Considering that point clouds are 2-manifold
surfaces embedded in the 3D space, we initiatively guide the
perturbation to be concentrated along normals, such that very
tiny modification can make the underlying shape deformed,
and thus leading to better attack performance and imper-
ceptibility. LG-GAN [33] also exploits themanifold property of
point clouds. Differently, they enforce the perturbation to be
attached to the manifold, while our NormalAttack attempts to
destroy the manifold.

We notice a concurrent work [34] that also moves points
along normals. Differently, instead of strictly restrict the
moving direction, we allow points to be slightly shifted along
the tangent plane, such that more feasible solutions can be
searched. Besides, the freedom along tangent plane canmake
the surfaces after perturbation to be smoother. Last but not
least, we adopt a curvature-aware perturbation magnitude to
further improve the imperceptibility property.

3. Problem Formulation

3.1. Notations. -is work considers the setting in a C-cat-
egory point cloud classification problem. Let P be an input
point cloud containing a set of unordered points
P � pi 

n

1 ∈ R
n×3 sampled from the surface of a 3D object,

where each point pi ∈ R3 contains coordinate positions. Let
ni denote the normal of pi and F(·) denote a classifier, e.g.,
PointNet++ that predicts the category to which the input
point cloud belongs.

3.2. Formulation of Adversarial Attack. Suppose F(·) can
originally correctly classify the category of point cloud P

y � F(P), y ∈ 1, 2, . . . , C{ }, (1)

where y denotes the ground truth label of P, adversarial
attack aims to find a human-imperceptible perturbation △,
such that F(·) will make an error prediction on the
adversarial point cloud:

y′ � F(P +△), y′ ≠y. (2)

Note that the above formulation describes the situation
of untargeted attack, while targeted attack can be achieved by
additionally designating the expected category to be pre-
dicted. If not specifically mentioned, we only consider
untargeted attack in this paper.

3.3. Traditional Solution for△. By borrowing the experience
from adversarial attack in the image field, a widely adopted
solution is to apply perturbation in the direction which is
guided by the gradient, and with the same magnitude

△xyz ∼ ϵ · sign ∇PJ(F,P)( , (3)

where J(F,P) is the cost for F on the inputP, sign(·) is the
direction function, and ϵ is the perturbation step size.

3.4. Weaknesses of traditional solution. Traditional solutions
suffer from at least two main drawbacks. First, the inherent
property represented by point clouds is 2-manifold surfaces
embed in the 3D space, which is a small subset of the entire 3D
Euclidean space. -erefore, noise-like perturbation in the Eu-
clidean space cannot affect the underlying surfaces easily and
thus requires ϵ to be large, resulting in messy isolated points.
Second, different regions of the shapes can withstand different
magnitudes of perturbation. Adopting a uniform ϵ for all
different points will easily lead regions that have lower toler-
ances, e.g., flat areas, to be perceived by humans after applying
perturbation.

3.5. Our Solution for△. To overcome the above drawbacks,
we propose to (1) perturb the point clouds mainly along the
normal direction of each point, such that the underlying 2-
manifold surfaces can be directly modified for better attack
performance; and (2) adopt different perturbation magni-
tude for different points, such that perturbation on regions
that have lower tolerance will be suppressed for better
imperceptibility. A formal solution is defined as follows:

△n pi(  ∼ ϵ pi(  · sign ∇PJ(F,P), ni( , (4)

where ϵ(pi) denotes the perturbation step size for pi and
sign(∇PJ(F,P), ni) denotes the perturbation direction is
guided by the gradient and ni.

4. NormalAttack

In this section, we introduce the NormalAttack framework
that implements our solution for △ described in Section 3.
We will first present the two main components: the de-
formation guiding module and the curvature-aware module,
and then describe the whole attack framework. Please refer
to Figure 2 for demonstration.

4.1.DeformationGuidingModule. To guide the perturbation
to be concentrated along normals such that the underlying
surfaces are deformed after applying it, we devise a defor-
mation guiding module (DGM).

Instead of strictly restrict normals as the only available
moving directions as in ITA [34], DGM applies a muchmore
soft constraint. Suppose P is the adversarial point cloud
generated fromP, pi denotes the corresponding point of pi

in P, and pi
pi

���→
denotes the vector from pi to pi, the projected

perturbation in the tangent direction can be calculated as
follows:

Dtangent(P, P) � 
n

i�1

������������������

pi
pi

���→



2
−

pi
pi

���→
· ni

ni
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. (5)
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-erefore, by enforcing the value of Dtangent to be small,
the perturbation is concentrated along the normal
directions.

4.1.1. Discussion with ITA. Compared with ITA [34], our
DGM allows larger freedom along the tangent plane, and
thus more feasible solutions can be searched. Besides, adding
these offsets in the tangent direction can be considered as
applying an additional re-sampling process, thus making the
surfaces after perturbation more smooth, as shown in
Figure 3.

4.2. Curvature-Aware Module. To facilitate a flexible per-
turbation scheme that allows different perturbation mag-
nitudes for different points, e.g., perturb more on regions
that have larger tolerances, we devise a curvature-aware
module (CM).

Specifically, CM first calculates the curvature of each
point, e.g., pi,

curi �
1
k


q∈Npi

〈
q − pi( 

q − pi

����
����2

, ni〉



, (6)

where Np is the k-nearest neighbors of pi.
-en, CM calculates themagnitude weight for each point

via applying the sigmoid function:

w(i) �
1

1 + e
− t·curi

, (7)

where t is a temperature scaling parameter.
-erefore, by multiplying the magnitude weight with the

original perturbation step size, more perturbation is applied
to the regions with larger curvature.

4.3. 9e Whole Attack Framework. Given the clean point
cloud P, our NormalAttack framework first randomly

initializes the perturbation to form the adversarial point
cloud Padv

1 , and then optimize it iteratively, i.e., Padv
N .

Specifically, the objective loss function of our Normal-
Attack framework is defined as

J F,P
adv
N  � −Lclass F P

adv
N   + λ1Dtangent P, P

adv
N 

+ λ2Dh P, P
adv
N  + λ3Dc P,P

adv
N ,

(8)

where Lclass is the cross-entropy loss for category classifi-
cation, Dc is the Chamfer distance (CD) loss, and Dh is the
Hausdorff distance (HD) loss. By applying gradient descent
following (4) iteratively, the adversarial point clouds can be
refined via

P
adv
N+1 � P

adv
N − W{ }(i) · ϵ · sign ∇P J F,P

a dv
N  . (9)

where the i-th element of W is w(i). With the help of DGM
and CM, NormalAttack deforms the shape of point clouds
along normals in a curvature-aware manner, and thus makes
adversarial attack imperceptible. Besides, we validate that
NormalAttack is also hard to defend and highly transferable
in the following experiments.

W=0.5

W=1.0

cur=0.5

cur=1.0

Input Perturbation

Curvature-aware Module Deformation Guiding Module

Adv. Example

Normal

Classification
Model

Classification
Loss

Final Loss

Figure 2: Demonstration of the NormalAttack framework: given an input point cloud, the curvature-aware module enforces the per-
turbation to be located at regions with larger curvature, and the deformation guiding module leads the perturbation to be along normals,
resulting in an imperceptible adversarial attack.
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Figure 3: Diagram comparison between the ITA attack method
and our NormalAttack framework.
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5. Experiments

5.1. Implementation. For the attack objective function, i.e.,
(8), we set the weighting parameters with λ1 � 1.0, λ2 � 0.1,
and λ3 � 1.0. For the curvature-aware module, we set k � 12
and t � 20. We implement NormalAttack and reproduce all
the models with PyTorch and report the results on a
workstation with an Intel Xeon E5-2678 CPU@2.5Hz and
64GB of memory using a single RTX 2080Ti GPU.

5.2. Experimental Setup

5.2.1. Dataset. We evaluate the attack method on Mod-
elNet40 [35], a dataset that is widely used for 3D point cloud
classification tasks and contains 40 of the most common
object classes, consisting of 12,311 CAD models, of which
9843 models are used for training and another 2468 for
testing.

5.2.2. Models. We choose three representative 3D point
cloud classification models, such as PointNet++ [2],
DGCNN [3], and PointConv [23] for evaluating that attack
performance of our NormalAttack framework.-esemodels
are trained on the training data following their original
papers.

5.2.3. Baseline Attack Methods. We compare the Normal-
Attack framework with five baseline attack methods, e.g.,
FGSM, I-FGSM [36], 3D-ADV [11], GeoA3 [32], and ITA∗
[34]. Note that ITA∗ indicates the method that implements
the directional perturbation module of ITA with the
adversarial transformation model for black-box attack ab-
lated. Besides, since it is not open-sourced, we reimplement
it by ourselves.

5.2.4. Defense Methods. We adopt three adversarial de-
fense methods: statistical outlier removal (SOR) [37],
simple random sampling (SRS) [28], and denoiser and
upsampler network (DUP-Net) [37]. For SOR, we set the
number of points to be removed to be 128; for SRS, we set
the number of points to be sampled to be 100; for DUP-
Net, we set the number of points in the k-neighborhood to
2, the variance of the allowed point cloud distribution to
1.1, and the minimum number of input points for
upsampling to 1024.

5.2.5. Evaluation Metrics. We evaluate the effectiveness of
our novel NormalAttack framework using the attack
success rate (ASR), i.e., the rate of adversarial samples that
can successfully fool the classifiers. Besides, we evaluate the
imperceptibility by measuring the perturbation size be-
tween the original point clouds and their corresponding
adversarial examples using three commonly metrics:
l2-norm distance, Chamfer distance (CD), and Hausdorff
distance (HD). Note that these three imperceptibility
metrics are measured on the adversarial point clouds
generated by these methods that just achieve the best attack
success rates in the parameter tuning process, e.g., en-
larging perturbation step size and iteration.

5.3. Performance Comparison

5.3.1. Quantitative Results. To demonstrate the impercepti-
bility of our NormalAttack, we compare the distance metrics
with FGSM, I-FGSM [36], 3D-ADV [11], GeoA3 [32], and
ITA∗ [34]. -e results reported in Table 1 show that all these
methods can achieve 100% attack success rates. In particular,
our NormalAttack framework requires the lowest CD and
HD distances and a medium l2-norm to achieve it on all three
network models, significantly better than state-of-the-art

Table 1: Comparison on the perturbation sizes of different methods required to achieve their best attack success rates.

Attack model Methods Attack success rate (%)
Perturbation size

l2-norm HD CD

PointNet++

FGSM 100.00 5.5426 0.0193 0.0091
I-FGSM 100.00 0.6719 0.0063 0.0004
3D-ADV 100.00 0.3248 0.0381 0.0003
GeoA3 100.00 0.4772 0.0357 0.0064
ITA∗ 100.00 0.6507 0.0054 0.0004
Ours 100.00 0.5780 0.0050 0.0003

DGCNN

FGSM 100.00 6.6511 0.0193 0.0093
I-FGSM 100.00 0.9650 0.0088 0.0007
3D-ADV 100.00 0.3326 0.0475 0.0005
GeoA3 100.00 0.4933 0.0402 0.0076
ITA∗ 100.00 1.1601 0.0106 0.0010
Ours 100.00 0.8232 0.0077 0.0005

PointConv

FGSM 100.00 3.8798 0.0185 0.0050
I-FGSM 100.00 0.9231 0.0089 0.0007
3D-ADV 100.00 1.1230 0.0077 0.0011
GeoA3 100.00 2.3029 0.0037 0.0005
ITA∗ 100.00 1.0034 0.0095 0.0008
Ours 100.00 0.7735 0.0076 0.0005
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Figure 4: Visualization of original and adversarial point clouds generated by different models for attacking PointNet++.
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methods. -erefore, we conclude that our proposed Nor-
malAttack framework is imperceptibility.

5.3.2. Visualization Results. To better demonstrate the
advantage of our NormalAttack framework in imper-
ceptibility, we visualize the generated adversarial point
clouds by different methods in Figure 4. It can be seen

that most adversarial point clouds have highly visible
outliers, except those generated by ITA∗ and ours, thus
validating the usefulness of applying perturbation along
normal.

5.3.3. Evaluation on Efficiency. Since efficiency is also an
important factor to perform adversarial attacks, we compare
of ours with other iterative-based methods, e.g., I-FGSM,
3D-ADV, GeoA3, and ITA∗ on attacking PointNet++.
Specifically, we choose the iterations of 20, 40, 60, and 80,
and report the attack success rate of all the methods at these
iterations in Figure 5. It can be seen that the attack success
rates of I-FGSM, GeoA3, ITA∗, and ours increase with larger
iterations, while that of 3D-ADV drop slightly. For all 80
iterations, our NormalAttack achieves the highest attack
success rate, and the value is slightly lower than 100% at the
80 iteration, validating the efficiency of NormalAttack.
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Figure 6: Comparison on the imperceptibility of iterative-based attack methods at different iterations.

Table 2: Comparison on the attack success rates of different
methods with and without applying defense methods.

Attack FGSM I-FGSM 3D-ADV GeoA3 ITA∗ Ours
No defense 100.00 100.00 100.00 100.00 100.00 100.00
SRS 9.68 61.53 22.53 67.61 73.74 74.07
SOR 6.26 74.50 17.19 62.47 84.46 87.26
DUP-net 4.38 22.20 5.44 22.63 22.17 24.72
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Besides, we also report the perturbation sizes brought by
these attack methods at the same iterations in Figure 6. It can
be seen that the CD and l2-norm distances of ours are small

while the HD distance of ours is in a moderate level, vali-
dating that our NormalAttack framework achieves high
attack success rate and imperceptibility at the same time.

FGSM

At
ta

ck
SR

S
SO

R
D

U
P-

N
et

At
ta

ck
SR

S
SO

R
D

U
P-

N
et

At
ta

ck
SR

S
SO

R
D

up
-N

et

I-FGSM 3D-ADV GeoA3 ITA* Ours

Figure 7: Visualization of generated adversarial point clouds for attacking PointNet++ by different attack methods after applying different
adversarial defense solutions.
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5.3.4. Attack performance against defenses. To evaluate the
attack performance of our NormalAttack framework against
defenses, we compare it with FGSM, I-FGSM, 3D-ADV,
GeoA3, and ITA∗ on PointNet++ with applying three
adversarial defense methods, i.e., SRS, SOR, and DUP-Net.
-e results reported in Table 2 show that the attack success
rates of all six attack methods, including ours drop after
applying any one of the three defense strategies. In partic-
ular, I-FGSM, GeoA^3, ITA∗, and NormalAttack still obtain
more than 60% success rates after applying SRS and SOR,
validating their effectiveness in handling traditional geo-
metric defense methods. However, after applying the DNN-
based DUP-Net, their attack performance drops signifi-
cantly. In all cases, NormalAttack maintains the largest
attack success rates, validating its superiority. To investigate
why the performance of state-of-the-art methods drops but
ours not, we visualize the results after applying the defense
methods in Figure 7. It can be seen that the original outliers
generated by these methods for fooling network models are

filtered and thus lead to performance drops. Instead, our
NormalAttack framework attacks models without bringing
clearly visible outliers and thus is only slightly affected by the
defenses.

5.3.5. Transferability. To investigate the transferability
performance of our NormalAttack framework, we compare
it with state-of-the-art iterative-based attack methods, e.g.,
I-FGSM, 3D-ADV, GeoA3, and ITA∗, by feeding adversarial
point clouds generated by one network model to others.
Specifically, we report the adversarial transferability among
PointNet++, DGCNN, and PointConv in Table 3. It can be
seen that our NormalAttack framework performs the best
when transforming from DGCNN to other models, and
ranks in the forefront in the other two situations, validating
its transferability.

5.4. Ablation Studies and Other Analysis

5.4.1. Curvature-Aware Module. To demonstrate the im-
portance of the curvature-aware module, we compare the
results of the full NormalAttack framework with the other
framework whose curvature-aware module is ablated with
80 iterations. -e results reported in Table 4 show that the
attack success rate of the ablated framework is slightly higher
than that of the full one, but also with higher distance
metrics, validating that the curvature-aware module is
critical for maintaining imperceptibility.

5.4.2. Deformation Guiding Module. To demonstrate the
importance of the deformation guiding module, we compare
the results of the full NormalAttack framework with the

Table 3: Comparison on the transferability performance of different attack methods.

Source PointNet++ DGCNN PointConv
Target DGCNN PointConv PointNet++ PointConv PointNet++ DGCNN
I-FGSM 24.40 22.40 32.53 32.42 38.02 33.41
3D-ADV 20.44 19.56 32.75 33.96 22.86 54.73
GeoA3 18.35 22.42 21.65 30.55 17.14 23.19
ITA∗ 21.42 21.86 33.18 30.98 34.72 31.75
Ours 21.21 22.86 39.23 38.24 34.94 40.98

Table 4: Attack success rates and perturbation sizes of the full NormalAttack and the ones with the curvature-aware module (CM) and
deformation guiding module (DGM) ablated.

Victim model Attack method Attack success rate (%)
Perturbation size

l2-norm HD CD

PointNet++
Ours 97.58 0.5780 0.0050 0.0003

Ours w/o CM 98.57 0.5882 0.0052 0.0003
Ours w/o DGM 98.57 0.5781 0.0052 0.0003

DGCNN
Ours 86.59 0.9391 0.0089 0.0007

Ours w/o CM 87.03 0 t.9736 0.0090 0.0007
Ours w/o DGM 88.02 0.9409 0.0090 0.0007

PointConv
Ours 94.06 0.8673 0.0085 0.0006

Ours w/o CM 93.73 0.8850 0.0086 0.0006
Ours w/o DGM 94.17 0.8680 0.0086 0.0006

Table 5: Attack success rates and perturbation sizes of our Nor-
malAttack framework with different values of t.

Victim
model t Attack success rate

(%)
Perturbation size

l2-norm HD CD

PointNet++
20 98.24 0.5782 0.0050 0.0003
30 98.79 0.5804 0.0051 0.0003
40 98.35 0.5829 0.0050 0.0003

DGCNN
20 88.13 0.9400 0.0088 0.0007
30 87.91 0.9486 0.0089 0.0007
40 87.25 0.9525 0.0089 0.0007

PointConv
20 94.73 0.8678 0.0085 0.0006
30 93.52 0.8726 0.0085 0.0006
40 93.63 0.8760 0.0086 0.0006
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other framework whose deformation guiding module is
ablated with 80 iterations. -e results reported in Table 4
show that the attack success rate of the ablated framework is
slightly higher than that of the full one, and the distance
metrics are also much higher, validating that the defor-
mation guiding module is critical for maintaining
imperceptibility.

5.4.3. Parameter Analysis on t. We also investigate the ef-
fects of the temperature scaling parameter t in the curvature
adaptation module. Specifically, we apply NormalAttack
with different values of t for 80 iterations to attack Point-
Net++, DGCNN, and PointConv. -e results reported in
Table 5 show that both the attack success rate and pertur-
bation size are better when t � 20.-erefore, we set t � 20 in
all the experiments.

6. Conclusion

In this paper, we have proposed a novel NormalAttack
framework toward imperceptible adversarial attack on
point clouds. -e key of the framework is to enforce the
perturbation to be concentrated along normals to deform
the underlying surface of 3D point clouds and perturb
more on regions with larger curvature. Extensive exper-
iments validate the effectiveness of NormalAttack. We
hope our work can inspire more research on utilizing
geometric properties of point clouds to investigate
adversarial robustness.
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