
Research Article
k Nearest Neighbor Similarity Join Algorithm on High-
Dimensional Data Using Novel Partitioning Strategy

YouzhongMa ,1,2 QiaozhiHua ,3 ZhengWen ,4 Ruiling Zhang ,1 Yongxin Zhang ,1

and Haipeng Li 5

1School of Information and Technology, Luoyang Normal University, Luoyang 471934, China
2Henan Key Laboratory for Big Data Processing & Analytics of Electronic Commerce, Luoyang 471934, China
3Computer School, Hubei University of Arts and Science, Xiangyang 441000, China
4School of Fundamental Science and Engineering, Waseda University, Tokyo 169-8050, Japan
5Capinfo Company Ltd., Beijing 100010, China

Correspondence should be addressed to Qiaozhi Hua; 11722@hbuas.edu.cn

Received 17 January 2022; Accepted 22 March 2022; Published 26 April 2022

Academic Editor: $ippa Reddy G

Copyright © 2022 YouzhongMa et al.$is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

k nearest neighbor similarity join on high-dimensional data has broad applications in many fields; several key challenges still exist
for this task such as “curse of dimensionality” and large scale of the dataset. A new dimensionality reduction scheme is proposed
by using random projection technique, then we design two novel partition strategies, including equal width partition strategy and
distance split tree-based partition strategy, and finally, we propose k nearest neighbor join algorithm on high-dimensional data
based on the above partition strategies. We conduct comprehensive experiments to test the performance of the proposed
approaches, and the experimental results show that the proposed methods have good effectiveness and performance.

1. Introduction

With the rapid development of emerging technologies such
as big data [1, 2], Internet of things [3, 4], Deep Learning
[5, 6], Adversarial Training [7, 8], Federated Learning [9],
and 5G [10–12], the smart healthcare systems are becoming
more and more pervasive and necessary in modern hospi-
tals, and massive and diverse medical data have been ac-
cumulated by using a great volume of wearable sensors, the
Internet of Medical $ings [13, 14], or the Internet of Health
$ings [15, 16]. Medical data analysis, security, and privacy
protection [17] are very important for using massive medical
data. Many research works have been done, which can be
used as the references to analyze the medical data and secure
the Internet of Medical$ings, such as the blockchain-based
security approaches [18, 19], the security technologies in
Internet of Internet of Vehicles [20, 21], Industrial Internet
of $ings [22–25], Artificial Intelligence of $ings [26–28],
Energy Internet [29], and Intelligent transportation [30, 31].
Similarity join operation plays an important role in medical

data analysis [32, 33]. $reshold-based similarity join query
on high-dimensional data can obtain all the data pairs whose
distance is less than or equal to the given distance threshold,
and it needs to know the distance threshold in advance;
however, in many cases, it is hard or even impossible to get
the distance threshold in advance, while k nearest neighbor
similarity join (k NNJ) does not need to obtain the distance
threshold in advance. k NNJ is always used as the pre-
processing stage for classification or clustering task and has
broad real applications in many data mining tasks, such as
multimedia analysis, spatial data mining, time series, data
streams, and social network. Taking similar medical image
pairs detection as an example, in some cases, it is hard to
make a definite diagnosis according to the medical images
only; however, it is possible for us to obtain some similar
medical images of the existed confirmed cases (k nearest
neighbors) to help the doctors to make a final judgement on
the unconfirmed diseases.

In many applications, the target objects can be repre-
sented as vector forms through feature extraction in order to

Hindawi
Security and Communication Networks
Volume 2022, Article ID 1249393, 16 pages
https://doi.org/10.1155/2022/1249393

mailto:11722@hbuas.edu.cn
https://orcid.org/0000-0002-7359-6592
https://orcid.org/0000-0002-5999-4498
https://orcid.org/0000-0002-9942-8431
https://orcid.org/0000-0002-7455-5960
https://orcid.org/0000-0001-7457-5905
https://orcid.org/0000-0003-2842-9012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1249393

facilitate data processing, such as time series, videos, and
trajectories, especially for the image processing tasks
[34, 35]. With the continuous improvement of the accuracy
of data acquisition equipment, the dimensionality of vectors
representing the target objects will be very high, maybe
hundreds of dimensions or even tens of thousands of di-
mensions. $e calculation of the similarity or distance be-
tween the object pairs is a time costly operation. Most of the
existed approaches conduct k NN join operation directly on
the original dimensional space, so their performance is not
ideal. It is an effective way to reduce the time cost of k NN
join through reducing the dimensionality of the original data
points. $ere are three contributions in the paper:

(i) We proposed an effective dimensionality reduction
approach that can make sure that the data points in
the projected space preserve the location relation-
ship to some extent as in the original space.

(ii) We proposed two partition strategies, including
equal width partition strategy and distance split
tree-based partition strategy, and a novel k nearest
neighbor join algorithm was proposed by using the
above two partition strategies.

(iii) Comprehensive experiments are conducted, and the
final results prove that our approaches have better
effectiveness and performance.

$e other parts of the paper are arranged as follows. $e
detailed related research works are described in Section 2.
Section 3 displays the notations, problem definitions, and
some theorems. $e lower bound probability is figured out
in Section 4. $e k nearest neighbor join algorithm using
random projection and partition strategies is described in
Section 5. $e detailed experimental results of the proposed
approaches are displayed in Section 6. Section 7 makes a
conclusion of the paper and points out the future research
directions.

2. Related Works

Many researchers have conducted in-depth research on
similarity join problems because of their broad applications
and important role in data mining or machine learning
context; several survey articles have conducted a compre-
hensive and detailed analysis of the similarity join problem
literature [36, 37].

k nearest neighbor join: an approximated k NN simi-
larity join approach in metric spaces was proposed by
Ferrada et al. [38], its time complexity is Θ(n3/2), and the
empirical precision can reach up to 46%. Lu et al. [39]
designed a novel approach called PCBJ by using Voronoi
diagram, which can deal with exact k NN similarity join
problems; however, its performance is not very good as the
increase of data dimensionality. Dai et al. [40] proposed two
novel k NN join algorithms based on the MapReduce
framework, which are DSGMP-J using Distributed Sketched
Grid and VDMP-J using Voronoi diagram; DSGMP-J [40]
approach is easy to implement, but it ignores the real dis-
tribution of the dataset. Zhao et al. [41] designed an effective

data partitioning scheme called k NN-DP, which can solve
the load imbalance issues caused by the data skewness
problem; two novel schemes called LSH+ and z-value+ were
developed based on k NN-DP to deal with k NN join op-
erations under MapReduce framework. Song et al. [42]
conducted a detailed analysis of the common workflows of
the several existing k NN algorithms and further analyzed
their load balancing, accuracy rate, and overall complexity;
finally, a choice guideline was given which can help select the
suitable methods for a specific case. Song et al. [43] also
conducted a detailed comparison among the existing k NN
join approaches both theoretically and experimentally on the
MapReduce platform. RankReduce approach [44] was
proposed by using locality-sensitive hashing with MapRe-
duce for processing k nearest neighbor query. Hu et al. [45]
proposed an adaptive vk NN join algorithm by using the
Voronoi diagram, which can eliminate many unnecessary
computations. $ere still exist many other research works
about k NN join problems in several applications, such as
Trajectory Data [46], machine learning [47], and Hilbert
R-tree-based k NN join algorithms [48].

Top-k similarity join: Kim et al. [49] proposed two serial
algorithms called the “divide-and-conquer algorithm” and
“branch-and-bound algorithm” using the MapReduce
framework, which can deal with Top-k similarity join
problems efficiently. Chen et al. [50] developed a new dis-
tance function based on LSH and proposed an RDD-based
Top-k similarity join algorithm using the Spark framework,
and the test results proved that the RDD-based algorithm
has better scalability and effectiveness than that of Hadoop.
Ma et al. [51] developed a Top-k threshold estimation ap-
proach through sampling and designed an effective filtering
solution by using the Symbolic Aggregate Approximation
technique and then proposed a SAX-Top-k algorithm, which
can deal with Top-k similarity join problem. Lei et al. [52]
explored the similarity join problems for massive probabi-
listic dataset. $e main idea of Lei et al. [52] is mapping the
probabilistic data from the original space to the reduced
dimensional space (one dimension), and then the range
query on the one-dimensional space can be instead of the
threshold-based similarity join query on the original space.
Based on the above schemes, the authors proposed the Top-k
Block Nested Loop Join Algorithm and Top-k Data Locality
Preserving Join Algorithm, respectively. MELODY-JOIN
[53] can improve the efficiency of the Top-k join on the
histogram probabilistic dataset by using the standard lower
bound space of the EMD distance; however, it cannot deal
with the data skew problem efficiently. EMD-MPJ [54]
proposed a novel Mapping-based Data Partitioning
Framework that can solve the data skew problem. Heads-
Join [55] made an extension to MELODY-JOIN [53] so that
it can deal with both range similarity join and Top-k sim-
ilarity efficiently.

$reshold-based similarity join: Cristiani et al. [56]
designed a novel randomized set join method whose recall
can be up to 100%, and its performance is better than that of
the existing approach theoretically and empirically.
Gowanlock et al. [57] proposed several novel methods to
accelerate the similarity self-join by making full use of the

2 Security and Communication Networks

power and characteristic of GPU.$ere still exist some other
research works which focus on the similarity join problem
using GPU [58]. Sandes et al. [59] developed a novel filtering
scheme that can speed up the exact set similarity join more
efficiently. Ding et al. [60] exploited the privacy preserving
problems in similarity join using MapReduce context. Wu
et al. [61] proposed a novel parallel framework called SMS-
Join which can support similarity join operations in metric
space using the MapReduce paradigm. Ma et al. studied the
similarity join problems for high-dimensional dataset
through developing a novel dimension reduction approach
based on the Piecewise Aggregate Approximation technique
and proposed two algorithms called SAX-Based HDSJ [62]
and Mp-V-SJQ [63].

3. Preliminaries

3.1. Notations. $e notations used in this paper are listed in
Table 1.

3.2. Problem Definition. $e definitions of KNN and KNN
join will be described in this subsection. Given two datasets
R ∈ Rd and S ∈ Rd, R � r1, r2, . . . , rn1

 , S � s1, s2, . . . ,

sn2
}, |R| � n1, and |S| � n2. ri is the ith data point from R,

ri � 〈ri1, ri2, . . . , ri d〉, sj is the jth data point from S,
sj � 〈sj1, sj2, . . . , sj d〉, and the distance measurement used
in the paper is the Euclidean distance denoted as dist(ri, sj),

dist ri, sj �

�����������

d

l�1
ril − sjl

2

, (1)

where dist(ri, sj)> � 0 and dist(ri, sj) equals 0 when r � s.

Definition 1. K Nearest Neighbor Join (KNN). For a d-di-
mensional dataset S ∈ Rd and a query data point r, the KNN
operation of r on S can be recorded as knn(r, S, k) aiming to
obtain the k nearest neighbors of r in S:

knn(r, S, k) � s1, s2, . . . , sk|si ∈ S, 1≤ i≤ k ; for each
∀sj ∈ S − s1, s2, . . . , sk|si ∈ S, 1≤ i≤ k , the distance meets
the following requirements:

dist(r, s1)≤ dist(r, s2)≤ · · · ≤dist(r, sk)≤dist(r, sj).

Definition 2. K Nearest Neighbor Similarity Join (KNN Join).
Given two datasets R ∈ Rd and S ∈ Rd, the KNN similarity
join operation on R and S can return the k nearest neighbors

for each data point r ∈ R from S, which can be denoted as
knnJ(RS) � (r, knn(r, S, k))|for each r ∈ R{ }.

3.3. @eorems

Theorem 1. Given two d-dimensional data points s1 and s2,
then g(s1) − g(s2)/dist(s1, s2) ∼ N(0, 1).

Theorem 2. Given two d-dimensional data points s1 and s2,
then Δ2m(s1, s2)/dist2(s1, s2) ∼ χ2(m).

Theorem 3. If dist(s1, s2)≤ ϵ, then the probability that
Δm(s1, s2) is less than or equal to kϵ will be bigger than or
equal to 1 − P(χ2 > k2), which can be denoted as follows:
P(Δm(s1, s2)≤ |kϵ dist(s1, s2)≤ ϵ)≥ 1 − P(χ2 > k2).

$eorem 1,$eorem 2, and$eorem 3 have been proved
by Ma et al. [64]. $eorem 3 indicates that if the Euclidean
distance of the original space is less than or equal to ϵ, the
probability that the distance of the projected space will be
less than or equal to kϵ has the lower bound; that is,
1 − P(χ2 > k2). So we can project d-dimensional data point v

into m-dimensional space (m< d) through πm(s) � 〈g1(s),
g2(s), . . . , gm(s)〉.

Theorem 4. Given three d-dimensional data points r, s1, and
s2, r, s1, s2 ∈ R

d, U � Δ2m(r, s1)/dist2(r, s1) ∼ χ2(m), V �

Δ2m(r, s2)/dist2(r, s2) ∼ χ2(m), and then F � U/V obeys the F
distribution with degrees of freedom (m,m); that is,
F � U/V ∼ F(m, m).

Proof. According to $eorem 2, U � Δ2m(r, s1)/dist2

(r, s1) ∼ χ2(m), and V � Δ2m(r, s2)/dist2(r, s2) ∼ χ2(m); that
is to say, U and V both obey the χ2 distribution with freedom
m.

Based on the definition of F distribution, F � U/m/V/m
obeys the F distribution with degrees of freedom (m,m); that
is, F � U/V ∼ F(m, m). □ □

Theorem 5. If dist(r, s1)≤ dist(r, s2), then the probability
that Δm(r, s1)≤ kΔm(r, s2) is bigger than 1-P(F> k2); that is,
P(Δm(r, s1)≤ kΔm(r, s2)|dist(r, s1)≤dist(r, s2))> 1 − P

(F> k2). F is the distribution with degrees of freedom (m,m);
that is, F ∼ F(m, m).

Proof.

Security and Communication Networks 3

∵Δm r, s1(≥ 0andΔm r, s2(≥ 0,

∴P Δm r, s1(≤ kΔm r, s2(|dist r, s1(≤dist r, s2((

� P Δ2m r, s1(≤ k
2Δ2m r, s2(|dist r, s1(≤dist r, s2(

� P
Δ2m r, s1(

dist
2 r, s1(
≤

k
2Δ2m r, s2(

dist
2 r, s1(

|dist r, s1(≤dist r, s2(

�
P Δ2m r, s1(/dist

2 r, s1(≤ k
2Δ2m r, s2(/dist

2 r, s1(and dist r, s1(≤dist r, s2(

dist r, s1(≤ dist r, s2(
,

∵P dist r, s1(≤dist r, s2((� 1,

∴P Δm r, s1(≤ kΔm r, s2(|dist r, s1(≤dist r, s2((

� P
Δ2m r, s1(

dist
2 r, s1(
≤

k
2Δ2m r, s2(

dist
2 r, s1(

� 1 − P
Δ2m r, s1(

dist
2 r, s1(
>

k
2Δ2m r, s2(

dist
2 r, s1(

 ,

∵
Δ2m r, s1(

dist
2 r, s1(

∼ χ2(m)and dist r, s1(≤dist r, s2(,

∴P Δm r, s1(≤ kΔm r, s2(|dist r, s1(≤dist r, s2((

> 1 − P
Δ2m r, s1(

dist
2 r, s1(
>

k
2Δ2m r, s2(

dist
2 r, s2(

� 1 − P
Δ2m r, s1(/dist

2 r, s1(

Δ2m r, s2(/dist
2 r, s2(
> k

2
 ,

according to theorem 4,
Δ2m r, s1(/dist

2 r, s1(

Δ2m r, s2(/dist
2 r, s2(

∼ F(m, m),

∴P Δm r, s1(≤ kΔm r, s2(|dist r, s1(≤dist q, v2((> 1 − P F> k
2

 .

(2)

□

According to $eorem 5, when k� 1, if dist(r, s1) ≤ dist

(r, s2), then P(Δm(r, s1)≤Δm(r, s2) |dist(r, s1)≤ dist(r, s2))
> 1 −P(F(m, m)> 1); it indicates that the probability that
Δm(r, s1)≤Δm(r, s2) has the lower bound: 1 − P(F

(m, m)> 1).

We can conclude that if s1 is closer to r than s2 in the
original d-dimensional space, πm(s1) is still likely to be
closer to πm(r) than πm(s2) in the projected m-dimen-
sional space with lower bound probability 1 − P(F(m,

m)> 1).

Table 1: Notations.

Notation Meaning of the notation
n1, n2 $e data points’ number in the dataset.
ϵ $e width of each partition under equal width partition strategy.
d $e data point’s dimensionality.
dist(s1, s2) $e Euclidean distance of data point s1 and data point s2.

g(s) g(s) � a · s, a is a d-dimensional vector, and each element is a random variable that obeys
p-stable distribution.

πm(s) πm(s) � 〈g1(s), g2(s), . . . , gm(s)〉.
Δm(s1, s2) Δm(s1, s2) � dist(πm(s1), πm(s2)).
χ2(m) Chi-square distribution with degree of freedom m.
π1(s)min $e minimum projected value of data point s.
π1(s)max $e maximum projected value of data point s.
len $e width of all the projected values in one-dimensional space; that is, π1(s)min − π1(s)max.
PN $e number of the partitions in one-dimensional space.
Pi $e ith partition.

4 Security and Communication Networks

4. Probability Computation

When m � 1, k � 1, the probability P(F(m, m)> 1) can be
figured out based on the probability density of F distribution
which is described as follows:

ψ(y) �

Γ n1 + n2(/2 n1/n2(
n1/2y

n1/2()− 1

Γ n1/2(Γ n2/2(1 + n1y/n2(
n1+n2()/2

, y> 0,

0, other.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Given the freedom (1,1) and the upper quantile with 1,
the probability P(F(m, m)> 1) can be calculated as the
follows:

P(F> 1) �
∞

1
ψ(y)dy,

�
∞

1

Γ[(1 + 1)/2](1/1)
1/2

y
(1/2)− 1

Γ(1/2)Γ(1/2)[1 + y]
(1+1)/2 dy

�
∞

1

Γ(1)y
− 1/2

(Γ(1/2))
2
[1 + y]

dy

∵Γ(1) � 1, Γ(1/2) �
��
π

√

∴P(F> 1) �
∞

1

y
− 1/2

(
��
π

√
)
2
[1 + y]

dy

�
1
π

∞

1

1
��
y

√
(1 + y)

dy

�
2
π

∞

1

1
1 +(

��
y

√
)
2

d

��
y

√

�
2
π

arctan
��
y

√
|
∞
1

�
2
π

π
2

−
π
4

 � 0.5.

(4)

$e result of the above computation shows that, given
three d-dimensional data points r, s1, and s2, r, s1, s2 ∈ R

d,
they can be reduced to 1-dimensional space through dot
product with a d-dimensional vector a. If s1 is closer to r
than s2 in the original d-dimensional space, the lower bound
probability that π1(s1) is still likely to be closer to π1(r) than
π1(s2) in the projected 1-dimensional space is 0.5.

5. k Nearest Neighbor Join Using Novel
Partitioning Strategy

5.1. Algorithm for k Nearest Neighbor Join Using Novel Par-
titioning Strategy. $eorem 5 shows that if s1 is closer to r
than s2 in the original d-dimensional space, πm(s1) is still

likely to be closer to πm(r) than πm(s2) in the projected
m-dimensional space with the lower bound probability
1 − P(F(m, m)> 1). $e conclusion implies that data points
in projected space maintain relative location relationship as
in original dimensional space. So we proposed k nearest
neighbor join algorithm using random projection (RP k

NN); it includes twomain stages: the first stage is responsible
for dimension reduction and space partition, and the second
stage is used to conduct k NN join in reduced dimensional
space. Figure 1 shows the general framework of k nearest
neighbor similarity join algorithm using novel partitioning
strategy. $e concrete process of the proposed algorithm is
described in Algorithm 1. $e getPartition routine projects
all the data points into one-dimensional space and divides
the data points into several partitions according to the
specific partition strategy (line 1). For each partition Pi, its
corresponding partition Pi, which needs to be compared
with Pi, can be obtained through lines 3–9. If Pi is the
leftmost partition, Pi←∪Pi ∪Pi+1 (line 5). If Pi is the
rightmost partition, Pi←∪Pi−1 ∪Pi (line 7); in other cases,
Pi←Pi−1 ∪Pi ∪Pi+1 (line 9). Finally, for each data point
v ∈ Pi, k NN join routine is used to find its k nearest
neighbors from Pi (lines 10–12).

5.2. Partition Strategy

5.2.1. Equal Width Partition Strategy. All the data points are
divided into several partitions with equal width. $e total
partition number can be set to PN � ⌊

�
n

√
⌋. Suppose that

π1(s)min is the minimum projected value of s in one-di-
mensional space and π1(s)max is the maximum projected
value of s in one-dimensional space; that is
π1(s)min � min π1(sj), sj ∈ R and π1(s)max � max π1

(sj), sj ∈ R}; len is the width of all the projected values in
one-dimensional space, len � π1(s)min − π1(s)max; ϵ is the
width of each partition, ϵ � ⌊len/PN⌋; given a data point s,
its corresponding partition number is Pi � π1(s)/ϵ. $e
detailed procedure can be shown in Figure 2 and Algorithm
2.

5.2.2. Distance Split Tree-Based Partition Strategy. $e
previous equal width partition strategy is easy to implement;
however, it cannot deal with skewed dataset efficiently.
According to our proposed approach, the d-dimensional
data point s will be projected into one-dimensional space
through π1(s) � g1(s) � v · a �

d
i�1 si ∗ ai; each element of

a obeys standard normal distribution; that is:
ai ∼ N(0, 1), i ∈ [1, d]. $e projected value π1(s) is subject
to normal distribution, so it is skewed. Figure 3 shows the
distribution of the projected values.

Theorem 6. Given two d-dimensional data points s and a,
ai ∼ N(0, 1), i ∈ [1, d], π1(s) � g1(s) � s · a �

d
i�1 si ∗ ai,

and then π1(s) ∼ N(0,
d
i�1 s2i).

Security and Communication Networks 5

data partition

Random Projetion
g (s) = s.a

KNN join verification

KNN Join: 1 dimensional space

Verification: d-dimensional space

dimension reduction

r

S1

S2

Pi = Pi–1 U Pi UPi+1
~

g (s)

.Pi–1 Pi Pi+1

1

d

π1(r) = <g (r)>
π1(S1) = <g (S1)>
π1(S2) = <g (S2)>

Figure 1: Framework of k nearest neighbor join algorithm using novel partitioning strategy.

Input: R, k //dataset, the number of nearest neighbors to �nd
Output: res //a set of pairs of data points
(1) partitions←get Partition(R, n);
(2) res←∅;
(3) for i � 1; i≤ |partitions|; i + + do
(4) if i�� 1 then
(5) Pi⟵∪Pi ∪Pi+1
(6) else if i�� |partitions| then
(7) Pi⟵∪Pi−1 ∪Pi
(8) else
(9) Pi⟵Pi−1 ∪Pi ∪Pi+1
(10) for data point v ∈ Pi do
(11) temp←kNN Join(k, v, Pi)
(12) res←res∪ temp
(13) return res.

ALGORITHM 1: Algorithm for k nearest neighbor join using novel partitioning strategy.

P1 P2 P3 Pi–1 Pi Pi+1 Pm–2 Pm–1 Pm

equal width partition strategy
1

π1 (s)min
π1 (s)max

len = π1 (s)min–π1 (s)max

.

g (s)

Pi = Pi–1 U Pi UPi+1
~

Figure 2: Equal width partition strategy.

6 Security and Communication Networks

Input: R, n //dataset, the cardinality of the dataset
Output: partitions //list of the sets that partition the dataset
(1) PN � ⌊

�
n

√
⌋

(2) partitions[i]←∅,∀i, 0≤ i≤PN

(3) π1(s)min � min π1(sj), sj ∈ R

(4) π1(s)max � max π1(sj), sj ∈ R

(5) len � π1(s)min − π1(s)max
(6) ϵ � ⌊len/PN⌋

(7) choose one vector randomly, recorded as a,∀e ∈ a ∼ N(0, 1)

(8) //divide R into PN partitions according to Pi, the data points which have the same Pi.
(9) //belong to the same partition, recorded as partitions[1], partitions[2] · · · , partitions[PN].
(10) for each data point s ∈ R do
(11) π1(s)⟵〈g1(s)〉

(12) Pi � π1(s)/ϵ
(13) partitions[Pi]←〈Pi, π1(s), s〉

ALGORITHM 2: Equal width partition strategy.

0

0.5

1

1.5

2

2.5

3

3.5

Pe
rc

en
ta

ge
 o

f E
ac

h
G

ro
up

 (%
)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Group ID (dim=128, data size=30000)

(a)

0

0.5

1

1.5

2

2.5

3

3.5
Pe

rc
en

ta
ge

 o
f E

ac
h

G
ro

up
 (%

)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Group ID (dim=256, data size=30000)

(b)

0

0.5

1

1.5

2

2.5

3

3.5

Pe
rc

en
ta

ge
 o

f E
ac

h
G

ro
up

 (%
)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Group ID (dim=512, data size=30000)

(c)

0

0.5

1

1.5

2

2.5

3

3.5

Pe
rc

en
ta

ge
 o

f E
ac

h
G

ro
up

 (%
)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Group ID (dim=1024, data size=30000)

(d)

Figure 3: $e distribution of the projected values (π1(s)): (a) dim � 128 and data science � 30000; (b) dim � 256 and data science � 30000;
(c) dim � 512 and data science � 30000; (d) dim � 1024 and data science � 30000.

Security and Communication Networks 7

Proof.

∵ai ∼ N(0, 1),

⇒siai ∼ N 0, s
2
i ,

∵π1(s) �

d

i�1
si ∗ ai,

∴π1(s) ∼ N 0,
d

i�1
s
2
i

⎛⎝ ⎞⎠,

⇒π1(s)is subject to normal distribution and its variance is

d

i�1
s
2
i .

(5)

Aiming to deal with the data skew problem, we proposed
a novel partition strategy called distance split tree- (DST-)
based partition strategy. Figure 4 displays the structure of
DST. $e main idea of DST is that after the original d-di-
mensional data points are mapped into one-dimensional
space, in the beginning, all the data points are divided into
equal width partitions with threshold ϵ � π1(s)max
−π1(s)min/2c, c is an adjustable parameter. maxNum is the
upper bound of data point count contained in each partition.
Once the data point count in a specific partition exceeds
maxNum, the partition will be divided into two new par-
titions with equal width again and so on, and finally, a
distance split tree is formed. For each leaf node, the level of
the node’s hierarchy, the node number in the specific level,
the count of the data, and the corresponding dataset are
recorded. Based on the above information, the distance
range corresponding to each leaf node can be calculated.$e
corresponding distance width of each node in the current
level can be calculated: 1/2level− 1ϵ. $e corresponding dis-
tance range of the node can be calculated by or de rNo in
the level [orderNo − 1/2level−1ϵ, orderNo/2level−1ϵ). $us, the
distance range corresponding to the N2 node can be cal-
culated: [3 − 1/23−1ϵ, 3/23−1ϵ); that is, [2/4ϵ, 3/4ϵ).

$e construction of distance split tree: the construction
process of the distance split tree is as follows: firstly, build a
root node Nroot, for each data point si ∈ R, and figure out its
projected value in one-dimensional space π1(si).$en all the
data points are divided into equal width partitions with
threshold ϵ, and the corresponding partition number of each
vector si in the mapping space is obtained pi d←π1(si)/ϵ.
If the node with the number pi d does not exist, a new child
node with the number pi d will be generated. If it already
exists, si is inserted into the node pi d, and its count value is
increased by 1. Once the amount of data point in a node
exceeds a given threshold, such as maxNum, the node will
be further divided into two subnodes according to the
distance range. Repeat this procedure, and finally, a distance
split tree is generated.

Data partitions generated: after the distance split tree is
constructed, the partitions set can be obtained through
preorder traversal for distance split tree; only the leaf nodes

are left as the member of the final partitions set. $en the
obtained partitions set can be used in Algorithm 1. □

6. Time Complexity Analysis

In this section, we mainly analyze the time complexity of our
proposed method. Given the d-dimensional dataset R and
|R| � n, the total partition number is PN � ⌊

�
n

√
⌋, Pi rep-

resents the ith partition, and Cost represents the total
computations of the proposed method. $e time complexity
is as the follows:

Cost �

PN

i�1
Pi

∗ Pi ∪Pi−1 ∪Pi+1

∗ d. (6)

In the best cases, all the data points in R are evenly
distributed in each partition; that is, |Pi| � ⌊

�
n

√
⌋, so

Cost �
PN

i�1
⌊

�
n

√
⌋∗ 3∗ ⌊

�
n

√
⌋∗ d

� ⌊
�
n

√
⌋∗ ⌊

�
n

√
⌋∗ 3∗ ⌊

�
n

√
⌋∗d

� 3∗ n
3/2 ∗d.

(7)

$e time complexity in the best case can be recorded as
O(n3/2d).

In the worst case, supposing that all the data points are
included in one partition, then the time complexity should
be O(n2d). Because the projected values of the proposed
method obey normal distribution, it is between the best case
and the worst case, so the time complexity of the proposed
method lies in (O(n3/2d),O(n2d)).

7. Experimental Analysis

We conducted experiments to test the effectiveness and
performance of the proposed methods, k nearest neighbor
join algorithm using random projection with equal width
partition strategy (RP k NNEW) and k nearest neighbor join
algorithm using random projection with distance split tree-
based partition strategy (RP k NNDST), and made com-
parisons between our proposed methods and the existing

8 Security and Communication Networks

methods including a KNN [38] and the brute force method
with Block Nested Loop Join Strategy (BNLJ). a KNN [38] is
a relatively new research work on k NN similarity join
problem, and it also adopted the algorithms based on the
partitioning strategy.

Experimental settings: our tests are performed on HP
workstation, and the configurations are as follows: CPU:
Intel Xeon Gold 6136 @ 3.00GHz, memory: 128GB, disk:
2 TB, OS: 64-bit Windows 10, and 12 cores. Table 2 describes
the parameters and their values.$e bold fonts represent the
default values.

Datasets: the datasets adopted in our experiments are
synthetic data, the elements of the vector are uniformly
distributed in the range [0, 1], and the dimensionality of the
datasets includes 128, 256, 512, and 1024. $e datasets are
listed in Table 3.

7.1. Precision versusData Size. It can be concluded that RP k

NNEW has the best precision among the above three ap-
proaches, including aKNN, RP k NNEW, and RP k NNDST;
in some cases, the precision of RP k NNEW is more than
50%. However, Figure 5 shows that the precision of a KNN,
RP k NNEW, and RP k NNDST is not very stable for dif-
ferent data size, and the precision of RP k NNDSTis between
that of a KNN and RP k NNEW.

7.2. Precision versus Dimension. Figure 6 displays the pre-
cision of a KNN, RP k NNEW, and RP k NNDST under
different dimension. $e proposed method RP k NNEW has
the best precision; although the precision of RP k NNEW
varies under different dimension, it is always higher than
40% under all conditions. $e precision of RP k NNDST is
relatively stable under different dimension, and it is lower
than that of RP k NNEW. Because RP k NNDST adopts the
distance tree-based partition strategy and all the data points
will be distributed into different partitions more evenly,
every partition will not containmuchmore data points, so its
precision will decrease to some extent compared with RP k

NNEW. $e precision of our proposed methods, including

RP k NNEW and RP k NNDST, is better than that of a KNN
under all different dimension.

7.3. Precision versus k. Figure 7 displays the precision of the
above approaches (including a KNN, RP k NNEW, and RP k

NNDST) under different k. $e results prove that the
precision of RP k NNEW and RP k NNDST is higher than
that of the existing method a KNN. $e precision of RP k

NNEW is higher than that of RP k NNDST; the reason is that
RP k NNEW adopted the equal width partition strategy;
while the projected values are skewed, several partitions will
contain more data points; the precision will be higher ac-
cordingly. $e precision of a KNN and RP k NNDST is
basically stable under different k value, while the precision of
RP k NNEW is a little more sensitive to the different k value.

7.4. Precision Distribution. Figure 8 displays the precision
distribution of a KNN, RP k NNEW, and RP k NNDST. It
can be found that the precision of some data points is very
low (less than 5%), and the precision of some data points is
very high (more than 80%) by using RP k NNEW. $e
average precision of RP k NNEW is higher than that of a

KNN and RP k NNDST; the percentage of the data points
whose precision is more than 80% is 20.6%, 0.05%, and
0.57%, respectively, for RP k NNEW, a KNN, and RP k

NNDST. $e main reason is that RP k NNEW adopts the
equal width partition strategy, which cannot deal with the
skewed projected values effectively; however, RP k NNDST
adopts distance split tree-based partition strategy, which can
distribute all the data points into different partitions more
evenly.

7.5. Performance versus Data Size. Figure 9 displays the
performance of BNLJ, a KNN, RP k NNEW, and RP k

NNDSTon the datasets with different size. $e run time of a

KNN, RP k NNEW, and RP k NNDST is much less than that
of the BNLJ method; the run time of BNLJ increases ex-
ponentially with the size of the datasets; however, the run
time of a KNN, RP k NNEW, and RP k NNDST increases

0 1 24

1 1 10 1 2 2 1 5 9 1 8 3

2 1 3 2 2 7 2 9 4 2 10 5

3 3 4 3 4 3 3 7 2 3 8 3

root node

leaf node

internal node

level

orderNo num

v3, v6 v4, v8, v10

v1, v2, v5 v7, v9, v11, v12

v13, v14, v17, v18 v15, v20, v16 v19, v21, v26v31, v28

Figure 4: Distance split tree-based partition strategy.

Security and Communication Networks 9

linearly with the size of the datasets. $e run time of RP k

NNEW is a little bit more than that of a KNN and RP k

NNDST. While we can find that RP k NNEW has the best
precision among all the methods based on the above pre-
cision analysis, we can choose the RP k NNEW method
when the performance requirements are not very strict;
otherwise, RP k NNDSTwill be the most appropriate choice,
because the precision of RP k NNDSTis higher than that of a

KNN, while its run time is less than that of RP k NNEW.

7.6. Performance versus Dimension. Figure 10 displays the
performance of our proposed methods and the existing
methods for different dimensions, which are 128, 256, 512,

and 1024, respectively. $e time of all algorithms grows with
the increase of the dimension, and the reason is the bigger
the dimension, the higher the time complexity. $e per-
formance of RP k NNEW is the best when the dimension is
less than 512, while the run time of RP k NNEW will be
slightly higher than that of a KNN when the dimension
exceeds 512.$e run time of RP k NNEW is higher than that
of a KNN and RP k NNEW, while Figure 6 shows that RP k

NNEW has the best precision in all cases.

7.7. Performance versus k. $e performance of BNLJ, a

KNN, RP k NNEW, and RP k NNDSTwith different k (data
size� 30000; dim� 512) is displayed in Figure 11. $e run

Table 2: Experimental settings.

Experimental parameters Values of the parameters
Returned number: k 10, 20, 30, 40, and 50
Dimensionality: d 128, 256, 512, and 1024

Data size: N
10000, 20000, 30000, 40000,

and 50000

Table 3: Datasets descriptions.

Dataset Number Dim. Data size
(M)

Data-128-1 10,000 128 11.3
Data-128-2 20,000 128 22.5
Data-128-3 30,000 128 33.8
Data-128-4 40,000 128 45
Data-128-5 50,000 128 56.3
Data-256-3 30,000 256 67.6
Data-512-1 10,000 512 45
Data-512-2 20,000 512 90
Data-512-3 30,000 512 135.1
Data-512-4 40,000 512 180.1
Data-512-5 50,000 512 225.1
Data-1024-3 30,000 960 270

25

30

35

40

45

50

55

Pr
ec

isi
on

 (%
)

20000 30000 40000 5000010000
Data Size (dim=512, k=30)

aKNN
RPkNNEW
RPkNNDST

Figure 5: Precision versus data size.

10 Security and Communication Networks

25

30

35

40

45

50

55

Pr
ec

isi
on

 (%
)

256 512 1024128
Dimension (data size=30000, k=30)

aKNN
RPkNNEW
RPkNNDST

Figure 6: Precision versus dimension.

aKNN
RPkNNEW
RPkNNDST

25

30

35

40

45

50

55

Pr
ec

isi
on

 (%
)

20 30 40 5010
k (dim=512, data size=30000)

Figure 7: Precision versus k.

0

1

2

3

4

5

6

7

8

9

Pe
rc

en
ta

ge
 (%

)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Precision (%) of RPkNNEW

(a)

0

5

10

15

Pe
rc

en
ta

ge
 (%

)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Precision (%) of aKNN

(b)

Figure 8: Continued.

Security and Communication Networks 11

0

2

4

6

8

10
Pe

rc
en

ta
ge

 (%
)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Precision (%) of RPkNNDST

(c)

0

2

4

6

8

10

Pe
rc

en
ta

ge
 (%

)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 951000
Precision (%) of RPkNNDST

(d)

Figure 8:$e distribution of the precision: (a) dim � 512, data size � 30000, and k � 30; (b) dim � 512, data size � 30000, and k � 30; (c) dim
� 512, data size � 30000, and k � 30; (d) dim � 1024, data size � 30000, and k � 30.

0

500

1000

1500

2000

2500

3000

3500

Ru
n

Ti
m

e (
se

co
nd

)

20000 30000 40000 5000010000
Data Size (dim=512, k=30)

BNLJ
aKNN

RPkNNEW
RPkNNDST

Figure 9: Performance versus data size.

0

200

400

600

800

1000

1200

1400

1600

1800

Ru
n

Ti
m

e (
se

co
nd

)

256 512 1024128
Dimension (data size=30000, k=30)

BNLJ
aKNN

RPkNNEW
RPkNNDST

Figure 10: Performance versus dimension.

12 Security and Communication Networks

time of all the above algorithms changes little with the
different value of k. $e run time of RP k NNDST is very
close to that of a KNN, and the reason has been explained in
Section 6; however, the precision of RP k NNDST is better
than that of a KNN according to Figure 7. $e run time of
RP k NNDST and a KNN is less than that of RP k NNEW.

7.8. Preprocessing Time. Figure 12 displays the preprocessing
time required by the construction of the distance split tree
(DST) in RP k NNDST approach for different dataset. $e
preprocessing time increases almost linearly with the size of
the dataset. Given a dataset with a fixed size, the preprocessing
time increases exponentially with the growth of the dimen-
sion. Overall, the proportion of preprocessing time in the total
time is low and relative stable. $e benefit of the distance split
tree (DST) canmake up for the additional overhead caused by
the construction of DSTand canmake the total run time of RP
k NNDST less than that of RP k NNEW.

8. Conclusions

In the above sections, we mainly studied the k nearest
neighbor similarity join problem on high-dimensional data.
We proposed k nearest neighbor join algorithm using
random projection with equal width partition strategy (RP k

NNEW) and k nearest neighbor join algorithm using ran-
dom projection with distance split tree-based partition
strategy (RP k NNDST), which can filter out many un-
necessary comparisons and ensure the required precision.
We also conducted several experiments to test the effec-
tiveness and performance of our proposed approaches, and
the test results show that the proposed approaches in this
paper have better effectiveness and performance. However,
the proposed approaches in this paper have some limita-
tions, and they can only work with the Euclidean distance. In
future research works, we are planning to further study the k

NN similarity join approaches, which can deal with other
similarity measures, other more effective dimension

BNLJ
aKNN

RPkNNEW
RPkNNDST

300

400

500

600

700

800

900

1000

1100

1200

Ru
n

Ti
m

e (
se

co
nd

)

20 30 40 5010
k (data size=30000, dim=512)

Figure 11: Performance versus k.

dim=128
dim=256

dim=512
dim=1024

0

1

2

3

4

5

6

7

8

Pr
eP

ro
ce

ss
 T

im
e (

se
co

nd
)

20000 30000 40000 5000010000
Data Size (k=30)

Figure 12: Preprocessing time.

Security and Communication Networks 13

reduction techniques, and the distributed k nearest neighbor
similarity join algorithms.

Data Availability

$e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

$e authors declare that they have no conflicts of interest.

Acknowledgments

$is research was partially supported by the grants from the
Science and Technology Research Plan Project of Henan
Province (202102210357); the Innovative Research Team (in
Science and Technology) at University of Henan Province
(22IRTSTHN016); the National Natural Science Foundation
of China (61602231); the Japan Society for the Promotion of
Science (JSPS) Grants-in-Aid for Scientific Research
(KAKENHI) (JP21K17737); and the Hubei Natural Science
Foundation (2021CFB156).

References

[1] W. L. Shang, J. Y. Chen, H. B. Bi, Y. Sui, Y. Chen, and H. Yu,
“Impacts of covid-19 pandemic on user behaviors and en-
vironmental benefits of bike sharing: a big-data analysis,”
Applied Energy, vol. 285, 2021.

[2] G. T. Reddy, M. P. K. Reddy, and K. Lakshmanna, “Analysis of
dimensionality reduction techniques on big data,” IEEE Ac-
cess, vol. 8, Article ID 54776, 2020.

[3] L. Zhen, Y. K. Zhang, K. P. Yu, N. Kumar, and A. Barnawi,
“Early collision detection for massive random access in sat-
ellite-based internet of things,” IEEE Transactions on Vehic-
ular Technology, vol. 70, no. 5, pp. 5184–5189, 2021.

[4] Z. W. Guo, K. P. Yu, A. Jolfaei, F. Ding, and N. Zhang, “Fuz-
spam: label smoothing-based fuzzy detection of spammers in
internet of things,” IEEE Transactions on Fuzzy Systems, 2021.

[5] K. P. Yu, L. Tan, L. Lin, X. Cheng, Z. Yi, and T. Sato, “Deep-
learning-empowered breast cancer auxiliary diagnosis for 5gb
remote e-health,” IEEE Wireless Communications, vol. 28,
no. 3, pp. 54–61, 2021.

[6] F. Ding, G. P. Zhu, M. Alazab, X. J. Li, and K. P. Yu, “Deep-
learning-empowered digital forensics for edge consumer
electronics in 5g hetnets,” IEEE Consumer Electronics Mag-
azine, vol. 11, 2020.

[7] F. Ding, G. P. Zhu, Y. C. Li, X. Zhang, P. K. Atrey, and S. Lyu,
“Anti-forensics for face swapping videos via adversarial
training,” IEEE Transactions on Multimedia, 2021.

[8] F. Ding, K. P. Yu, Z. H. Gu, X. J. Li, and Y. Q. Shi, “Perceptual
enhancement for autonomous vehicles: restoring visually
degraded images for context prediction via adversarial
training,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[9] W. Z. Wang, M. H. Fida, Z. T. Lian et al., “Secure-enhanced
federated learning for ai-empowered electric vehicle energy
prediction,” IEEE Consumer Electronics Magazine, 2021.

[10] L. Tan, K. P. Yu, L. Lin, X. Cheng, G. Srivastava, and W. Wei,
“Speech emotion recognition enhanced traffic efficiency so-
lution for autonomous vehicles in a 5g-enabled space-air-
ground integrated intelligent transportation system,” IEEE

Transactions on Intelligent Transportation Systems, vol. 23,
2021.

[11] C. S. Feng, B. Liu, K. P. Yu, S. K. Goudos, and S. H. Wan,
“Blockchain-empowered decentralized horizontal federated
learning for 5g-enabled uavs,” IEEE Transactions on Industrial
Informatics, vol. 18, 2021.

[12] C. S. Feng, B. Liu, Z. Guo, K. Yu, and Z. Qin, “Blockchain-
based cross-domain authentication for intelligent 5g-enabled
internet of drones,” IEEE Internet of @ings Journal, vol. 9,
no. 8, 2021.

[13] L. Yang, K. P. Yu, S. X. Y. Yang, C. Chakraborty, and Y. Lu,
“An intelligent trust cloud management method for secure
clustering in 5g enabled internet of medical things,” IEEE
Transactions on Industrial Informatics, 2021.

[14] D. W. Wang, Y. X. He, K. P. Yu, L. Nie, and R. Zhang, “Delay
sensitive secure noma transmission for hierarchical hap-lap
medical-care iot networks,” IEEE Transactions on Industrial
Informatics, 2021.

[15] H. Li, K. P. Yu, B. Liu, C. Feng, and Z. Qin, “An efficient
ciphertext-policy weighted attribute-based encryption for the
internet of health things,” IEEE journal of biomedical and
health informatics, 2021.

[16] Y. Sun, J. Liu, K. P. Yu, M. Alazab, and K. X. Lin, “Pmrss:
privacy-preserving medical record searching scheme for in-
telligent diagnosis in iot healthcare,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 3, pp. 1981–1990, 2022.

[17] L. Tan, K. P. Yu, N. Shi, C. Yang,W.Wei, and H. Lu, “Towards
secure and privacy-preserving data sharing for covid-19
medical records: a blockchain-empowered approach,” IEEE
Transactions on Network Science and Engineering, vol. 9, no. 1,
pp. 271–281, 2022.

[18] H. Xiong, C. J. Jin, M. Alazab, H. Wang, W. Wang, and C. Su,
“On the design of blockchain-based ecdsa with fault-tolerant
batch verication protocol for blockchain-enabled iomt,” IEEE
journal of biomedical and health informatics, 2021.

[19] W. Z. Wang, C. Qiu, Z. M. Yin, G. Srivastava, and C. Su,
“Blockchain and puf-based lightweight authentication pro-
tocol for wireless medical sensor networks,” IEEE Internet of
@ings Journal, 2021.

[20] C. S. Feng, K. P. Yu, M. Aloqaily, Z. Lv, and S. Mumtaz,
“Attribute-based encryption with parallel outsourced de-
cryption for edge intelligent iov,” IEEE Transactions on Ve-
hicular Technology, vol. 69, no. 11, Article ID 13784, 2020.

[21] Q. Zhang, K. P. Yu, Z. W. Guo, S. Garg, J. Rodrigues, and
M. Guizani, “Graph neural networks-driven traffic forecasting
for connected internet of vehicles,” IEEE Transactions on
Network Science and Engineering, 2021.

[22] K. P. Yu, L. Tan, C. X. Yang, A. K. Bashir, and T. Sato, “A
blockchain-based shamir’s threshold cryptography scheme
for data protection in industrial internet of things settings,”
IEEE Internet of @ings Journal, 2021.

[23] D. Y. Xu, K. P. Yu, and J. A. Ritcey, “Cross-layer device
authentication with quantum encryption for 5g enabled iiot in
industry 4.0,” IEEE Transactions on Industrial Informatics,
2021.

[24] K. P. Yu, L. Tan, S. Mumtaz, S. A. Rubaye, A. A. Dulaimi, and
A. K. Bashir, “Securing critical infrastructures: deep-learning-
based threat detection in iiot,” IEEE Communications Mag-
azine, vol. 59, no. 10, pp. 76–82, 2021.

[25] Y. Gong, L. Zhang, R. P. Liu, K. P. Yu, and G. Srivastava,
“Nonlinear mimo for industrial internet of things in cyber-
physical systems,” IEEE Transactions on Industrial Infor-
matics, vol. 17, no. 8, pp. 5533–5541, 2021.

14 Security and Communication Networks

[26] L. Tan, K. P. Yu, F. P. Ming, X. F. Chen, and G. Srivastava,
“Secure and resilient artificial intelligence of things: a hon-
eynet approach for threat detection and situational aware-
ness,” IEEE Consumer Electronics Magazine, 2021.

[27] K. P. Yu, Z. W. Guo, Y. Shen, W. Wang, and T. Sato, “Secure
artificial intelligence of things for implicit group recom-
mendations,” IEEE Internet of @ings Journal, vol. 9, 2021.

[28] T. Guo, K. P. Yu, M. Aloqaily, and S. H. Wan, “Constructing a
prior-dependent graph for data clustering and dimension
reduction in the edge of aiot,” Future Generation Computer
Systems, vol. 128, pp. 381–394, 2022.

[29] Y. H. Peng, A. Jolfaei, and K. P. Yu, “A novel real-time de-
terministic scheduling mechanism in industrial cyber-phys-
ical systems for energy internet,” IEEE Transactions on
Industrial Informatics, 2021.

[30] L. Zhao, H. Chai, Y. Han, K. Yu, and S. Mumtaz, “A col-
laborative v2x data correction method for road safety,” IEEE
Transactions on Reliability, 2022.

[31] Z. Zhou, X. Dong, Z. Li, K. Yu, C. Ding, and Y. Yang, “Spatio-
temporal feature encoding for traffic accident detection in
vanet environment,” IEEE Transactions on Intelligent Trans-
portation Systems, 2022.

[32] L. Cai, J. Y. Gao, and D. Zhao, “A review of the application of
deep learning in medical image classification and segmen-
tation,” Annals of Translational Medicine, vol. 8, no. 11, 2020.

[33] J. X. Zhuang, J. B. Cai, R. X. Wang, J. G. Zhang, and
W. S. Zheng, “Deep knn for medical image classification,” in
Proceedings of Medical Image Computing and Computer
Assisted Intervention – MICCAI 2020, pp. 127–136, Springer
International Publishing, Berlin, Germany, 2020.

[34] H. A. Li, M. Zhang, Z. H. Yu, Z. L. Li, and N. Li, “An improved
pix2pix model based on gabor filter for robust color image
rendering,”Mathematical Biosciences and Engineering, vol. 19,
no. 1, pp. 86–101, 2021.

[35] H. A. Li, Q. Y. Zheng, W. J. Yan, and R. Tao, “Image super-
resolution reconstruction for secure data transmission in
internet of things environment,” Mathematical Biosciences
and Engineering, vol. 18, no. 5, pp. 6652–6671, 2021.

[36] J. Pang, Y. Gu, J. Xu, and G. Yu, “Research advance on
similarity join queries,” Journal of Frontiers of Computer
Science and Technology, vol. 7, no. 1, pp. 1–13, 2013.

[37] Y. Z. Ma, Z. H. Zhang, and C. J. Lin, “Research progress in
similarity join query of big data,” Journal of Computer Ap-
plications, vol. 38, no. 4, pp. 978–986, 2018.

[38] S. Ferrada, B. Bustos, and N. Reyes, “An efficient algorithm for
approximated self-similarity joins in metric spaces,” Infor-
mation Systems, vol. 91, 2020.

[39] W. Lu, Y. Y. Shen, S. Chen, and C. B. Ooi, “Efficient pro-
cessing of k nearest neighbor joins using mapreduce,” Pro-
ceedings of the VLDB Endowment, vol. 5, no. 10,
pp. 1016–1027, 2012.

[40] J. Dai and Z. M. Ding, “Mapreduce based fast knn join,”
Chinese Journal of Computers, vol. 38, no. 1, pp. 99–108, 2015.

[41] X. J. Zhao, J. F. Zhang, and X. Qin, “knn-dp: handling data
skewness in knn joins using mapreduce,” IEEE Transactions
on Parallel and Distributed Systems, vol. 29, no. 3, pp. 600–
613, 2018.

[42] G. Song, J. Rochas, and F. Huet, “Solutions for processing k
nearest neighbor joins for massive data on mapreduce,” in
Proceedings of the 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing,
pp. 279–287, Turku, Finland, March 2015.

[43] G. Song, J. Rochas, E. L. Beze, and F. Huet, “K nearest
neighbour joins for big data on mapreduce: a theoretical and

experimental analysis,” IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 9, pp. 2376–2392, 2016.

[44] A. Stupar, S. Michel, and R. Schenkel, Rankreduce-processing
K-Nearest Neighbor Queries on Top of Mapreduce, LSDS-IR@
SIGIR, 2010.

[45] Y. Hu, G. Peng, Z. H. Wang, Y. R. Cui, and H. Qin, “Partition
selection for large-scale data management using knn join
processing,”Mathematical Problems in Engineering, vol. 2020,
pp. 1–14, Article ID 7898230, 2020.

[46] Y. X. Fang, R. Cheng, W. B. Tang, S. Maniu, and S. X. Yang,
“Scalable algorithms for nearest-neighbor joins on big tra-
jectory data,” IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 3, pp. 785–800, 2016.

[47] G. Chatzigeorgakidis, S. Karagiorgou, S. Athanasiou, and
S. Skiadopoulos, “Fml-knn: scalable machine learning on big
data using k-nearest neighbor joins,” Journal of Big Data,
vol. 5, no. 1, 2018.

[48] Q. S. Du and X. F. Li, “A novel knn join algorithms based on
hilbert r-tree in mapreduce,” in Proceedings of the 3rd In-
ternational Conference on Computer Science and Network
Technology, pp. 417–420, Dalian, China, October 2013.

[49] Y. Kim and K. Shim, “Parallel top-k similarity join algorithms
using mapreduce,” in Proceedings of the IEEE 28th Interna-
tional Conference on Data Engineering, pp. 510–521,
Arlington, VA, USA, 2012.

[50] D. H. Chen, C. G. Shen, J. Y. Feng, and J. J. Le, “An efficient
parallel top-k similarity join for massive multidimensional
data using spark,” International journal of database theory and
application, vol. 8, no. 3, pp. 57–68, 2015.

[51] Y. Z. Ma, X. Ci, and X. F. Meng, “Parallel top-k join on
massive high-dimensional vectors,” Chinese Journal of
Computers, vol. 38, no. 1, pp. 86–98, 2015.

[52] B. Lei, J. Xu, Y. Gu, and G. Yu, “Parallel top-k similarity join
algorithm on probabilistic data based on earth mover’s dis-
tance,” Journal of Software, vol. 24, no. s2, pp. 188–199, 2013.

[53] J. Huang, R. Zhang, R. Buyya, and J. Chen, “Melody-join:
efficient earth mover’s distance similarity joins using map-
reduce,” in Proceedings of the IEEE 30th International Con-
ference on Data Engineering, pp. 808–819, Chicago, IL, USA,
March 2014.

[54] X. Jia, B. Lei, Y. Gu, and Z. Zhang, “Efficient similarity join
based on earth mover’s distance using mapreduce,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27,
no. 8, pp. 2148–2162, 2015.

[55] J. Huang, R. Zhang, R. Buyya, J. Chen, and Y.W.Wu, “Heads-
join: efficient earth mover’s distance similarity joins on
hadoop,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 6, pp. 1660–1673, 2016.

[56] T. Christiani, R. Pagh, and J. Sivertsen, “Scalable and robust
set similarity join,” in Proceedings of the IEEE 34th Interna-
tional Conference on Data Engineering (ICDE), pp. 1240–1243,
Paris, France, April 2018.

[57] M. Gowanlock and B. Karsin, “Accelerating the similarity self-
join using the gpu,” Journal of Parallel and Distributed
Computing, vol. 133, no. 9, pp. 107–123, 2019.

[58] L. N. Yu, T. Z. Nie, D. R. Shen, and Y. Kou, “An approach for
progressive set similarity join with gpu accelerating,” in
Proceedings of the Web Information Systems and Applications.
WISA, pp. 155–167, 2020.

[59] F. Shao, G. Chen, L. H. Yu, Y. J. Bei, and J. X. Dong, “Bitmap
filtering: an efficient speedup method for xml structural
matching,” in Proceedings of the 8th ACIS International
Conference on Software Engineering, Artificial Intelligence,

Security and Communication Networks 15

Networking, and Parallel/Distributed Computing (SNPD
2007), vol. 3, pp. 756–761, Qingdao, China, July 2007.

[60] X. F. Ding, W. L. Yang, R. K. K. Choo, X. L. Wang, and H. Jin,
“Privacy preserving similarity joins using mapreduce,” In-
formation Sciences, vol. 493, pp. 20–33, 2019.

[61] J. C. Wu, Y. Zhang, J. Wang, C. Lin, Y. Fn, and C. Xing,
“Scalable metric similarity join using mapreduce,” in Pro-
ceedings of the IEEE 35th International Conference on Data
Engineering (ICDE), pp. 1662–1665, Macao, China, April
2019.

[62] Y. Z. Ma, X. F. Meng, and S. Y. Wang, “Parallel similarity joins
on massive high dimensional data using mapreduce,” Con-
currency and Computation: Practice and Experience, vol. 28,
no. 1, pp. 166–183, 2016.

[63] Y. Z. Ma, S. J. Jia, and Y. X. Zhang, “A novel approach for high
dimensional vector similarity join query,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 5, 2017.

[64] Y. Z. Ma, S. J. Jia, and Y. X. Zhang, “Chi-square distribution
based similarity join query algorithm on high-dimensional
data,” Journal of Computer Applications, vol. 36, no. 7,
pp. 1993–1997, 2016.

16 Security and Communication Networks

